You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/kpovmodeler/pmmatrix.cpp

443 lines
9.0 KiB

/*
**************************************************************************
description
--------------------
copyright : (C) 2000-2001 by Andreas Zehender
email : zehender@kde.org
**************************************************************************
**************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
**************************************************************************/
#include <math.h>
#include "pmmatrix.h"
#include "pmvector.h"
#include "pmdebug.h"
#include <tqtextstream.h>
PMMatrix::PMMatrix( )
{
int i;
for( i = 0; i < 16; i++ )
m_elements[i] = 0;
}
PMMatrix::~PMMatrix( )
{
}
PMMatrix& PMMatrix::operator= ( const PMMatrix& m )
{
int i;
for( i=0; i<16; i++ )
m_elements[i] = m.m_elements[i];
return *this;
}
PMMatrix PMMatrix::identity( )
{
PMMatrix newMatrix;
int i;
for( i=0; i<4; i++ )
newMatrix[i][i] = 1.0;
return newMatrix;
}
PMMatrix PMMatrix::translation( double x, double y, double z )
{
PMMatrix newMatrix;
newMatrix[3][0] = x;
newMatrix[3][1] = y;
newMatrix[3][2] = z;
newMatrix[0][0] = 1;
newMatrix[1][1] = 1;
newMatrix[2][2] = 1;
newMatrix[3][3] = 1;
return newMatrix;
}
PMMatrix PMMatrix::scale( double x, double y, double z )
{
PMMatrix newMatrix;
newMatrix[0][0] = x;
newMatrix[1][1] = y;
newMatrix[2][2] = z;
newMatrix[3][3] = 1;
return newMatrix;
}
PMMatrix PMMatrix::rotation( double x, double y, double z )
{
PMMatrix newMatrix;
double sinx, siny, sinz, cosx, cosy, cosz;
sinx = sin( x );
siny = sin( y );
sinz = sin( z );
cosx = cos( x );
cosy = cos( y );
cosz = cos( z );
newMatrix[0][0] = cosz*cosy;
newMatrix[1][0] = -sinz*cosx + cosz*siny*sinx;
newMatrix[2][0] = sinz*sinx + cosz*siny*cosx;
newMatrix[0][1] = sinz*cosy;
newMatrix[1][1] = cosz*cosx + sinz*siny*sinx;
newMatrix[2][1] = -cosz*sinx + sinz*siny*cosx;
newMatrix[0][2] = -siny;
newMatrix[1][2] = cosy*sinx;
newMatrix[2][2] = cosy*cosx;
newMatrix[3][3] = 1;
return newMatrix;
}
PMMatrix PMMatrix::rotation( const PMVector& n, double a )
{
PMMatrix result( PMMatrix::identity( ) );
double rx, ry;
if( n.size( ) == 3 )
{
rx = pmatan( n.y( ), n.z( ) );
ry = - pmatan( n.x( ), sqrt( n.y( ) * n.y( ) + n.z( ) * n.z( ) ) );
result = rotation( -rx, 0.0, 0.0 ) * rotation( 0.0, -ry, 0.0 )
* rotation( rx, ry, a );
}
else
kdError( PMArea ) << "Wrong size in PMMatrix::rotation( )\n";
return result;
}
PMMatrix PMMatrix::viewTransformation( const PMVector& eye,
const PMVector& lookAt,
const PMVector& up )
{
PMMatrix result;
PMVector x, y, z;
GLdouble len;
int i;
// create rotation matrix
z = eye - lookAt;
len = z.abs( );
if( !approxZero( len ) )
z /= len;
y = up;
x = PMVector::cross( y, z );
y = PMVector::cross( z, x );
// normalize vectors
len = x.abs( );
if( !approxZero( len ) )
x /= len;
len = y.abs( );
if( !approxZero( len ) )
y /= len;
for( i = 0; i < 3; i++ )
{
result[i][0] = x[i];
result[i][1] = y[i];
result[i][2] = z[i];
result[3][i] = 0.0;
result[i][3] = 0.0;
}
result[3][3] = 1.0;
// Translate eye to origin
return result * translation( -eye[0], -eye[1], -eye[2] );
}
void PMMatrix::toRotation( double* x, double* y, double* z )
{
PMMatrix& m = *this;
if( !approx( fabs( m[0][2] ), 1.0 ) )
{
double cosy;
// | m[0][2] | != 1
// sin(y) != 1.0, cos(y) != 0.0
*y = asin( - m[0][2] );
cosy = cos( *y );
// sign of cosy is important!
*x = pmatan( m[1][2] / cosy, m[2][2] / cosy );
*z = pmatan( m[0][1] / cosy, m[0][0] / cosy );
}
else if( m[0][2] < 0 )
{
// m[0][2] == -1
// sin(y) == 1, cos(y) == 0
// z and x are dependent of each other, assume z = 0
double zminusx = pmatan( m[2][1], m[1][1] );
*y = M_PI_2;
*z = 0.0;
*x = - zminusx;
}
else
{
// m[0][2] == 1
// sin(y) == -1, cos(y) == 0
// z and x are dependent of each other, assume z = 0
double zplusx = pmatan( -m[2][1], m[1][1] );
*y = -M_PI_2;
*z = 0.0;
*x = zplusx;
}
}
PMMatrix PMMatrix::modelviewMatrix( )
{
PMMatrix result;
glGetDoublev( GL_MODELVIEW_MATRIX, result.m_elements );
return result;
}
double PMMatrix::det( ) const
{
PMMatrix tmp( *this );
double result = 1.0, help;
int i, k, e, row;
// make a upper triangular matrix
for( i=0; i<4; i++ )
{
row = tmp.notNullElementRow( i );
if( row == -1 )
return 0;
if( row != i )
{
tmp.exchangeRows( i, row );
result = -result;
}
result *= tmp[i][i];
for( k=i+1; k<4; k++ )
{
help = tmp[i][k];
for( e=0; e<4; e++ )
tmp[e][k] -= tmp[e][i] * help/tmp[i][i];
}
}
return result;
}
PMMatrix PMMatrix::inverse( ) const
{
PMMatrix result( identity( ) );
PMMatrix tmp( *this );
int i, k, e, row;
double a;
// uses the Gauss algorithm
// row operations to make tmp a identity matrix
// result matrix is then the inverse
for( i=0; i<4; i++ )
{
row = tmp.notNullElementRow( i );
if( row == -1 )
return identity( );
if( row != i )
{
tmp.exchangeRows( i, row );
result.exchangeRows( i, row );
}
// tmp[i][i] != 0
a = tmp[i][i];
for( e=0; e<4; e++ )
{
result[e][i] /= a;
tmp[e][i] /= a;
}
// tmp[i][i] == 1
for( k=0; k<4; k++ )
{
if( k != i )
{
a = tmp[i][k];
for( e=0; e<4; e++ )
{
result[e][k] -= result[e][i] * a;
tmp[e][k] -= tmp[e][i] * a;
}
}
}
// tmp[!=i][i] == 0.0
}
return result;
}
void PMMatrix::exchangeRows( int r1, int r2 )
{
GLdouble help;
int i;
for( i=0; i<4; i++ )
{
help = (*this)[i][r1];
(*this)[i][r1] = (*this)[i][r2];
(*this)[i][r2] = help;
}
}
int PMMatrix::notNullElementRow( const int index ) const
{
int i, result = -1;
GLdouble max = 0.0, v;
// choose the row with abs( ) = max
for( i=index; i<4; i++ )
{
v = fabs((*this)[index][i]);
if( v > max )
{
result = i;
max = v;
}
}
return result;
}
PMMatrix& PMMatrix::operator*= ( const double d )
{
int i;
for( i=0; i<16; i++ )
m_elements[i] *= d;
return *this;
}
PMMatrix& PMMatrix::operator/= ( const double d )
{
int i;
if( approxZero( 0 ) )
kdError( PMArea ) << "Division by zero in PMMatrix::operator/=" << "\n";
else
for( i=0; i<16; i++ )
m_elements[i] /= d;
return *this;
}
PMMatrix& PMMatrix::operator*= ( const PMMatrix& m )
{
*this = *this * m;
return *this;
}
PMMatrix operator- ( const PMMatrix& m )
{
PMMatrix result;
int r,c;
for( r=0; r<4; r++ )
for( c=0; c<4; c++ )
result[c][r] = -m[c][r];
return result;
}
PMMatrix operator* ( const PMMatrix& m1, const PMMatrix& m2 )
{
PMMatrix result;
int r, c, i;
for( r=0; r<4; r++ )
for( c=0; c<4; c++ )
for( i=0; i<4; i++ )
result[c][r] += m1[i][r] * m2[c][i];
return result;
}
PMMatrix operator* ( const PMMatrix& m1, const double d )
{
PMMatrix result( m1 );
result *= d;
return result;
}
PMMatrix operator/ ( const PMMatrix& m1, const double d )
{
PMMatrix result( m1 );
result /= d ;
return result;
}
PMMatrix operator* ( const double d, const PMMatrix& m1 )
{
PMMatrix result( m1 );
result *= d;
return result;
}
#include <stdio.h>
void PMMatrix::testOutput( )
{
int r, c;
printf( "\n" );
for( r=0; r<4; r++ )
{
for( c=0; c<4; c++ )
printf( "% 20.18f ", (*this)[c][r] );
printf( "\n" );
}
}
TQString PMMatrix::serializeXML( ) const
{
TQString result;
TQTextStream str( &result, IO_WriteOnly );
int i;
for( i = 0; i < 16; i++ )
{
if( i > 0 )
str << ' ';
str << m_elements[i];
}
return result;
}
bool PMMatrix::loadXML( const TQString& str )
{
int i;
TQString tmp( str );
TQTextStream s( &tmp, IO_ReadOnly );
TQString val;
bool ok;
for( i = 0; i < 16; i++ )
{
s >> val;
m_elements[i] = val.toDouble( &ok );
if( !ok )
return false;
}
return true;
}