You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/kviewshell/plugins/djvu/libdjvu/GPixmap.cpp

1677 lines
43 KiB

//C- -*- C++ -*-
//C- -------------------------------------------------------------------
//C- DjVuLibre-3.5
//C- Copyright (c) 2002 Leon Bottou and Yann Le Cun.
//C- Copyright (c) 2001 AT&T
//C-
//C- This software is subject to, and may be distributed under, the
//C- GNU General Public License, Version 2. The license should have
//C- accompanied the software or you may obtain a copy of the license
//C- from the Free Software Foundation at http://www.fsf.org .
//C-
//C- This program is distributed in the hope that it will be useful,
//C- but WITHOUT ANY WARRANTY; without even the implied warranty of
//C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//C- GNU General Public License for more details.
//C-
//C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library
//C- distributed by Lizardtech Software. On July 19th 2002, Lizardtech
//C- Software authorized us to replace the original DjVu(r) Reference
//C- Library notice by the following text (see doc/lizard2002.djvu):
//C-
//C- ------------------------------------------------------------------
//C- | DjVu (r) Reference Library (v. 3.5)
//C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved.
//C- | The DjVu Reference Library is protected by U.S. Pat. No.
//C- | 6,058,214 and patents pending.
//C- |
//C- | This software is subject to, and may be distributed under, the
//C- | GNU General Public License, Version 2. The license should have
//C- | accompanied the software or you may obtain a copy of the license
//C- | from the Free Software Foundation at http://www.fsf.org .
//C- |
//C- | The computer code originally released by LizardTech under this
//C- | license and unmodified by other parties is deemed "the LIZARDTECH
//C- | ORIGINAL CODE." Subject to any third party intellectual property
//C- | claims, LizardTech grants recipient a worldwide, royalty-free,
//C- | non-exclusive license to make, use, sell, or otherwise dispose of
//C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the
//C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU
//C- | General Public License. This grant only confers the right to
//C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to
//C- | the extent such infringement is reasonably necessary to enable
//C- | recipient to make, have made, practice, sell, or otherwise dispose
//C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to
//C- | any greater extent that may be necessary to utilize further
//C- | modifications or combinations.
//C- |
//C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY
//C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF
//C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//C- +------------------------------------------------------------------
//
// $Id: GPixmap.cpp,v 1.12 2004/08/06 15:11:29 leonb Exp $
// $Name: release_3_5_15 $
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if NEED_GNUG_PRAGMAS
# pragma implementation
#endif
// -- Implements class PIXMAP
// Author: Leon Bottou 07/1997
#include "GPixmap.h"
#include "GString.h"
#include "GException.h"
#include "ByteStream.h"
#include "GRect.h"
#include "GBitmap.h"
#include "GThreads.h"
#include "Arrays.h"
#include "JPEGDecoder.h"
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#ifdef HAVE_NAMESPACES
namespace DJVU {
# ifdef NOT_DEFINED // Just to fool emacs c++ mode
}
#endif
#endif
//////////////////////////////////////////////////
// ------- predefined colors
//////////////////////////////////////////////////
const GPixel GPixel::WHITE = { 255, 255, 255 };
const GPixel GPixel::BLACK = { 0, 0, 0 };
const GPixel GPixel::BLUE = { 255, 0, 0 };
const GPixel GPixel::GREEN = { 0, 255, 0 };
const GPixel GPixel::RED = { 0, 0, 255 };
//////////////////////////////////////////////////
// ----- utilities
//////////////////////////////////////////////////
static const GPixel *
new_gray_ramp(int grays,GPixel *ramp)
{
int color = 0xff0000;
int decrement = color / (grays-1);
for (int i=0; i<grays; i++)
{
int level = color >> 16;
ramp[i].b = level;
ramp[i].g = level;
ramp[i].r = level;
color -= decrement;
}
return ramp;
}
static inline int
mini(int x, int y)
{
return (x < y ? x : y);
}
static inline int
maxi(int x, int y)
{
return (x > y ? x : y);
}
static inline void
euclidian_ratio(int a, int b, int &q, int &r)
{
q = a / b;
r = a - b*q;
if (r < 0)
{
q -= 1;
r += b;
}
}
//////////////////////////////////////////////////
// global lock used by some rare operations
//////////////////////////////////////////////////
static GMonitor &pixmap_monitor() {
static GMonitor xpixmap_monitor;
return xpixmap_monitor;
}
//////////////////////////////////////////////////
// constructors and destructors
//////////////////////////////////////////////////
GPixmap::~GPixmap()
{
delete [] pixels_data;
}
void
GPixmap::destroy(void)
{
delete [] pixels_data;
pixels = pixels_data = 0;
}
GPixmap::GPixmap()
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
}
GPixmap::GPixmap(int nrows, int ncolumns, const GPixel *filler)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(nrows, ncolumns, filler);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
GPixmap::GPixmap(ByteStream &bs)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(bs);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
GPixmap::GPixmap(const GBitmap &ref)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(ref, 0);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
GPixmap::GPixmap(const GBitmap &ref, const GRect &rect)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(ref, rect, 0);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
GPixmap::GPixmap(const GPixmap &ref)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(ref);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
GPixmap::GPixmap(const GPixmap &ref, const GRect &rect)
: nrows(0), ncolumns(0), pixels(0), pixels_data(0)
{
G_TRY
{
init(ref, rect);
}
G_CATCH_ALL
{
destroy();
G_RETHROW;
}
G_ENDCATCH;
}
//////////////////////////////////////////////////
// Initialization
//////////////////////////////////////////////////
void
GPixmap::init(int arows, int acolumns, const GPixel *filler)
{
destroy();
nrows = arows;
ncolumns = acolumns;
nrowsize = acolumns;
int npix = nrows * nrowsize;
if (npix > 0)
{
pixels = pixels_data = new GPixel[npix];
if (filler)
{
while (--npix>=0)
pixels_data[npix] = *filler;
}
}
}
void
GPixmap::init(const GBitmap &ref, const GPixel *userramp)
{
init(ref.rows(), ref.columns(), 0);
GPixel *xramp;
GPBuffer<GPixel> gxramp(xramp);
if (nrows>0 && ncolumns>0)
{
// Create pixel ramp
const GPixel *ramp = userramp;
if (!userramp)
{
gxramp.resize(256);
gxramp.clear();
ramp = new_gray_ramp(ref.get_grays(),xramp);
}
// Copy pixels
for (int y=0; y<nrows; y++)
{
GPixel *dst = (*this)[y];
const unsigned char *src = ref[y];
for (int x=0; x<ncolumns; x++)
dst[x] = ramp[ src[x] ];
}
// Free ramp
// if (!userramp)
// delete [] (GPixel*)ramp;
}
}
void
GPixmap::init(const GBitmap &ref, const GRect &rect, const GPixel *userramp)
{
init(rect.height(), rect.width(), 0);
// compute destination rectangle
GRect rect2(0, 0, ref.columns(), ref.rows() );
rect2.intersect(rect2, rect);
rect2.translate(-rect.xmin, -rect.ymin);
// copy bits
if (! rect2.isempty())
{
GPixel *xramp;
GPBuffer<GPixel> gxramp(xramp);
// allocate ramp
const GPixel *ramp = userramp;
if (!userramp)
{
gxramp.resize(256);
gxramp.clear();
ramp = new_gray_ramp(ref.get_grays(),xramp);
}
// copy pixels
for (int y=rect2.ymin; y<rect2.ymax; y++)
{
GPixel *dst = (*this)[y];
const unsigned char *src = ref[y+rect.ymin] + rect.xmin;
for (int x=rect2.xmin; x<rect2.xmax; x++)
dst[x] = ramp[ src[x] ];
}
// free ramp
// if (!userramp)
// delete [] (GPixel*) ramp;
}
}
void
GPixmap::init(const GPixmap &ref)
{
init(ref.rows(), ref.columns(), 0);
if (nrows>0 && ncolumns>0)
{
for (int y=0; y<nrows; y++)
{
GPixel *dst = (*this)[y];
const GPixel *src = ref[y];
for (int x=0; x<ncolumns; x++)
dst[x] = src[x];
}
}
}
void
GPixmap::init(const GPixmap &ref, const GRect &rect)
{
init(rect.height(), rect.width(), 0);
// compute destination rectangle
GRect rect2(0, 0, ref.columns(), ref.rows() );
rect2.intersect(rect2, rect);
rect2.translate(-rect.xmin, -rect.ymin);
// copy bits
if (! rect2.isempty())
{
for (int y=rect2.ymin; y<rect2.ymax; y++)
{
GPixel *dst = (*this)[y];
const GPixel *src = ref[y+rect.ymin] + rect.xmin;
for (int x=rect2.xmin; x<rect2.xmax; x++)
dst[x] = src[x];
}
}
}
void
GPixmap::donate_data(GPixel *data, int w, int h)
{
destroy();
nrows = h;
ncolumns = w;
nrowsize = w;
pixels_data=pixels=data;
}
GPixel *
GPixmap::take_data(size_t &offset)
{
GPixel *ret = pixels_data;
pixels_data = 0;
offset = 0;
return ret;
}
//////////////////////////////////////////////////
// Save and load ppm files
//////////////////////////////////////////////////
static unsigned int
read_integer(char &c, ByteStream &bs)
{
unsigned int x = 0;
// eat blank before integer
while (c==' ' || c=='\t' || c=='\r' || c=='\n' || c=='#')
{
if (c=='#')
do { } while (bs.read(&c,1) && c!='\n' && c!='\r');
c = 0;
bs.read(&c, 1);
}
// check integer
if (c<'0' || c>'9')
G_THROW( ERR_MSG("GPixmap.no_int") );
// eat integer
while (c>='0' && c<='9')
{
x = x*10 + c - '0';
c = 0;
bs.read(&c, 1);
}
return x;
}
void
GPixmap::init(ByteStream &bs)
{
// Read header
int raw = 0;
char magic[2];
magic[0] = magic[1] = 0;
bs.readall((void*)magic, sizeof(magic));
if (magic[0]=='P' && magic[1]=='3')
{
raw = 0;
}else if (magic[0]=='P' && magic[1]=='6')
{
raw = 1;
}else
{
#ifdef NEED_JPEG_DECODER
bs.seek(0L);
JPEGDecoder::decode(bs,*this);
return;
#else // NEED_JPEG_DECODER
G_THROW( ERR_MSG("GPixmap.unk_PPM") );
#endif // NEED_JPEG_DECODER
}
// Read image size
char lookahead = '\n';
int acolumns = read_integer(lookahead, bs);
int arows = read_integer(lookahead, bs);
int maxval = read_integer(lookahead, bs);
if (maxval > 255)
G_THROW("Cannot read PPM with depth greater than 24 bits.");
init(arows, acolumns, 0);
// Read image data
if (raw)
{
GTArray<unsigned char> line(ncolumns*3);
for (int y=nrows-1; y>=0; y--)
{
GPixel *p = (*this)[y];
unsigned char *rgb = &line[0];
if ( bs.readall((void*)rgb, ncolumns*3) < (size_t)(ncolumns*3))
G_THROW( ByteStream::EndOfFile );
for (int x=0; x<ncolumns; x+=1, rgb+=3)
{
p[x].r = rgb[0];
p[x].g = rgb[1];
p[x].b = rgb[2];
}
}
}
else
{
for (int y=nrows-1; y>=0; y--)
{
GPixel *p = (*this)[y];
for (int x=0; x<ncolumns; x++)
{
p[x].r = read_integer(lookahead, bs);
p[x].g = read_integer(lookahead, bs);
p[x].b = read_integer(lookahead, bs);
}
}
}
// Process small values of maxval
if (maxval>0 && maxval<255)
{
char table[256];
for (int i=0; i<256; i++)
table[i] = (i<maxval ? (255*i + maxval/2) / maxval : 255);
for (int y=0; y<nrows; y++)
{
GPixel *p = (*this)[y];
for (int x=0; x<ncolumns; x++)
{
p[x].r = table[p[x].r];
p[x].g = table[p[x].g];
p[x].b = table[p[x].b];
}
}
}
}
void
GPixmap::save_ppm(ByteStream &bs, int raw) const
{
GUTF8String head;
head.format("P%c\n%d %d\n255\n", (raw ? '6' : '3'), ncolumns, nrows);
bs.writall((void*)(const char *)head, head.length());
if (raw)
{
int rowsize = ncolumns+ncolumns+ncolumns;
GTArray<unsigned char> xrgb(rowsize);
for (int y=nrows-1; y>=0; y--)
{
const GPixel *p = (*this)[y];
unsigned char *d = xrgb;
for (int x=0; x<ncolumns; x++)
{
*d++ = p[x].r;
*d++ = p[x].g;
*d++ = p[x].b;
}
bs.writall((void*)(unsigned char*)xrgb, ncolumns * 3);
}
}
else
{
for (int y=nrows-1; y>=0; y--)
{
const GPixel *p = (*this)[y];
unsigned char eol='\n';
for (int x=0; x<ncolumns; )
{
head.format("%d %d %d ", p[x].r, p[x].g, p[x].b);
bs.writall((void*)(const char *)head, head.length());
x += 1;
if (x==ncolumns || (x&0x7)==0)
bs.write((void*)&eol, 1);
}
}
}
}
//////////////////////////////////////////////////
// Color correction
//////////////////////////////////////////////////
static void
color_correction_table(double gamma, unsigned char gtable[256] )
{
// Check argument
if (gamma<0.1 || gamma>10.0)
G_THROW( ERR_MSG("GPixmap.bad_param") );
if (gamma<1.001 && gamma>0.999)
{
// Trivial correction
for (int i=0; i<256; i++)
gtable[i] = i;
}
else
{
// Must compute the correction
for (int i=0; i<256; i++)
{
double x = (double)(i)/255.0;
#ifdef BEZIERGAMMA
double t = ( sqrt(1.0+(gamma*gamma-1.0)*x) - 1.0 ) / (gamma - 1.0);
x = ( (1.0 - gamma)*t + 2.0 * gamma ) * t / (gamma + 1.0);
#else
x = pow(x, 1.0/gamma);
#endif
gtable[i] = (int) floor(255.0 * x + 0.5);
}
// Make sure that min and max values are exactly black or white
gtable[0] = 0;
gtable[255] = 255;
}
}
static void
color_correction_table_cache(double gamma, unsigned char gtable[256] )
{
// Compute color correction table
if (gamma<1.001 && gamma>0.999)
{
color_correction_table(gamma, gtable);
}
else
{
static double lgamma = -1.0;
static unsigned char ctable[256];
GMonitorLock lock(&pixmap_monitor());
if (gamma != lgamma)
{
color_correction_table(gamma, ctable);
lgamma = gamma;
}
memcpy(gtable, ctable, 256*sizeof(unsigned char));
}
}
void
GPixmap::color_correct(double gamma_correction)
{
// Trivial corrections
if (gamma_correction>0.999 && gamma_correction<1.001)
return;
// Compute correction table
unsigned char gtable[256];
color_correction_table_cache(gamma_correction, gtable);
// Perform correction
for (int y=0; y<nrows; y++)
{
GPixel *pix = (*this)[y];
for (int x=0; x<ncolumns; x++, pix++)
{
pix->r = gtable[ pix->r ];
pix->g = gtable[ pix->g ];
pix->b = gtable[ pix->b ];
}
}
}
void
GPixmap::color_correct(double gamma_correction, GPixel *pix, int npixels)
{
// Trivial corrections
if (gamma_correction>0.999 && gamma_correction<1.001)
return;
// Compute correction table
unsigned char gtable[256];
color_correction_table_cache(gamma_correction, gtable);
// Perform correction
while (--npixels>=0)
{
pix->r = gtable[pix->r];
pix->g = gtable[pix->g];
pix->b = gtable[pix->b];
pix++;
}
}
//////////////////////////////////////////////////
// Dithering
//////////////////////////////////////////////////
void
GPixmap::ordered_666_dither(int xmin, int ymin)
{
static unsigned char quantize[256+0x33+0x33];
static unsigned char *quant = quantize + 0x33;
static char dither_ok = 0;
static short dither[16][16] =
{
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
};
// Prepare tables
if (!dither_ok)
{
int i, j;
for (i=0; i<16; i++)
for (j=0; j<16; j++)
dither[i][j] = ((255 - 2*dither[i][j]) * 0x33) / 512;
j = -0x33;
for (i=0x19; i<256; i+=0x33)
while (j <= i)
quant[j++] = i-0x19;
assert(i-0x19 == 0xff);
while (j< 256+0x33)
quant[j++] = i-0x19;
dither_ok = 1;
}
// Go dithering
for (int y=0; y<nrows; y++)
{
GPixel *pix = (*this)[y];
for (int x=0; x<ncolumns; x++, pix++)
{
pix->r = quant[ pix->r + dither[(x+xmin+0)&0xf][(y+ymin+0)&0xf] ];
pix->g = quant[ pix->g + dither[(x+xmin+5)&0xf][(y+ymin+11)&0xf] ];
pix->b = quant[ pix->b + dither[(x+xmin+11)&0xf][(y+ymin+5)&0xf] ];
}
}
}
void
GPixmap::ordered_32k_dither(int xmin, int ymin)
{
static unsigned char quantize[256+8+8];
static unsigned char *quant = quantize + 8;
static char dither_ok = 0;
static short dither[16][16] =
{
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
};
// Prepare tables
if (!dither_ok)
{
int i, j;
for (i=0; i<16; i++)
for (j=0; j<16; j++)
dither[i][j] = ((255 - 2*dither[i][j]) * 8) / 512;
j = -8;
for (i=3; i<256; i+=8)
while (j <= i)
quant[j++] = i;
while (j<256+8)
quant[j++] = 0xff;
dither_ok = 1;
}
// Go dithering
for (int y=0; y<nrows; y++)
{
GPixel *pix = (*this)[y];
for (int x=0; x<ncolumns; x++, pix++)
{
pix->r = quant[ pix->r + dither[(x+xmin+0)&0xf][(y+ymin+0)&0xf] ];
pix->g = quant[ pix->g + dither[(x+xmin+5)&0xf][(y+ymin+11)&0xf] ];
pix->b = quant[ pix->b + dither[(x+xmin+11)&0xf][(y+ymin+5)&0xf] ];
}
}
}
//////////////////////////////////////////////////
// Upsample Downsample
//////////////////////////////////////////////////
void
GPixmap::downsample(const GPixmap *src, int factor, const GRect *pdr)
{
// check arguments
GRect rect(0, 0, (src->columns()+factor-1)/factor, (src->rows()+factor-1)/factor);
if (pdr != 0)
{
if (pdr->xmin < rect.xmin ||
pdr->ymin < rect.ymin ||
pdr->xmax > rect.xmax ||
pdr->ymax > rect.ymax )
G_THROW( ERR_MSG("GPixmap.overflow1") );
rect = *pdr;
}
// precompute inverse map
static int invmap[256];
static int invmapok = 0;
if (! invmapok)
{
invmapok = 1;
for (int i=1; i<(int)(sizeof(invmap)/sizeof(int)); i++)
invmap[i] = 0x10000 / i;
}
// initialise pixmap
init(rect.height(), rect.width(), 0);
// determine starting and ending points in source rectangle
int sy = rect.ymin * factor;
int sxz = rect.xmin * factor;
// loop over source rows
const GPixel *sptr = (*src)[sy];
GPixel *dptr = (*this)[0];
for (int y=0; y<nrows; y++)
{
int sx = sxz;
// loop over source columns
for (int x=0; x<ncolumns; x++)
{
int r=0, g=0, b=0, s=0;
// compute average bounds
const GPixel *ksptr = sptr;
int lsy = sy + factor;
if (lsy > (int)src->rows())
lsy = (int)src->rows();
int lsx = sx + factor;
if (lsx > (int)src->columns())
lsx = (int)src->columns();
// compute average
for (int rsy=sy; rsy<lsy; rsy++)
{
for (int rsx = sx; rsx<lsx; rsx++)
{
r += ksptr[rsx].r;
g += ksptr[rsx].g;
b += ksptr[rsx].b;
s += 1;
}
ksptr += src->rowsize();
}
// set pixel color
if (s >= (int)(sizeof(invmap)/sizeof(int)))
{
dptr[x].r = r / s;
dptr[x].g = g / s;
dptr[x].b = b / s;
}
else
{
dptr[x].r = (r*invmap[s] + 0x8000) >> 16;
dptr[x].g = (g*invmap[s] + 0x8000) >> 16;
dptr[x].b = (b*invmap[s] + 0x8000) >> 16;
}
// next column
sx = sx + factor;
}
// next row
sy = sy + factor;
sptr = sptr + factor * src->rowsize();
dptr = dptr + rowsize();
}
}
void
GPixmap::upsample(const GPixmap *src, int factor, const GRect *pdr)
{
// check arguments
GRect rect(0, 0, src->columns()*factor, src->rows()*factor);
if (pdr != 0)
{
if (pdr->xmin < rect.xmin ||
pdr->ymin < rect.ymin ||
pdr->xmax > rect.xmax ||
pdr->ymax > rect.ymax )
G_THROW( ERR_MSG("GPixmap.overflow2") );
rect = *pdr;
}
// initialise pixmap
init(rect.height(), rect.width(), 0);
// compute starting point in source rectangle
int sy, sy1, sxz, sx1z;
euclidian_ratio(rect.ymin, factor, sy, sy1);
euclidian_ratio(rect.xmin, factor, sxz, sx1z);
// loop over rows
const GPixel *sptr = (*src)[sy];
GPixel *dptr = (*this)[0];
for (int y=0; y<nrows; y++)
{
// loop over columns
int sx = sxz;
int sx1 = sx1z;
for (int x=0; x<ncolumns; x++)
{
dptr[x] = sptr[sx];
// next column
if (++sx1 >= factor)
{
sx1 = 0;
sx += 1;
}
}
// next row
dptr += rowsize();
if (++sy1 >= factor)
{
sy1 = 0;
sptr += src->rowsize();
}
}
}
static inline void
downsample_4x4_to_3x3 (const GPixel *s, int sadd, GPixel *d, int dadd)
{
const GPixel *x = s;
const GPixel *y = x + sadd;
d[0].b = ( 11*x[0].b + 2*(x[1].b + y[0].b ) + y[1].b + 8) >> 4;
d[0].g = ( 11*x[0].g + 2*(x[1].g + y[0].g ) + y[1].g + 8) >> 4;
d[0].r = ( 11*x[0].r + 2*(x[1].r + y[0].r ) + y[1].r + 8) >> 4;
d[1].b = ( 7*(x[1].b + x[2].b) + y[1].b + y[2].b + 8 ) >> 4;
d[1].g = ( 7*(x[1].g + x[2].g) + y[1].g + y[2].g + 8 ) >> 4;
d[1].r = ( 7*(x[1].r + x[2].r) + y[1].r + y[2].r + 8 ) >> 4;
d[2].b = ( 11*x[3].b + 2*(x[2].b + y[3].b ) + y[2].b + 8) >> 4;
d[2].g = ( 11*x[3].g + 2*(x[2].g + y[3].g ) + y[2].g + 8) >> 4;
d[2].r = ( 11*x[3].r + 2*(x[2].r + y[3].r ) + y[2].r + 8) >> 4;
d = d + dadd;
x = x + sadd + sadd;
d[0].b = ( 7*(x[0].b + y[0].b) + x[1].b + y[1].b + 8 ) >> 4;
d[0].g = ( 7*(x[0].g + y[0].g) + x[1].g + y[1].g + 8 ) >> 4;
d[0].r = ( 7*(x[0].r + y[0].r) + x[1].r + y[1].r + 8 ) >> 4;
d[1].b = ( x[2].b + y[2].b + x[1].b + y[1].b + 2 ) >> 2;
d[1].g = ( x[2].g + y[2].g + x[1].g + y[1].g + 2 ) >> 2;
d[1].r = ( x[2].r + y[2].r + x[1].r + y[1].r + 2 ) >> 2;
d[2].b = ( 7*(x[3].b + y[3].b) + x[2].b + y[2].b + 8 ) >> 4;
d[2].g = ( 7*(x[3].g + y[3].g) + x[2].g + y[2].g + 8 ) >> 4;
d[2].r = ( 7*(x[3].r + y[3].r) + x[2].r + y[2].r + 8 ) >> 4;
d = d + dadd;
y = y + sadd + sadd;
d[0].b = ( 11*y[0].b + 2*(y[1].b + x[0].b ) + x[1].b + 8) >> 4;
d[0].g = ( 11*y[0].g + 2*(y[1].g + x[0].g ) + x[1].g + 8) >> 4;
d[0].r = ( 11*y[0].r + 2*(y[1].r + x[0].r ) + x[1].r + 8) >> 4;
d[1].b = ( 7*(y[1].b + y[2].b) + x[1].b + x[2].b + 8 ) >> 4;
d[1].g = ( 7*(y[1].g + y[2].g) + x[1].g + x[2].g + 8 ) >> 4;
d[1].r = ( 7*(y[1].r + y[2].r) + x[1].r + x[2].r + 8 ) >> 4;
d[2].b = ( 11*y[3].b + 2*(y[2].b + x[3].b ) + x[2].b + 8) >> 4;
d[2].g = ( 11*y[3].g + 2*(y[2].g + x[3].g ) + x[2].g + 8) >> 4;
d[2].r = ( 11*y[3].r + 2*(y[2].r + x[3].r ) + x[2].r + 8) >> 4;
}
static inline void
upsample_2x2_to_3x3 (const GPixel *s, int sadd, GPixel *d, int dadd)
{
const GPixel *x = s;
const GPixel *y = x + sadd;
d[0] = x[0];
d[1].b = (x[0].b + x[1].b + 1) >> 1;
d[1].g = (x[0].g + x[1].g + 1) >> 1;
d[1].r = (x[0].r + x[1].r + 1) >> 1;
d[2] = x[1];
d = d + dadd;
d[0].b = (x[0].b + y[0].b + 1) >> 1;
d[0].g = (x[0].g + y[0].g + 1) >> 1;
d[0].r = (x[0].r + y[0].r + 1) >> 1;
d[1].b = (x[0].b + y[0].b + x[1].b + y[1].b + 2) >> 2;
d[1].g = (x[0].g + y[0].g + x[1].g + y[1].g + 2) >> 2;
d[1].r = (x[0].r + y[0].r + x[1].r + y[1].r + 2) >> 2;
d[2].b = (x[1].b + y[1].b + 1) >> 1;
d[2].g = (x[1].g + y[1].g + 1) >> 1;
d[2].r = (x[1].r + y[1].r + 1) >> 1;
d = d + dadd;
d[0] = y[0];
d[1].b = (y[0].b + y[1].b + 1) >> 1;
d[1].g = (y[0].g + y[1].g + 1) >> 1;
d[1].r = (y[0].r + y[1].r + 1) >> 1;
d[2] = y[1];
}
static inline void
copy_to_partial(int w, int h,
const GPixel *s, int sadd,
GPixel *d, int dadd, int xmin, int xmax, int ymin, int ymax)
{
int y = 0;
while (y<ymin && y<h)
{
y += 1;
s += sadd;
d += dadd;
}
while (y<ymax && y<h)
{
int x = (xmin>0 ? xmin : 0);
while (x<w && x<xmax)
{
d[x] = s[x];
x++;
}
y += 1;
s += sadd;
d += dadd;
}
}
static inline void
copy_line(const GPixel *s, int smin, int smax,
GPixel *d, int dmin, int dmax)
{
int x = dmin;
while (x < smin)
{
d[x] = s[smin];
x++;
}
while (x < dmax && x < smax)
{
d[x] = s[x];
x++;
}
while (x < dmax)
{
d[x] = s[smax];
x++;
}
}
static inline void
copy_from_partial(int w, int h,
const GPixel *s, int sadd, int xmin, int xmax, int ymin, int ymax,
GPixel *d, int dadd)
{
int y = 0;
s += (ymin>0 ? sadd * ymin : 0);
while (y<ymin && y<h)
{
copy_line(s, xmin, xmax, d, 0, w);
y += 1;
d += dadd;
}
while (y<ymax && y<h)
{
copy_line(s, xmin, xmax, d, 0, w);
y += 1;
s += sadd;
d += dadd;
}
s -= sadd;
while (y < h)
{
copy_line(s, xmin, xmax, d, 0, w);
y += 1;
d += dadd;
}
}
void
GPixmap::downsample43(const GPixmap *src, const GRect *pdr)
{
// check arguments
int srcwidth = src->columns();
int srcheight = src->rows();
int destwidth = (srcwidth * 3 + 3 ) / 4;
int destheight = (srcheight * 3 + 3) / 4;
GRect rect(0, 0, destwidth, destheight);
if (pdr != 0)
{
if (pdr->xmin < rect.xmin ||
pdr->ymin < rect.ymin ||
pdr->xmax > rect.xmax ||
pdr->ymax > rect.ymax )
G_THROW( ERR_MSG("GPixmap.overflow3") );
rect = *pdr;
destwidth = rect.width();
destheight = rect.height();
}
// initialize pixmap
init(destheight, destwidth, 0);
// compute bounds
int dxz, dy; // location of bottomleft block in destination image
int sxz, sy; // location of bottomleft block in source image
euclidian_ratio(rect.ymin, 3, sy, dy);
euclidian_ratio(rect.xmin, 3, sxz, dxz);
sxz = 4 * sxz;
sy = 4 * sy;
dxz = - dxz;
dy = - dy;
// prepare variables
int sadd = src->rowsize();
int dadd = this->rowsize();
const GPixel *sptr = (*src)[0] + sy * sadd;
GPixel *dptr = (*this)[0] + dy * dadd;
int s4add = 4 * sadd;
int d3add = 3 * dadd;
// iterate over row blocks
while (dy < destheight)
{
int sx = sxz;
int dx = dxz;
// iterate over column blocks
while (dx < destwidth)
{
GPixel xin[16], xout[9];
if (dx>=0 && dy>=0 && dx+3<=destwidth && dy+3<=destheight)
{
if (sx+4<=srcwidth && sy+4<=srcheight)
{
downsample_4x4_to_3x3(sptr+sx, sadd, dptr+dx, dadd);
}
else
{
copy_from_partial(4,4, sptr+sx,sadd,-sx,srcwidth-sx,-sy,srcheight-sy, xin,4);
downsample_4x4_to_3x3(xin, 4, dptr+dx, dadd);
}
}
else
{
if (sx+4<=srcwidth && sy+4<=srcheight)
{
downsample_4x4_to_3x3(sptr+sx, sadd, xout, 3);
copy_to_partial(3,3, xout, 3, dptr+dx, dadd,-dx,destwidth-dx,-dy,destheight-dy);
}
else
{
copy_from_partial(4,4, sptr+sx,sadd,-sx,srcwidth-sx,-sy,srcheight-sy, xin,4);
downsample_4x4_to_3x3(xin, 4, xout, 3);
copy_to_partial(3,3, xout,3, dptr+dx,dadd,-dx,destwidth-dx,-dy,destheight-dy);
}
}
// next column
dx += 3;
sx += 4;
}
// next row
dy += 3;
dptr += d3add;
sy += 4;
sptr += s4add;
}
}
void
GPixmap::upsample23(const GPixmap *src, const GRect *pdr)
{
// check arguments
int srcwidth = src->columns();
int srcheight = src->rows();
int destwidth = (srcwidth * 3 + 1 ) / 2;
int destheight = (srcheight * 3 + 1) / 2;
GRect rect(0, 0, destwidth, destheight);
if (pdr != 0)
{
if (pdr->xmin < rect.xmin ||
pdr->ymin < rect.ymin ||
pdr->xmax > rect.xmax ||
pdr->ymax > rect.ymax )
G_THROW( ERR_MSG("GPixmap.overflow4") );
rect = *pdr;
destwidth = rect.width();
destheight = rect.height();
}
// initialize pixmap
init(destheight, destwidth, 0);
// compute bounds
int dxz, dy; // location of bottomleft block in destination image
int sxz, sy; // location of bottomleft block in source image
euclidian_ratio(rect.ymin, 3, sy, dy);
euclidian_ratio(rect.xmin, 3, sxz, dxz);
sxz = 2 * sxz;
sy = 2 * sy;
dxz = - dxz;
dy = - dy;
// prepare variables
int sadd = src->rowsize();
int dadd = this->rowsize();
const GPixel *sptr = (*src)[0] + sy * sadd;
GPixel *dptr = (*this)[0] + dy * dadd;
int s2add = 2 * sadd;
int d3add = 3 * dadd;
// iterate over row blocks
while (dy < destheight)
{
int sx = sxz;
int dx = dxz;
// iterate over column blocks
while (dx < destwidth)
{
GPixel xin[4], xout[9];
if (dx>=0 && dy>=0 && dx+3<=destwidth && dy+3<=destheight)
{
if (sx+2<=srcwidth && sy+2<=srcheight)
{
upsample_2x2_to_3x3( sptr+sx, sadd, dptr+dx, dadd);
}
else
{
copy_from_partial(2, 2, sptr+sx, sadd, -sx, srcwidth-sx, -sy, srcheight-sy, xin, 2);
upsample_2x2_to_3x3(xin, 2, dptr+dx, dadd);
}
}
else
{
if (sx+2<=srcwidth && sy+2<=srcheight)
{
upsample_2x2_to_3x3( sptr+sx, sadd, xout, 3);
copy_to_partial(3,3, xout, 3, dptr+dx, dadd, -dx, destwidth-dx, -dy, destheight-dy);
}
else
{
copy_from_partial(2, 2, sptr+sx, sadd, -sx, srcwidth-sx, -sy, srcheight-sy, xin, 2);
upsample_2x2_to_3x3(xin, 2, xout, 3);
copy_to_partial(3,3, xout, 3, dptr+dx, dadd, -dx, destwidth-dx, -dy, destheight-dy);
}
}
// next column
dx += 3;
sx += 2;
}
// next row
dy += 3;
dptr += d3add;
sy += 2;
sptr += s2add;
}
}
//////////////////////////////////////////////////
// Blitting and attenuating
//////////////////////////////////////////////////
static unsigned char clip[512];
static bool clipok = false;
static void
compute_clip()
{
clipok = true;
for (unsigned int i=0; i<sizeof(clip); i++)
clip[i] = (i<256 ? i : 255);
}
void
GPixmap::attenuate(const GBitmap *bm, int xpos, int ypos)
{
// Check
if (!bm) G_THROW( ERR_MSG("GPixmap.null_alpha") );
// Compute number of rows and columns
int xrows = mini(ypos + (int)bm->rows(), nrows) - maxi(0, ypos),
xcolumns = mini(xpos + (int) bm->columns(), ncolumns) - maxi(0, xpos);
if(xrows <= 0 || xcolumns <= 0)
return;
// Precompute multiplier map
unsigned int multiplier[256];
unsigned int maxgray = bm->get_grays() - 1;
for (unsigned int i=0; i<maxgray ; i++)
multiplier[i] = 0x10000 * i / maxgray;
// Compute starting point
const unsigned char *src = (*bm)[0] - mini(0,ypos)*bm->rowsize()-mini(0,xpos);
GPixel *dst = (*this)[0] + maxi(0, ypos)*rowsize()+maxi(0, xpos);
// Loop over rows
for (int y=0; y<xrows; y++)
{
// Loop over columns
for (int x=0; x<xcolumns; x++)
{
unsigned char srcpix = src[x];
// Perform pixel operation
if (srcpix > 0)
{
if (srcpix >= maxgray)
{
dst[x].b = 0;
dst[x].g = 0;
dst[x].r = 0;
}
else
{
unsigned int level = multiplier[srcpix];
dst[x].b -= (dst[x].b * level) >> 16;
dst[x].g -= (dst[x].g * level) >> 16;
dst[x].r -= (dst[x].r * level) >> 16;
}
}
}
// Next line
dst += rowsize();
src += bm->rowsize();
}
}
void
GPixmap::blit(const GBitmap *bm, int xpos, int ypos, const GPixel *color)
{
// Check
if (!bm) G_THROW( ERR_MSG("GPixmap.null_alpha") );
if (!clipok) compute_clip();
if (!color) return;
// Compute number of rows and columns
int xrows = mini(ypos + (int)bm->rows(), nrows) - maxi(0, ypos),
xcolumns = mini(xpos + (int) bm->columns(), ncolumns) - maxi(0, xpos);
if(xrows <= 0 || xcolumns <= 0)
return;
// Precompute multiplier map
unsigned int multiplier[256];
unsigned int maxgray = bm->get_grays() - 1;
for (unsigned int i=1; i<maxgray ; i++)
multiplier[i] = 0x10000 * i / maxgray;
// Cache target color
unsigned char gr = color->r;
unsigned char gg = color->g;
unsigned char gb = color->b;
// Compute starting point
const unsigned char *src = (*bm)[0] - mini(0,ypos)*bm->rowsize()-mini(0,xpos);
GPixel *dst = (*this)[0] + maxi(0, ypos)*rowsize()+maxi(0, xpos);
// Loop over rows
for (int y=0; y<xrows; y++)
{
// Loop over columns
for (int x=0; x<xcolumns; x++)
{
unsigned char srcpix = src[x];
// Perform pixel operation
if (srcpix > 0)
{
if (srcpix >= maxgray)
{
dst[x].b = clip[dst[x].b + gb];
dst[x].g = clip[dst[x].g + gg];
dst[x].r = clip[dst[x].r + gr];
}
else
{
unsigned int level = multiplier[srcpix];
dst[x].b = clip[dst[x].b + ((gb * level) >> 16)];
dst[x].g = clip[dst[x].g + ((gg * level) >> 16)];
dst[x].r = clip[dst[x].r + ((gr * level) >> 16)];
}
}
}
// Next line
dst += rowsize();
src += bm->rowsize();
}
}
void
GPixmap::blit(const GBitmap *bm, int xpos, int ypos, const GPixmap *color)
{
// Check
if (!bm) G_THROW( ERR_MSG("GPixmap.null_alpha") );
if (!color) G_THROW( ERR_MSG("GPixmap.null_color") );
if (!clipok) compute_clip();
if (bm->rows()!=color->rows() || bm->columns()!=color->columns())
G_THROW( ERR_MSG("GPixmap.diff_size") );
// Compute number of rows and columns
int xrows = mini(ypos + (int)bm->rows(), nrows) - maxi(0, ypos),
xcolumns = mini(xpos + (int) bm->columns(), ncolumns) - maxi(0, xpos);
if(xrows <= 0 || xcolumns <= 0)
return;
// Precompute multiplier map
unsigned int multiplier[256];
unsigned int maxgray = bm->get_grays() - 1;
for (unsigned int i=1; i<maxgray ; i++)
multiplier[i] = 0x10000 * i / maxgray;
// Cache target color
// Compute starting point
const unsigned char *src = (*bm)[0] - mini(0,ypos)*bm->rowsize()-mini(0,xpos);
const GPixel *src2 = (*color)[0] + maxi(0, ypos)*color->rowsize()+maxi(0, xpos);
GPixel *dst = (*this)[0] + maxi(0, ypos)*rowsize()+maxi(0, xpos);
// Loop over rows
for (int y=0; y<xrows; y++)
{
// Loop over columns
for (int x=0; x<xcolumns; x++)
{
unsigned char srcpix = src[x];
// Perform pixel operation
if (srcpix > 0)
{
if (srcpix >= maxgray)
{
dst[x].b = clip[dst[x].b + src2[x].b];
dst[x].g = clip[dst[x].g + src2[x].g];
dst[x].r = clip[dst[x].r + src2[x].r];
}
else
{
unsigned int level = multiplier[srcpix];
dst[x].b = clip[dst[x].b + ((src2[x].b * level) >> 16)];
dst[x].g = clip[dst[x].g + ((src2[x].g * level) >> 16)];
dst[x].r = clip[dst[x].r + ((src2[x].r * level) >> 16)];
}
}
}
// Next line
dst += rowsize();
src += bm->rowsize();
src2 += color->rowsize();
}
}
void
GPixmap::blend(const GBitmap *bm, int xpos, int ypos, const GPixmap *color)
{
// Check
if (!bm) G_THROW( ERR_MSG("GPixmap.null_alpha") );
if (!color) G_THROW( ERR_MSG("GPixmap.null_color") );
if (!clipok) compute_clip();
if (bm->rows()!=color->rows() || bm->columns()!=color->columns())
G_THROW( ERR_MSG("GPixmap.diff_size") );
// Compute number of rows and columns
int xrows = mini(ypos + (int)bm->rows(), nrows) - maxi(0, ypos),
xcolumns = mini(xpos + (int) bm->columns(), ncolumns) - maxi(0, xpos);
if(xrows <= 0 || xcolumns <= 0)
return;
// Precompute multiplier map
unsigned int multiplier[256];
unsigned int maxgray = bm->get_grays() - 1;
for (unsigned int i=1; i<maxgray ; i++)
multiplier[i] = 0x10000 * i / maxgray;
// Cache target color
// Compute starting point
const unsigned char *src = (*bm)[0] - mini(0,ypos)*bm->rowsize()-mini(0,xpos);
const GPixel *src2 = (*color)[0] + maxi(0, ypos)*color->rowsize()+maxi(0, xpos);
GPixel *dst = (*this)[0] + maxi(0, ypos)*rowsize()+maxi(0, xpos);
// Loop over rows
for (int y=0; y<xrows; y++)
{
// Loop over columns
for (int x=0; x<xcolumns; x++)
{
unsigned char srcpix = src[x];
// Perform pixel operation
if (srcpix > 0)
{
if (srcpix >= maxgray)
{
dst[x].b = src2[x].b;
dst[x].g = src2[x].g;
dst[x].r = src2[x].r;
}
else
{
unsigned int level = multiplier[srcpix];
dst[x].b -= (((int)dst[x].b - (int)src2[x].b) * level) >> 16;
dst[x].g -= (((int)dst[x].g - (int)src2[x].g) * level) >> 16;
dst[x].r -= (((int)dst[x].r - (int)src2[x].r) * level) >> 16;
}
}
}
// Next line
dst += rowsize();
src += bm->rowsize();
src2 += color->rowsize();
}
}
void
GPixmap::stencil(const GBitmap *bm,
const GPixmap *pm, int pms, const GRect *pmr,
double corr)
{
// Check arguments
GRect rect(0, 0, pm->columns()*pms, pm->rows()*pms);
if (pmr != 0)
{
if (pmr->xmin < rect.xmin ||
pmr->ymin < rect.ymin ||
pmr->xmax > rect.xmax ||
pmr->ymax > rect.ymax )
G_THROW( ERR_MSG("GPixmap.overflow5") );
rect = *pmr;
}
// Compute number of rows
int xrows = nrows;
if ((int)bm->rows() < xrows)
xrows = bm->rows();
if (rect.height() < xrows)
xrows = rect.height();
// Compute number of columns
int xcolumns = ncolumns;
if ((int)bm->columns() < xcolumns)
xcolumns = bm->columns();
if (rect.width() < xcolumns)
xcolumns = rect.width();
// Precompute multiplier map
unsigned int multiplier[256];
unsigned int maxgray = bm->get_grays() - 1;
for (unsigned int i=1; i<maxgray ; i++)
multiplier[i] = 0x10000 * i / maxgray;
// Prepare color correction table
unsigned char gtable[256];
color_correction_table_cache(corr, gtable);
// Compute starting point in blown up foreground pixmap
int fgy, fgy1, fgxz, fgx1z;
euclidian_ratio(rect.ymin, pms, fgy, fgy1);
euclidian_ratio(rect.xmin, pms, fgxz, fgx1z);
const GPixel *fg = (*pm)[fgy];
const unsigned char *src = (*bm)[0];
GPixel *dst = (*this)[0];
// Loop over rows
for (int y=0; y<xrows; y++)
{
// Loop over columns
int fgx = fgxz;
int fgx1 = fgx1z;
for (int x=0; x<xcolumns; x++)
{
unsigned char srcpix = src[x];
// Perform pixel operation
if (srcpix > 0)
{
if (srcpix >= maxgray)
{
dst[x].b = gtable[fg[fgx].b];
dst[x].g = gtable[fg[fgx].g];
dst[x].r = gtable[fg[fgx].r];
}
else
{
unsigned int level = multiplier[srcpix];
dst[x].b -= (((int)dst[x].b - (int)gtable[fg[fgx].b]) * level) >> 16;
dst[x].g -= (((int)dst[x].g - (int)gtable[fg[fgx].g]) * level) >> 16;
dst[x].r -= (((int)dst[x].r - (int)gtable[fg[fgx].r]) * level) >> 16;
}
}
// Next column
if (++fgx1 >= pms)
{
fgx1 = 0;
fgx += 1;
}
}
// Next line
dst += rowsize();
src += bm->rowsize();
if (++fgy1 >= pms)
{
fgy1 = 0;
fg += pm->rowsize();
}
}
}
GP<GPixmap> GPixmap::rotate(int count)
{
GP<GPixmap> newpixmap(this);
if((count %= 4))
{
if( count&0x01)
newpixmap = new GPixmap(ncolumns, nrows);
else
newpixmap = new GPixmap(nrows, ncolumns);
GPixmap &dpixmap = *newpixmap;
GMonitorLock lock(&pixmap_monitor());
switch(count)
{
case 1: //// rotate 90 counter clockwise
{
int lastrow = dpixmap.rows()-1;
for(int y=0; y<nrows; y++)
{
const GPixel *r=operator [] (y);
for(int x=0,xnew=lastrow; xnew>=0; x++,xnew--)
{
dpixmap[xnew][y] = r[x];
}
}
}
break;
case 2: //// rotate 180 counter clockwise
{
int lastrow = dpixmap.rows()-1;
int lastcolumn = dpixmap.columns()-1;
for(int y=0,ynew=lastrow; ynew>=0; y++,ynew--)
{
const GPixel *r=operator [] (y);
GPixel *d=dpixmap[ynew];
for(int xnew=lastcolumn; xnew>=0; r++,xnew--)
{
d[xnew] = *r;
}
}
}
break;
case 3: //// rotate 270 counter clockwise
{
int lastcolumn = dpixmap.columns()-1;
for(int y=0,ynew=lastcolumn; ynew>=0; y++,ynew--)
{
const GPixel *r=operator [] (y);
for(int x=0; x<ncolumns; x++)
{
dpixmap[x][ynew] = r[x];
}
}
}
break;
}
}
return newpixmap;
}
#ifdef HAVE_NAMESPACES
}
# ifndef NOT_USING_DJVU_NAMESPACE
using namespace DJVU;
# endif
#endif