You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/kpdf/xpdf/splash/Splash.cc

3348 lines
86 KiB

//========================================================================
//
// Splash.cc
//
//========================================================================
#include <aconf.h>
#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "gmem.h"
#include "SplashErrorCodes.h"
#include "SplashMath.h"
#include "SplashBitmap.h"
#include "SplashState.h"
#include "SplashPath.h"
#include "SplashXPath.h"
#include "SplashXPathScanner.h"
#include "SplashPattern.h"
#include "SplashScreen.h"
#include "SplashFont.h"
#include "SplashGlyphBitmap.h"
#include "Splash.h"
//------------------------------------------------------------------------
// distance of Bezier control point from center for circle approximation
// = (4 * (sqrt(2) - 1) / 3) * r
#define bezierCircle ((SplashCoord)0.55228475)
#define bezierCircle2 ((SplashCoord)(0.5 * 0.55228475))
// Divide a 16-bit value (in [0, 255*255]) by 255, returning an 8-bit result.
static inline Guchar div255(int x) {
return (Guchar)((x + (x >> 8) + 0x80) >> 8);
}
//------------------------------------------------------------------------
// SplashPipe
//------------------------------------------------------------------------
#define splashPipeMaxStages 9
struct SplashPipe {
// pixel coordinates
int x, y;
// source pattern
SplashPattern *pattern;
// source alpha and color
SplashCoord aInput;
GBool usesShape;
Guchar aSrc;
SplashColorPtr cSrc;
SplashColor cSrcVal;
// non-isolated group alpha0
Guchar *alpha0Ptr;
// soft mask
SplashColorPtr softMaskPtr;
// destination alpha and color
SplashColorPtr destColorPtr;
int destColorMask;
Guchar *destAlphaPtr;
// shape
SplashCoord shape;
// result alpha and color
GBool noTransparency;
SplashPipeResultColorCtrl resultColorCtrl;
// non-isolated group correction
int nonIsolatedGroup;
};
SplashPipeResultColorCtrl Splash::pipeResultColorNoAlphaBlend[] = {
splashPipeResultColorNoAlphaBlendMono,
splashPipeResultColorNoAlphaBlendMono,
splashPipeResultColorNoAlphaBlendRGB,
splashPipeResultColorNoAlphaBlendRGB
#if SPLASH_CMYK
,
splashPipeResultColorNoAlphaBlendCMYK
#endif
};
SplashPipeResultColorCtrl Splash::pipeResultColorAlphaNoBlend[] = {
splashPipeResultColorAlphaNoBlendMono,
splashPipeResultColorAlphaNoBlendMono,
splashPipeResultColorAlphaNoBlendRGB,
splashPipeResultColorAlphaNoBlendRGB
#if SPLASH_CMYK
,
splashPipeResultColorAlphaNoBlendCMYK
#endif
};
SplashPipeResultColorCtrl Splash::pipeResultColorAlphaBlend[] = {
splashPipeResultColorAlphaBlendMono,
splashPipeResultColorAlphaBlendMono,
splashPipeResultColorAlphaBlendRGB,
splashPipeResultColorAlphaBlendRGB
#if SPLASH_CMYK
,
splashPipeResultColorAlphaBlendCMYK
#endif
};
//------------------------------------------------------------------------
static void blendXor(SplashColorPtr src, SplashColorPtr dest,
SplashColorPtr blend, SplashColorMode cm) {
int i;
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = src[i] ^ dest[i];
}
}
//------------------------------------------------------------------------
// modified region
//------------------------------------------------------------------------
void Splash::clearModRegion() {
modXMin = bitmap->getWidth();
modYMin = bitmap->getHeight();
modXMax = -1;
modYMax = -1;
}
inline void Splash::updateModX(int x) {
if (x < modXMin) {
modXMin = x;
}
if (x > modXMax) {
modXMax = x;
}
}
inline void Splash::updateModY(int y) {
if (y < modYMin) {
modYMin = y;
}
if (y > modYMax) {
modYMax = y;
}
}
//------------------------------------------------------------------------
// pipeline
//------------------------------------------------------------------------
inline void Splash::pipeInit(SplashPipe *pipe, int x, int y,
SplashPattern *pattern, SplashColorPtr cSrc,
SplashCoord aInput, GBool usesShape,
GBool nonIsolatedGroup) {
pipeSetXY(pipe, x, y);
pipe->pattern = NULL;
// source color
if (pattern) {
if (pattern->isStatic()) {
pattern->getColor(x, y, pipe->cSrcVal);
} else {
pipe->pattern = pattern;
}
pipe->cSrc = pipe->cSrcVal;
} else {
pipe->cSrc = cSrc;
}
// source alpha
pipe->aInput = aInput;
if (!state->softMask) {
if (usesShape) {
pipe->aInput *= 255;
} else {
pipe->aSrc = (Guchar)splashRound(pipe->aInput * 255);
}
}
pipe->usesShape = usesShape;
// result alpha
if (aInput == 1 && !state->softMask && !usesShape &&
!state->inNonIsolatedGroup) {
pipe->noTransparency = gTrue;
} else {
pipe->noTransparency = gFalse;
}
// result color
if (pipe->noTransparency) {
// the !state->blendFunc case is handled separately in pipeRun
pipe->resultColorCtrl = pipeResultColorNoAlphaBlend[bitmap->mode];
} else if (!state->blendFunc) {
pipe->resultColorCtrl = pipeResultColorAlphaNoBlend[bitmap->mode];
} else {
pipe->resultColorCtrl = pipeResultColorAlphaBlend[bitmap->mode];
}
// non-isolated group correction
if (nonIsolatedGroup) {
pipe->nonIsolatedGroup = splashColorModeNComps[bitmap->mode];
} else {
pipe->nonIsolatedGroup = 0;
}
}
inline void Splash::pipeRun(SplashPipe *pipe) {
Guchar aSrc, aDest, alpha2, alpha0, aResult;
SplashColor cDest, cBlend;
Guchar cResult0, cResult1, cResult2, cResult3;
//----- source color
// static pattern: handled in pipeInit
// fixed color: handled in pipeInit
// dynamic pattern
if (pipe->pattern) {
pipe->pattern->getColor(pipe->x, pipe->y, pipe->cSrcVal);
}
if (pipe->noTransparency && !state->blendFunc) {
//----- write destination pixel
switch (bitmap->mode) {
case splashModeMono1:
cResult0 = pipe->cSrc[0];
if (state->screen->test(pipe->x, pipe->y, cResult0)) {
*pipe->destColorPtr |= pipe->destColorMask;
} else {
*pipe->destColorPtr &= ~pipe->destColorMask;
}
if (!(pipe->destColorMask >>= 1)) {
pipe->destColorMask = 0x80;
++pipe->destColorPtr;
}
break;
case splashModeMono8:
*pipe->destColorPtr++ = pipe->cSrc[0];
break;
case splashModeRGB8:
*pipe->destColorPtr++ = pipe->cSrc[0];
*pipe->destColorPtr++ = pipe->cSrc[1];
*pipe->destColorPtr++ = pipe->cSrc[2];
break;
case splashModeBGR8:
*pipe->destColorPtr++ = pipe->cSrc[2];
*pipe->destColorPtr++ = pipe->cSrc[1];
*pipe->destColorPtr++ = pipe->cSrc[0];
break;
#if SPLASH_CMYK
case splashModeCMYK8:
*pipe->destColorPtr++ = pipe->cSrc[0];
*pipe->destColorPtr++ = pipe->cSrc[1];
*pipe->destColorPtr++ = pipe->cSrc[2];
*pipe->destColorPtr++ = pipe->cSrc[3];
break;
#endif
}
if (pipe->destAlphaPtr) {
*pipe->destAlphaPtr++ = 255;
}
} else {
//----- read destination pixel
switch (bitmap->mode) {
case splashModeMono1:
cDest[0] = (*pipe->destColorPtr & pipe->destColorMask) ? 0xff : 0x00;
break;
case splashModeMono8:
cDest[0] = *pipe->destColorPtr;
break;
case splashModeRGB8:
cDest[0] = pipe->destColorPtr[0];
cDest[1] = pipe->destColorPtr[1];
cDest[2] = pipe->destColorPtr[2];
break;
case splashModeBGR8:
cDest[0] = pipe->destColorPtr[2];
cDest[1] = pipe->destColorPtr[1];
cDest[2] = pipe->destColorPtr[0];
break;
#if SPLASH_CMYK
case splashModeCMYK8:
cDest[0] = pipe->destColorPtr[0];
cDest[1] = pipe->destColorPtr[1];
cDest[2] = pipe->destColorPtr[2];
cDest[3] = pipe->destColorPtr[3];
break;
#endif
}
if (pipe->destAlphaPtr) {
aDest = *pipe->destAlphaPtr;
} else {
aDest = 0xff;
}
//----- blend function
if (state->blendFunc) {
(*state->blendFunc)(pipe->cSrc, cDest, cBlend, bitmap->mode);
}
//----- source alpha
if (state->softMask) {
if (pipe->usesShape) {
aSrc = (Guchar)splashRound(pipe->aInput * *pipe->softMaskPtr++
* pipe->shape);
} else {
aSrc = (Guchar)splashRound(pipe->aInput * *pipe->softMaskPtr++);
}
} else if (pipe->usesShape) {
// pipe->aInput is premultiplied by 255 in pipeInit
aSrc = (Guchar)splashRound(pipe->aInput * pipe->shape);
} else {
// precomputed in pipeInit
aSrc = pipe->aSrc;
}
//----- result alpha and non-isolated group element correction
if (pipe->noTransparency) {
alpha2 = aResult = 255;
} else {
aResult = aSrc + aDest - div255(aSrc * aDest);
if (pipe->alpha0Ptr) {
alpha0 = *pipe->alpha0Ptr++;
alpha2 = aResult + alpha0 - div255(aResult * alpha0);
} else {
alpha2 = aResult;
}
}
//----- result color
cResult0 = cResult1 = cResult2 = cResult3 = 0; // make gcc happy
switch (pipe->resultColorCtrl) {
#if SPLASH_CMYK
case splashPipeResultColorNoAlphaBlendCMYK:
cResult3 = div255((255 - aDest) * pipe->cSrc[3] + aDest * cBlend[3]);
#endif
case splashPipeResultColorNoAlphaBlendRGB:
cResult2 = div255((255 - aDest) * pipe->cSrc[2] + aDest * cBlend[2]);
cResult1 = div255((255 - aDest) * pipe->cSrc[1] + aDest * cBlend[1]);
case splashPipeResultColorNoAlphaBlendMono:
cResult0 = div255((255 - aDest) * pipe->cSrc[0] + aDest * cBlend[0]);
break;
case splashPipeResultColorAlphaNoBlendMono:
if (alpha2 == 0) {
cResult0 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * pipe->cSrc[0]) / alpha2);
}
break;
case splashPipeResultColorAlphaNoBlendRGB:
if (alpha2 == 0) {
cResult0 = 0;
cResult1 = 0;
cResult2 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * pipe->cSrc[0]) / alpha2);
cResult1 = (Guchar)(((alpha2 - aSrc) * cDest[1] +
aSrc * pipe->cSrc[1]) / alpha2);
cResult2 = (Guchar)(((alpha2 - aSrc) * cDest[2] +
aSrc * pipe->cSrc[2]) / alpha2);
}
break;
#if SPLASH_CMYK
case splashPipeResultColorAlphaNoBlendCMYK:
if (alpha2 == 0) {
cResult0 = 0;
cResult1 = 0;
cResult2 = 0;
cResult3 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * pipe->cSrc[0]) / alpha2);
cResult1 = (Guchar)(((alpha2 - aSrc) * cDest[1] +
aSrc * pipe->cSrc[1]) / alpha2);
cResult2 = (Guchar)(((alpha2 - aSrc) * cDest[2] +
aSrc * pipe->cSrc[2]) / alpha2);
cResult3 = (Guchar)(((alpha2 - aSrc) * cDest[3] +
aSrc * pipe->cSrc[3]) / alpha2);
}
break;
#endif
case splashPipeResultColorAlphaBlendMono:
if (alpha2 == 0) {
cResult0 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * ((255 - aDest) * pipe->cSrc[0] +
aDest * cBlend[0]) / 255) /
alpha2);
}
break;
case splashPipeResultColorAlphaBlendRGB:
if (alpha2 == 0) {
cResult0 = 0;
cResult1 = 0;
cResult2 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * ((255 - aDest) * pipe->cSrc[0] +
aDest * cBlend[0]) / 255) /
alpha2);
cResult1 = (Guchar)(((alpha2 - aSrc) * cDest[1] +
aSrc * ((255 - aDest) * pipe->cSrc[1] +
aDest * cBlend[1]) / 255) /
alpha2);
cResult2 = (Guchar)(((alpha2 - aSrc) * cDest[2] +
aSrc * ((255 - aDest) * pipe->cSrc[2] +
aDest * cBlend[2]) / 255) /
alpha2);
}
break;
#if SPLASH_CMYK
case splashPipeResultColorAlphaBlendCMYK:
if (alpha2 == 0) {
cResult0 = 0;
cResult1 = 0;
cResult2 = 0;
cResult3 = 0;
} else {
cResult0 = (Guchar)(((alpha2 - aSrc) * cDest[0] +
aSrc * ((255 - aDest) * pipe->cSrc[0] +
aDest * cBlend[0]) / 255) /
alpha2);
cResult1 = (Guchar)(((alpha2 - aSrc) * cDest[1] +
aSrc * ((255 - aDest) * pipe->cSrc[1] +
aDest * cBlend[1]) / 255) /
alpha2);
cResult2 = (Guchar)(((alpha2 - aSrc) * cDest[2] +
aSrc * ((255 - aDest) * pipe->cSrc[2] +
aDest * cBlend[2]) / 255) /
alpha2);
cResult3 = (Guchar)(((alpha2 - aSrc) * cDest[3] +
aSrc * ((255 - aDest) * pipe->cSrc[3] +
aDest * cBlend[3]) / 255) /
alpha2);
}
break;
#endif
}
//----- non-isolated group correction
if (aResult != 0) {
switch (pipe->nonIsolatedGroup) {
#if SPLASH_CMYK
case 4:
cResult3 += (cResult3 - cDest[3]) * aDest *
(255 - aResult) / (255 * aResult);
#endif
case 3:
cResult2 += (cResult2 - cDest[2]) * aDest *
(255 - aResult) / (255 * aResult);
cResult1 += (cResult1 - cDest[1]) * aDest *
(255 - aResult) / (255 * aResult);
case 1:
cResult0 += (cResult0 - cDest[0]) * aDest *
(255 - aResult) / (255 * aResult);
case 0:
break;
}
}
//----- write destination pixel
switch (bitmap->mode) {
case splashModeMono1:
if (state->screen->test(pipe->x, pipe->y, cResult0)) {
*pipe->destColorPtr |= pipe->destColorMask;
} else {
*pipe->destColorPtr &= ~pipe->destColorMask;
}
if (!(pipe->destColorMask >>= 1)) {
pipe->destColorMask = 0x80;
++pipe->destColorPtr;
}
break;
case splashModeMono8:
*pipe->destColorPtr++ = cResult0;
break;
case splashModeRGB8:
*pipe->destColorPtr++ = cResult0;
*pipe->destColorPtr++ = cResult1;
*pipe->destColorPtr++ = cResult2;
break;
case splashModeBGR8:
*pipe->destColorPtr++ = cResult2;
*pipe->destColorPtr++ = cResult1;
*pipe->destColorPtr++ = cResult0;
break;
#if SPLASH_CMYK
case splashModeCMYK8:
*pipe->destColorPtr++ = cResult0;
*pipe->destColorPtr++ = cResult1;
*pipe->destColorPtr++ = cResult2;
*pipe->destColorPtr++ = cResult3;
break;
#endif
}
if (pipe->destAlphaPtr) {
*pipe->destAlphaPtr++ = aResult;
}
}
++pipe->x;
}
inline void Splash::pipeSetXY(SplashPipe *pipe, int x, int y) {
pipe->x = x;
pipe->y = y;
if (state->softMask) {
pipe->softMaskPtr =
&state->softMask->data[y * state->softMask->rowSize + x];
}
switch (bitmap->mode) {
case splashModeMono1:
pipe->destColorPtr = &bitmap->data[y * bitmap->rowSize + (x >> 3)];
pipe->destColorMask = 0x80 >> (x & 7);
break;
case splashModeMono8:
pipe->destColorPtr = &bitmap->data[y * bitmap->rowSize + x];
break;
case splashModeRGB8:
case splashModeBGR8:
pipe->destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x];
break;
#if SPLASH_CMYK
case splashModeCMYK8:
pipe->destColorPtr = &bitmap->data[y * bitmap->rowSize + 4 * x];
break;
#endif
}
if (bitmap->alpha) {
pipe->destAlphaPtr = &bitmap->alpha[y * bitmap->width + x];
} else {
pipe->destAlphaPtr = NULL;
}
if (state->inNonIsolatedGroup && alpha0Bitmap->alpha) {
pipe->alpha0Ptr =
&alpha0Bitmap->alpha[(alpha0Y + y) * alpha0Bitmap->width +
(alpha0X + x)];
} else {
pipe->alpha0Ptr = NULL;
}
}
inline void Splash::pipeIncX(SplashPipe *pipe) {
++pipe->x;
if (state->softMask) {
++pipe->softMaskPtr;
}
switch (bitmap->mode) {
case splashModeMono1:
if (!(pipe->destColorMask >>= 1)) {
pipe->destColorMask = 0x80;
++pipe->destColorPtr;
}
break;
case splashModeMono8:
++pipe->destColorPtr;
break;
case splashModeRGB8:
case splashModeBGR8:
pipe->destColorPtr += 3;
break;
#if SPLASH_CMYK
case splashModeCMYK8:
pipe->destColorPtr += 4;
break;
#endif
}
if (pipe->destAlphaPtr) {
++pipe->destAlphaPtr;
}
if (pipe->alpha0Ptr) {
++pipe->alpha0Ptr;
}
}
inline void Splash::drawPixel(SplashPipe *pipe, int x, int y, GBool noClip) {
if (noClip || state->clip->test(x, y)) {
pipeSetXY(pipe, x, y);
pipeRun(pipe);
updateModX(x);
updateModY(y);
}
}
inline void Splash::drawAAPixelInit() {
aaBufY = -1;
}
inline void Splash::drawAAPixel(SplashPipe *pipe, int x, int y) {
#if splashAASize == 4
static int bitCount4[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 4 };
int w;
#else
int xx, yy;
#endif
SplashColorPtr p;
int x0, x1, t;
if (x < 0 || x >= bitmap->width ||
y < state->clip->getYMinI() || y > state->clip->getYMaxI()) {
return;
}
// update aaBuf
if (y != aaBufY) {
memset(aaBuf->getDataPtr(), 0xff,
aaBuf->getRowSize() * aaBuf->getHeight());
x0 = 0;
x1 = bitmap->width - 1;
state->clip->clipAALine(aaBuf, &x0, &x1, y);
aaBufY = y;
}
// compute the shape value
#if splashAASize == 4
p = aaBuf->getDataPtr() + (x >> 1);
w = aaBuf->getRowSize();
if (x & 1) {
t = bitCount4[*p & 0x0f] + bitCount4[p[w] & 0x0f] +
bitCount4[p[2*w] & 0x0f] + bitCount4[p[3*w] & 0x0f];
} else {
t = bitCount4[*p >> 4] + bitCount4[p[w] >> 4] +
bitCount4[p[2*w] >> 4] + bitCount4[p[3*w] >> 4];
}
#else
t = 0;
for (yy = 0; yy < splashAASize; ++yy) {
for (xx = 0; xx < splashAASize; ++xx) {
p = aaBuf->getDataPtr() + yy * aaBuf->getRowSize() +
((x * splashAASize + xx) >> 3);
t += (*p >> (7 - ((x * splashAASize + xx) & 7))) & 1;
}
}
#endif
// draw the pixel
if (t != 0) {
pipeSetXY(pipe, x, y);
pipe->shape *= aaGamma[t];
pipeRun(pipe);
updateModX(x);
updateModY(y);
}
}
inline void Splash::drawSpan(SplashPipe *pipe, int x0, int x1, int y,
GBool noClip) {
int x;
pipeSetXY(pipe, x0, y);
if (noClip) {
for (x = x0; x <= x1; ++x) {
pipeRun(pipe);
}
updateModX(x0);
updateModX(x1);
updateModY(y);
} else {
for (x = x0; x <= x1; ++x) {
if (state->clip->test(x, y)) {
pipeRun(pipe);
updateModX(x);
updateModY(y);
} else {
pipeIncX(pipe);
}
}
}
}
inline void Splash::drawAALine(SplashPipe *pipe, int x0, int x1, int y) {
#if splashAASize == 4
static int bitCount4[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 4 };
SplashColorPtr p0, p1, p2, p3;
int t;
#else
SplashColorPtr p;
int xx, yy, t;
#endif
int x;
#if splashAASize == 4
p0 = aaBuf->getDataPtr() + (x0 >> 1);
p1 = p0 + aaBuf->getRowSize();
p2 = p1 + aaBuf->getRowSize();
p3 = p2 + aaBuf->getRowSize();
#endif
pipeSetXY(pipe, x0, y);
for (x = x0; x <= x1; ++x) {
// compute the shape value
#if splashAASize == 4
if (x & 1) {
t = bitCount4[*p0 & 0x0f] + bitCount4[*p1 & 0x0f] +
bitCount4[*p2 & 0x0f] + bitCount4[*p3 & 0x0f];
++p0; ++p1; ++p2; ++p3;
} else {
t = bitCount4[*p0 >> 4] + bitCount4[*p1 >> 4] +
bitCount4[*p2 >> 4] + bitCount4[*p3 >> 4];
}
#else
t = 0;
for (yy = 0; yy < splashAASize; ++yy) {
for (xx = 0; xx < splashAASize; ++xx) {
p = aaBuf->getDataPtr() + yy * aaBuf->getRowSize() +
((x * splashAASize + xx) >> 3);
t += (*p >> (7 - ((x * splashAASize + xx) & 7))) & 1;
}
}
#endif
if (t != 0) {
pipe->shape = aaGamma[t];
pipeRun(pipe);
updateModX(x);
updateModY(y);
} else {
pipeIncX(pipe);
}
}
}
//------------------------------------------------------------------------
// Transform a point from user space to device space.
inline void Splash::transform(SplashCoord *matrix,
SplashCoord xi, SplashCoord yi,
SplashCoord *xo, SplashCoord *yo) {
// [ m[0] m[1] 0 ]
// [xo yo 1] = [xi yi 1] * [ m[2] m[3] 0 ]
// [ m[4] m[5] 1 ]
*xo = xi * matrix[0] + yi * matrix[2] + matrix[4];
*yo = xi * matrix[1] + yi * matrix[3] + matrix[5];
}
//------------------------------------------------------------------------
// Splash
//------------------------------------------------------------------------
Splash::Splash(SplashBitmap *bitmapA, GBool vectorAntialiasA,
SplashScreenParams *screenParams) {
int i;
bitmap = bitmapA;
vectorAntialias = vectorAntialiasA;
state = new SplashState(bitmap->width, bitmap->height, vectorAntialias,
screenParams);
if (vectorAntialias) {
aaBuf = new SplashBitmap(splashAASize * bitmap->width, splashAASize,
1, splashModeMono1, gFalse);
for (i = 0; i <= splashAASize * splashAASize; ++i) {
aaGamma[i] = splashPow((SplashCoord)i /
(SplashCoord)(splashAASize * splashAASize),
1.5);
}
} else {
aaBuf = NULL;
}
clearModRegion();
debugMode = gFalse;
}
Splash::Splash(SplashBitmap *bitmapA, GBool vectorAntialiasA,
SplashScreen *screenA) {
int i;
bitmap = bitmapA;
vectorAntialias = vectorAntialiasA;
state = new SplashState(bitmap->width, bitmap->height, vectorAntialias,
screenA);
if (vectorAntialias) {
aaBuf = new SplashBitmap(splashAASize * bitmap->width, splashAASize,
1, splashModeMono1, gFalse);
for (i = 0; i <= splashAASize * splashAASize; ++i) {
aaGamma[i] = splashPow((SplashCoord)i /
(SplashCoord)(splashAASize * splashAASize),
1.5);
}
} else {
aaBuf = NULL;
}
clearModRegion();
debugMode = gFalse;
}
Splash::~Splash() {
while (state->next) {
restoreState();
}
delete state;
if (vectorAntialias) {
delete aaBuf;
}
}
//------------------------------------------------------------------------
// state read
//------------------------------------------------------------------------
SplashCoord *Splash::getMatrix() {
return state->matrix;
}
SplashPattern *Splash::getStrokePattern() {
return state->strokePattern;
}
SplashPattern *Splash::getFillPattern() {
return state->fillPattern;
}
SplashScreen *Splash::getScreen() {
return state->screen;
}
SplashBlendFunc Splash::getBlendFunc() {
return state->blendFunc;
}
SplashCoord Splash::getStrokeAlpha() {
return state->strokeAlpha;
}
SplashCoord Splash::getFillAlpha() {
return state->fillAlpha;
}
SplashCoord Splash::getLineWidth() {
return state->lineWidth;
}
int Splash::getLineCap() {
return state->lineCap;
}
int Splash::getLineJoin() {
return state->lineJoin;
}
SplashCoord Splash::getMiterLimit() {
return state->miterLimit;
}
SplashCoord Splash::getFlatness() {
return state->flatness;
}
SplashCoord *Splash::getLineDash() {
return state->lineDash;
}
int Splash::getLineDashLength() {
return state->lineDashLength;
}
SplashCoord Splash::getLineDashPhase() {
return state->lineDashPhase;
}
SplashClip *Splash::getClip() {
return state->clip;
}
SplashBitmap *Splash::getSoftMask() {
return state->softMask;
}
GBool Splash::getInNonIsolatedGroup() {
return state->inNonIsolatedGroup;
}
//------------------------------------------------------------------------
// state write
//------------------------------------------------------------------------
void Splash::setMatrix(SplashCoord *matrix) {
memcpy(state->matrix, matrix, 6 * sizeof(SplashCoord));
}
void Splash::setStrokePattern(SplashPattern *strokePattern) {
state->setStrokePattern(strokePattern);
}
void Splash::setFillPattern(SplashPattern *fillPattern) {
state->setFillPattern(fillPattern);
}
void Splash::setScreen(SplashScreen *screen) {
state->setScreen(screen);
}
void Splash::setBlendFunc(SplashBlendFunc func) {
state->blendFunc = func;
}
void Splash::setStrokeAlpha(SplashCoord alpha) {
state->strokeAlpha = alpha;
}
void Splash::setFillAlpha(SplashCoord alpha) {
state->fillAlpha = alpha;
}
void Splash::setLineWidth(SplashCoord lineWidth) {
state->lineWidth = lineWidth;
}
void Splash::setLineCap(int lineCap) {
state->lineCap = lineCap;
}
void Splash::setLineJoin(int lineJoin) {
state->lineJoin = lineJoin;
}
void Splash::setMiterLimit(SplashCoord miterLimit) {
state->miterLimit = miterLimit;
}
void Splash::setFlatness(SplashCoord flatness) {
if (flatness < 1) {
state->flatness = 1;
} else {
state->flatness = flatness;
}
}
void Splash::setLineDash(SplashCoord *lineDash, int lineDashLength,
SplashCoord lineDashPhase) {
state->setLineDash(lineDash, lineDashLength, lineDashPhase);
}
void Splash::setStrokeAdjust(GBool strokeAdjust) {
state->strokeAdjust = strokeAdjust;
}
void Splash::clipResetToRect(SplashCoord x0, SplashCoord y0,
SplashCoord x1, SplashCoord y1) {
state->clip->resetToRect(x0, y0, x1, y1);
}
SplashError Splash::clipToRect(SplashCoord x0, SplashCoord y0,
SplashCoord x1, SplashCoord y1) {
return state->clip->clipToRect(x0, y0, x1, y1);
}
SplashError Splash::clipToPath(SplashPath *path, GBool eo) {
return state->clip->clipToPath(path, state->matrix, state->flatness, eo);
}
void Splash::setSoftMask(SplashBitmap *softMask) {
state->setSoftMask(softMask);
}
void Splash::setInNonIsolatedGroup(SplashBitmap *alpha0BitmapA,
int alpha0XA, int alpha0YA) {
alpha0Bitmap = alpha0BitmapA;
alpha0X = alpha0XA;
alpha0Y = alpha0YA;
state->inNonIsolatedGroup = gTrue;
}
//------------------------------------------------------------------------
// state save/restore
//------------------------------------------------------------------------
void Splash::saveState() {
SplashState *newState;
newState = state->copy();
newState->next = state;
state = newState;
}
SplashError Splash::restoreState() {
SplashState *oldState;
if (!state->next) {
return splashErrNoSave;
}
oldState = state;
state = state->next;
delete oldState;
return splashOk;
}
//------------------------------------------------------------------------
// drawing operations
//------------------------------------------------------------------------
void Splash::clear(SplashColorPtr color, Guchar alpha) {
SplashColorPtr row, p;
Guchar mono;
int x, y;
switch (bitmap->mode) {
case splashModeMono1:
mono = (color[0] & 0x80) ? 0xff : 0x00;
if (bitmap->rowSize < 0) {
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
mono, -bitmap->rowSize * bitmap->height);
} else {
memset(bitmap->data, mono, bitmap->rowSize * bitmap->height);
}
break;
case splashModeMono8:
if (bitmap->rowSize < 0) {
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
color[0], -bitmap->rowSize * bitmap->height);
} else {
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
}
break;
case splashModeRGB8:
if (color[0] == color[1] && color[1] == color[2]) {
if (bitmap->rowSize < 0) {
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
color[0], -bitmap->rowSize * bitmap->height);
} else {
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
}
} else {
row = bitmap->data;
for (y = 0; y < bitmap->height; ++y) {
p = row;
for (x = 0; x < bitmap->width; ++x) {
*p++ = color[2];
*p++ = color[1];
*p++ = color[0];
}
row += bitmap->rowSize;
}
}
break;
case splashModeBGR8:
if (color[0] == color[1] && color[1] == color[2]) {
if (bitmap->rowSize < 0) {
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
color[0], -bitmap->rowSize * bitmap->height);
} else {
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
}
} else {
row = bitmap->data;
for (y = 0; y < bitmap->height; ++y) {
p = row;
for (x = 0; x < bitmap->width; ++x) {
*p++ = color[0];
*p++ = color[1];
*p++ = color[2];
}
row += bitmap->rowSize;
}
}
break;
#if SPLASH_CMYK
case splashModeCMYK8:
if (color[0] == color[1] && color[1] == color[2] && color[2] == color[3]) {
if (bitmap->rowSize < 0) {
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
color[0], -bitmap->rowSize * bitmap->height);
} else {
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
}
} else {
row = bitmap->data;
for (y = 0; y < bitmap->height; ++y) {
p = row;
for (x = 0; x < bitmap->width; ++x) {
*p++ = color[0];
*p++ = color[1];
*p++ = color[2];
*p++ = color[3];
}
row += bitmap->rowSize;
}
}
break;
#endif
}
if (bitmap->alpha) {
memset(bitmap->alpha, alpha, bitmap->width * bitmap->height);
}
updateModX(0);
updateModY(0);
updateModX(bitmap->width - 1);
updateModY(bitmap->height - 1);
}
SplashError Splash::stroke(SplashPath *path) {
SplashPath *path2, *dPath;
if (debugMode) {
printf("stroke [dash:%d] [width:%.2f]:\n",
state->lineDashLength, (double)state->lineWidth);
dumpPath(path);
}
opClipRes = splashClipAllOutside;
if (path->length == 0) {
return splashErrEmptyPath;
}
path2 = flattenPath(path, state->matrix, state->flatness);
if (state->lineDashLength > 0) {
dPath = makeDashedPath(path2);
delete path2;
path2 = dPath;
}
if (state->lineWidth == 0) {
strokeNarrow(path2);
} else {
strokeWide(path2);
}
delete path2;
return splashOk;
}
void Splash::strokeNarrow(SplashPath *path) {
SplashPipe pipe;
SplashXPath *xPath;
SplashXPathSeg *seg;
int x0, x1, x2, x3, y0, y1, x, y, t;
SplashCoord dx, dy, dxdy;
SplashClipResult clipRes;
int nClipRes[3];
int i;
nClipRes[0] = nClipRes[1] = nClipRes[2] = 0;
xPath = new SplashXPath(path, state->matrix, state->flatness, gFalse);
pipeInit(&pipe, 0, 0, state->strokePattern, NULL, state->strokeAlpha,
gFalse, gFalse);
for (i = 0, seg = xPath->segs; i < xPath->length; ++i, ++seg) {
x0 = splashFloor(seg->x0);
x1 = splashFloor(seg->x1);
y0 = splashFloor(seg->y0);
y1 = splashFloor(seg->y1);
// horizontal segment
if (y0 == y1) {
if (x0 > x1) {
t = x0; x0 = x1; x1 = t;
}
if ((clipRes = state->clip->testSpan(x0, x1, y0))
!= splashClipAllOutside) {
drawSpan(&pipe, x0, x1, y0, clipRes == splashClipAllInside);
}
// segment with |dx| > |dy|
} else if (splashAbs(seg->dxdy) > 1) {
dx = seg->x1 - seg->x0;
dy = seg->y1 - seg->y0;
dxdy = seg->dxdy;
if (y0 > y1) {
t = y0; y0 = y1; y1 = t;
t = x0; x0 = x1; x1 = t;
dx = -dx;
dy = -dy;
}
if ((clipRes = state->clip->testRect(x0 <= x1 ? x0 : x1, y0,
x0 <= x1 ? x1 : x0, y1))
!= splashClipAllOutside) {
if (dx > 0) {
x2 = x0;
x3 = splashFloor(seg->x0 + ((SplashCoord)y0 + 1 - seg->y0) * dxdy);
drawSpan(&pipe, x2, (x2 <= x3 - 1) ? x3 - 1 : x2, y0,
clipRes == splashClipAllInside);
x2 = x3;
for (y = y0 + 1; y <= y1 - 1; ++y) {
x3 = splashFloor(seg->x0 + ((SplashCoord)y + 1 - seg->y0) * dxdy);
drawSpan(&pipe, x2, x3 - 1, y, clipRes == splashClipAllInside);
x2 = x3;
}
drawSpan(&pipe, x2, x2 <= x1 ? x1 : x2, y1,
clipRes == splashClipAllInside);
} else {
x2 = x0;
x3 = splashFloor(seg->x0 + ((SplashCoord)y0 + 1 - seg->y0) * dxdy);
drawSpan(&pipe, (x3 + 1 <= x2) ? x3 + 1 : x2, x2, y0,
clipRes == splashClipAllInside);
x2 = x3;
for (y = y0 + 1; y <= y1 - 1; ++y) {
x3 = splashFloor(seg->x0 + ((SplashCoord)y + 1 - seg->y0) * dxdy);
drawSpan(&pipe, x3 + 1, x2, y, clipRes == splashClipAllInside);
x2 = x3;
}
drawSpan(&pipe, x1, (x1 <= x2) ? x2 : x1, y1,
clipRes == splashClipAllInside);
}
}
// segment with |dy| > |dx|
} else {
dxdy = seg->dxdy;
if (y0 > y1) {
t = x0; x0 = x1; x1 = t;
t = y0; y0 = y1; y1 = t;
}
if ((clipRes = state->clip->testRect(x0 <= x1 ? x0 : x1, y0,
x0 <= x1 ? x1 : x0, y1))
!= splashClipAllOutside) {
drawPixel(&pipe, x0, y0, clipRes == splashClipAllInside);
for (y = y0 + 1; y <= y1 - 1; ++y) {
x = splashFloor(seg->x0 + ((SplashCoord)y - seg->y0) * dxdy);
drawPixel(&pipe, x, y, clipRes == splashClipAllInside);
}
drawPixel(&pipe, x1, y1, clipRes == splashClipAllInside);
}
}
++nClipRes[clipRes];
}
if (nClipRes[splashClipPartial] ||
(nClipRes[splashClipAllInside] && nClipRes[splashClipAllOutside])) {
opClipRes = splashClipPartial;
} else if (nClipRes[splashClipAllInside]) {
opClipRes = splashClipAllInside;
} else {
opClipRes = splashClipAllOutside;
}
delete xPath;
}
void Splash::strokeWide(SplashPath *path) {
SplashPath *path2;
path2 = makeStrokePath(path, gFalse);
fillWithPattern(path2, gFalse, state->strokePattern, state->strokeAlpha);
delete path2;
}
SplashPath *Splash::flattenPath(SplashPath *path, SplashCoord *matrix,
SplashCoord flatness) {
SplashPath *fPath;
SplashCoord flatness2;
Guchar flag;
int i;
fPath = new SplashPath();
flatness2 = flatness * flatness;
i = 0;
while (i < path->length) {
flag = path->flags[i];
if (flag & splashPathFirst) {
fPath->moveTo(path->pts[i].x, path->pts[i].y);
++i;
} else {
if (flag & splashPathCurve) {
flattenCurve(path->pts[i-1].x, path->pts[i-1].y,
path->pts[i ].x, path->pts[i ].y,
path->pts[i+1].x, path->pts[i+1].y,
path->pts[i+2].x, path->pts[i+2].y,
matrix, flatness2, fPath);
i += 3;
} else {
fPath->lineTo(path->pts[i].x, path->pts[i].y);
++i;
}
if (path->flags[i-1] & splashPathClosed) {
fPath->close();
}
}
}
return fPath;
}
void Splash::flattenCurve(SplashCoord x0, SplashCoord y0,
SplashCoord x1, SplashCoord y1,
SplashCoord x2, SplashCoord y2,
SplashCoord x3, SplashCoord y3,
SplashCoord *matrix, SplashCoord flatness2,
SplashPath *fPath) {
SplashCoord cx[splashMaxCurveSplits + 1][3];
SplashCoord cy[splashMaxCurveSplits + 1][3];
int cNext[splashMaxCurveSplits + 1];
SplashCoord xl0, xl1, xl2, xr0, xr1, xr2, xr3, xx1, xx2, xh;
SplashCoord yl0, yl1, yl2, yr0, yr1, yr2, yr3, yy1, yy2, yh;
SplashCoord dx, dy, mx, my, tx, ty, d1, d2;
int p1, p2, p3;
// initial segment
p1 = 0;
p2 = splashMaxCurveSplits;
cx[p1][0] = x0; cy[p1][0] = y0;
cx[p1][1] = x1; cy[p1][1] = y1;
cx[p1][2] = x2; cy[p1][2] = y2;
cx[p2][0] = x3; cy[p2][0] = y3;
cNext[p1] = p2;
while (p1 < splashMaxCurveSplits) {
// get the next segment
xl0 = cx[p1][0]; yl0 = cy[p1][0];
xx1 = cx[p1][1]; yy1 = cy[p1][1];
xx2 = cx[p1][2]; yy2 = cy[p1][2];
p2 = cNext[p1];
xr3 = cx[p2][0]; yr3 = cy[p2][0];
// compute the distances (in device space) from the control points
// to the midpoint of the straight line (this is a bit of a hack,
// but it's much faster than computing the actual distances to the
// line)
transform(matrix, (xl0 + xr3) * 0.5, (yl0 + yr3) * 0.5, &mx, &my);
transform(matrix, xx1, yy1, &tx, &ty);
dx = tx - mx;
dy = ty - my;
d1 = dx*dx + dy*dy;
transform(matrix, xx2, yy2, &tx, &ty);
dx = tx - mx;
dy = ty - my;
d2 = dx*dx + dy*dy;
// if the curve is flat enough, or no more subdivisions are
// allowed, add the straight line segment
if (p2 - p1 == 1 || (d1 <= flatness2 && d2 <= flatness2)) {
fPath->lineTo(xr3, yr3);
p1 = p2;
// otherwise, subdivide the curve
} else {
xl1 = (xl0 + xx1) * 0.5;
yl1 = (yl0 + yy1) * 0.5;
xh = (xx1 + xx2) * 0.5;
yh = (yy1 + yy2) * 0.5;
xl2 = (xl1 + xh) * 0.5;
yl2 = (yl1 + yh) * 0.5;
xr2 = (xx2 + xr3) * 0.5;
yr2 = (yy2 + yr3) * 0.5;
xr1 = (xh + xr2) * 0.5;
yr1 = (yh + yr2) * 0.5;
xr0 = (xl2 + xr1) * 0.5;
yr0 = (yl2 + yr1) * 0.5;
// add the new subdivision points
p3 = (p1 + p2) / 2;
cx[p1][1] = xl1; cy[p1][1] = yl1;
cx[p1][2] = xl2; cy[p1][2] = yl2;
cNext[p1] = p3;
cx[p3][0] = xr0; cy[p3][0] = yr0;
cx[p3][1] = xr1; cy[p3][1] = yr1;
cx[p3][2] = xr2; cy[p3][2] = yr2;
cNext[p3] = p2;
}
}
}
SplashPath *Splash::makeDashedPath(SplashPath *path) {
SplashPath *dPath;
SplashCoord lineDashTotal;
SplashCoord lineDashStartPhase, lineDashDist, segLen;
SplashCoord x0, y0, x1, y1, xa, ya;
GBool lineDashStartOn, lineDashOn, newPath;
int lineDashStartIdx, lineDashIdx;
int i, j, k;
lineDashTotal = 0;
for (i = 0; i < state->lineDashLength; ++i) {
lineDashTotal += state->lineDash[i];
}
lineDashStartPhase = state->lineDashPhase;
i = splashFloor(lineDashStartPhase / lineDashTotal);
lineDashStartPhase -= (SplashCoord)i * lineDashTotal;
lineDashStartOn = gTrue;
lineDashStartIdx = 0;
while (lineDashStartPhase >= state->lineDash[lineDashStartIdx]) {
lineDashStartOn = !lineDashStartOn;
lineDashStartPhase -= state->lineDash[lineDashStartIdx];
++lineDashStartIdx;
}
dPath = new SplashPath();
// process each subpath
i = 0;
while (i < path->length) {
// find the end of the subpath
for (j = i;
j < path->length - 1 && !(path->flags[j] & splashPathLast);
++j) ;
// initialize the dash parameters
lineDashOn = lineDashStartOn;
lineDashIdx = lineDashStartIdx;
lineDashDist = state->lineDash[lineDashIdx] - lineDashStartPhase;
// process each segment of the subpath
newPath = gTrue;
for (k = i; k < j; ++k) {
// grab the segment
x0 = path->pts[k].x;
y0 = path->pts[k].y;
x1 = path->pts[k+1].x;
y1 = path->pts[k+1].y;
segLen = splashDist(x0, y0, x1, y1);
// process the segment
while (segLen > 0) {
if (lineDashDist >= segLen) {
if (lineDashOn) {
if (newPath) {
dPath->moveTo(x0, y0);
newPath = gFalse;
}
dPath->lineTo(x1, y1);
}
lineDashDist -= segLen;
segLen = 0;
} else {
xa = x0 + (lineDashDist / segLen) * (x1 - x0);
ya = y0 + (lineDashDist / segLen) * (y1 - y0);
if (lineDashOn) {
if (newPath) {
dPath->moveTo(x0, y0);
newPath = gFalse;
}
dPath->lineTo(xa, ya);
}
x0 = xa;
y0 = ya;
segLen -= lineDashDist;
lineDashDist = 0;
}
// get the next entry in the dash array
if (lineDashDist <= 0) {
lineDashOn = !lineDashOn;
if (++lineDashIdx == state->lineDashLength) {
lineDashIdx = 0;
}
lineDashDist = state->lineDash[lineDashIdx];
newPath = gTrue;
}
}
}
i = j + 1;
}
return dPath;
}
SplashError Splash::fill(SplashPath *path, GBool eo) {
if (debugMode) {
printf("fill [eo:%d]:\n", eo);
dumpPath(path);
}
return fillWithPattern(path, eo, state->fillPattern, state->fillAlpha);
}
SplashError Splash::fillWithPattern(SplashPath *path, GBool eo,
SplashPattern *pattern,
SplashCoord alpha) {
SplashPipe pipe;
SplashXPath *xPath;
SplashXPathScanner *scanner;
int xMinI, yMinI, xMaxI, yMaxI, x0, x1, y;
SplashClipResult clipRes, clipRes2;
if (path->length == 0) {
return splashErrEmptyPath;
}
xPath = new SplashXPath(path, state->matrix, state->flatness, gTrue);
if (vectorAntialias) {
xPath->aaScale();
}
xPath->sort();
if (!&xPath->segs[0])
{
delete xPath;
return splashErrEmptyPath;
}
scanner = new SplashXPathScanner(xPath, eo);
// get the min and max x and y values
if (vectorAntialias) {
scanner->getBBoxAA(&xMinI, &yMinI, &xMaxI, &yMaxI);
} else {
scanner->getBBox(&xMinI, &yMinI, &xMaxI, &yMaxI);
}
// check clipping
if ((clipRes = state->clip->testRect(xMinI, yMinI, xMaxI, yMaxI))
!= splashClipAllOutside) {
// limit the y range
if (yMinI < state->clip->getYMinI()) {
yMinI = state->clip->getYMinI();
}
if (yMaxI > state->clip->getYMaxI()) {
yMaxI = state->clip->getYMaxI();
}
pipeInit(&pipe, 0, yMinI, pattern, NULL, alpha, vectorAntialias, gFalse);
// draw the spans
if (vectorAntialias) {
for (y = yMinI; y <= yMaxI; ++y) {
scanner->renderAALine(aaBuf, &x0, &x1, y);
if (clipRes != splashClipAllInside) {
state->clip->clipAALine(aaBuf, &x0, &x1, y);
}
drawAALine(&pipe, x0, x1, y);
}
} else {
for (y = yMinI; y <= yMaxI; ++y) {
while (scanner->getNextSpan(y, &x0, &x1)) {
if (clipRes == splashClipAllInside) {
drawSpan(&pipe, x0, x1, y, gTrue);
} else {
// limit the x range
if (x0 < state->clip->getXMinI()) {
x0 = state->clip->getXMinI();
}
if (x1 > state->clip->getXMaxI()) {
x1 = state->clip->getXMaxI();
}
clipRes2 = state->clip->testSpan(x0, x1, y);
drawSpan(&pipe, x0, x1, y, clipRes2 == splashClipAllInside);
}
}
}
}
}
opClipRes = clipRes;
delete scanner;
delete xPath;
return splashOk;
}
SplashError Splash::xorFill(SplashPath *path, GBool eo) {
SplashPipe pipe;
SplashXPath *xPath;
SplashXPathScanner *scanner;
int xMinI, yMinI, xMaxI, yMaxI, x0, x1, y;
SplashClipResult clipRes, clipRes2;
SplashBlendFunc origBlendFunc;
if (path->length == 0) {
return splashErrEmptyPath;
}
xPath = new SplashXPath(path, state->matrix, state->flatness, gTrue);
xPath->sort();
scanner = new SplashXPathScanner(xPath, eo);
// get the min and max x and y values
scanner->getBBox(&xMinI, &yMinI, &xMaxI, &yMaxI);
// check clipping
if ((clipRes = state->clip->testRect(xMinI, yMinI, xMaxI, yMaxI))
!= splashClipAllOutside) {
// limit the y range
if (yMinI < state->clip->getYMinI()) {
yMinI = state->clip->getYMinI();
}
if (yMaxI > state->clip->getYMaxI()) {
yMaxI = state->clip->getYMaxI();
}
origBlendFunc = state->blendFunc;
state->blendFunc = &blendXor;
pipeInit(&pipe, 0, yMinI, state->fillPattern, NULL, 1, gFalse, gFalse);
// draw the spans
for (y = yMinI; y <= yMaxI; ++y) {
while (scanner->getNextSpan(y, &x0, &x1)) {
if (clipRes == splashClipAllInside) {
drawSpan(&pipe, x0, x1, y, gTrue);
} else {
// limit the x range
if (x0 < state->clip->getXMinI()) {
x0 = state->clip->getXMinI();
}
if (x1 > state->clip->getXMaxI()) {
x1 = state->clip->getXMaxI();
}
clipRes2 = state->clip->testSpan(x0, x1, y);
drawSpan(&pipe, x0, x1, y, clipRes2 == splashClipAllInside);
}
}
}
state->blendFunc = origBlendFunc;
}
opClipRes = clipRes;
delete scanner;
delete xPath;
return splashOk;
}
SplashError Splash::fillChar(SplashCoord x, SplashCoord y,
int c, SplashFont *font) {
SplashGlyphBitmap glyph;
SplashCoord xt, yt;
int x0, y0, xFrac, yFrac;
SplashClipResult clipRes;
if (debugMode) {
printf("fillChar: x=%.2f y=%.2f c=%3d=0x%02x='%c'\n",
(double)x, (double)y, c, c, c);
}
transform(state->matrix, x, y, &xt, &yt);
x0 = splashFloor(xt);
xFrac = splashFloor((xt - x0) * splashFontFraction);
y0 = splashFloor(yt);
yFrac = splashFloor((yt - y0) * splashFontFraction);
if (!font->getGlyph(c, xFrac, yFrac, &glyph, x0, y0, state->clip, &clipRes)) {
return splashErrNoGlyph;
}
if (clipRes != splashClipAllOutside) {
fillGlyph2(x0, y0, &glyph, clipRes == splashClipAllInside);
}
opClipRes = clipRes;
if (glyph.freeData) {
gfree(glyph.data);
}
return splashOk;
}
void Splash::fillGlyph(SplashCoord x, SplashCoord y,
SplashGlyphBitmap *glyph) {
SplashCoord xt, yt;
int x0, y0;
transform(state->matrix, x, y, &xt, &yt);
x0 = splashFloor(xt);
y0 = splashFloor(yt);
SplashClipResult clipRes = state->clip->testRect(x0 - glyph->x,
y0 - glyph->y,
x0 - glyph->x + glyph->w - 1,
y0 - glyph->y + glyph->h - 1);
if (clipRes != splashClipAllOutside) {
fillGlyph2(x0, y0, glyph, clipRes == splashClipAllInside);
}
opClipRes = clipRes;
}
void Splash::fillGlyph2(int x0, int y0, SplashGlyphBitmap *glyph, GBool noClip) {
SplashPipe pipe;
int alpha0, alpha;
Guchar *p;
int x1, y1, xx, xx1, yy;
p = glyph->data;
int xStart = x0 - glyph->x;
int yStart = y0 - glyph->y;
int xxLimit = glyph->w;
int yyLimit = glyph->h;
if (yStart < 0)
{
p += glyph->w * -yStart; // move p to the beginning of the first painted row
yyLimit += yStart;
yStart = 0;
}
if (xStart < 0)
{
p += -xStart; // move p to the first painted pixel
xxLimit += xStart;
xStart = 0;
}
if (xxLimit + xStart >= bitmap->width) xxLimit = bitmap->width - xStart;
if (yyLimit + yStart >= bitmap->height) yyLimit = bitmap->height - yStart;
if (noClip) {
if (glyph->aa) {
pipeInit(&pipe, xStart, yStart,
state->fillPattern, NULL, state->fillAlpha, gTrue, gFalse);
for (yy = 0, y1 = yStart; yy < yyLimit; ++yy, ++y1) {
pipeSetXY(&pipe, xStart, y1);
for (xx = 0, x1 = xStart; xx < xxLimit; ++xx, ++x1) {
alpha = p[xx];
if (alpha != 0) {
pipe.shape = (SplashCoord)(alpha / 255.0);
pipeRun(&pipe);
updateModX(x1);
updateModY(y1);
} else {
pipeIncX(&pipe);
}
}
p += glyph->w;
}
} else {
const int widthEight = (int)ceil(glyph->w / 8.0);
pipeInit(&pipe, xStart, yStart,
state->fillPattern, NULL, state->fillAlpha, gFalse, gFalse);
for (yy = 0, y1 = yStart; yy < yyLimit; ++yy, ++y1) {
pipeSetXY(&pipe, xStart, y1);
for (xx = 0, x1 = xStart; xx < xxLimit; xx += 8) {
alpha0 = p[xx / 8];
for (xx1 = 0; xx1 < 8 && xx + xx1 < xxLimit; ++xx1, ++x1) {
if (alpha0 & 0x80) {
pipeRun(&pipe);
updateModX(x1);
updateModY(y1);
} else {
pipeIncX(&pipe);
}
alpha0 <<= 1;
}
}
p += widthEight;
}
}
} else {
if (glyph->aa) {
pipeInit(&pipe, xStart, yStart,
state->fillPattern, NULL, state->fillAlpha, gTrue, gFalse);
for (yy = 0, y1 = yStart; yy < yyLimit; ++yy, ++y1) {
pipeSetXY(&pipe, xStart, y1);
for (xx = 0, x1 = xStart; xx < xxLimit; ++xx, ++x1) {
if (state->clip->test(x1, y1)) {
alpha = p[xx];
if (alpha != 0) {
pipe.shape = (SplashCoord)(alpha / 255.0);
pipeRun(&pipe);
updateModX(x1);
updateModY(y1);
} else {
pipeIncX(&pipe);
}
} else {
pipeIncX(&pipe);
}
}
p += glyph->w;
}
} else {
const int widthEight = (int)ceil(glyph->w / 8.0);
pipeInit(&pipe, xStart, yStart,
state->fillPattern, NULL, state->fillAlpha, gFalse, gFalse);
for (yy = 0, y1 = yStart; yy < yyLimit; ++yy, ++y1) {
pipeSetXY(&pipe, xStart, y1);
for (xx = 0, x1 = xStart; xx < xxLimit; xx += 8) {
alpha0 = p[xx / 8];
for (xx1 = 0; xx1 < 8 && xx + xx1 < xxLimit; ++xx1, ++x1) {
if (state->clip->test(x1, y1)) {
if (alpha0 & 0x80) {
pipeRun(&pipe);
updateModX(x1);
updateModY(y1);
} else {
pipeIncX(&pipe);
}
} else {
pipeIncX(&pipe);
}
alpha0 <<= 1;
}
}
p += widthEight;
}
}
}
}
SplashError Splash::fillImageMask(SplashImageMaskSource src, void *srcData,
int w, int h, SplashCoord *mat,
GBool glyphMode) {
SplashPipe pipe;
GBool rot;
SplashCoord xScale, yScale, xShear, yShear, yShear1;
int tx, tx2, ty, ty2, scaledWidth, scaledHeight, xSign, ySign;
int ulx, uly, llx, lly, urx, ury, lrx, lry;
int ulx1, uly1, llx1, lly1, urx1, ury1, lrx1, lry1;
int xMin, xMax, yMin, yMax;
SplashClipResult clipRes, clipRes2;
int yp, yq, yt, yStep, lastYStep;
int xp, xq, xt, xStep, xSrc;
int k1, spanXMin, spanXMax, spanY;
SplashColorPtr pixBuf, p;
int pixAcc;
int x, y, x1, x2, y2;
SplashCoord y1;
int n, m, i, j;
if (debugMode) {
printf("fillImageMask: w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
w, h, (double)mat[0], (double)mat[1], (double)mat[2],
(double)mat[3], (double)mat[4], (double)mat[5]);
}
if (w == 0 && h == 0) return splashErrZeroImage;
// check for singular matrix
if (splashAbs(mat[0] * mat[3] - mat[1] * mat[2]) < 0.000001) {
return splashErrSingularMatrix;
}
// compute scale, shear, rotation, translation parameters
rot = splashAbs(mat[1]) > splashAbs(mat[0]);
if (rot) {
xScale = -mat[1];
yScale = mat[2] - (mat[0] * mat[3]) / mat[1];
xShear = -mat[3] / yScale;
yShear = -mat[0] / mat[1];
} else {
xScale = mat[0];
yScale = mat[3] - (mat[1] * mat[2]) / mat[0];
xShear = mat[2] / yScale;
yShear = mat[1] / mat[0];
}
// Note 1: The PDF spec says that all pixels whose *centers* lie
// within the region get painted -- but that doesn't seem to match
// up with what Acrobat actually does: it ends up leaving gaps
// between image stripes. So we use the same rule here as for
// fills: any pixel that overlaps the region gets painted.
// Note 2: The "glyphMode" flag is a kludge: it switches back to
// "correct" behavior (matching the spec), for use in rendering Type
// 3 fonts.
// Note 3: The +/-0.01 in these computations is to avoid floating
// point precision problems which can lead to gaps between image
// stripes (it can cause image stripes to overlap, but that's a much
// less visible problem).
if (glyphMode) {
if (xScale >= 0) {
tx = splashRound(mat[4]);
tx2 = splashRound(mat[4] + xScale) - 1;
} else {
tx = splashRound(mat[4]) - 1;
tx2 = splashRound(mat[4] + xScale);
}
} else {
if (xScale >= 0) {
tx = splashFloor(mat[4] - 0.01);
tx2 = splashFloor(mat[4] + xScale + 0.01);
} else {
tx = splashFloor(mat[4] + 0.01);
tx2 = splashFloor(mat[4] + xScale - 0.01);
}
}
scaledWidth = abs(tx2 - tx) + 1;
if (glyphMode) {
if (yScale >= 0) {
ty = splashRound(mat[5]);
ty2 = splashRound(mat[5] + yScale) - 1;
} else {
ty = splashRound(mat[5]) - 1;
ty2 = splashRound(mat[5] + yScale);
}
} else {
if (yScale >= 0) {
ty = splashFloor(mat[5] - 0.01);
ty2 = splashFloor(mat[5] + yScale + 0.01);
} else {
ty = splashFloor(mat[5] + 0.01);
ty2 = splashFloor(mat[5] + yScale - 0.01);
}
}
scaledHeight = abs(ty2 - ty) + 1;
xSign = (xScale < 0) ? -1 : 1;
ySign = (yScale < 0) ? -1 : 1;
yShear1 = (SplashCoord)xSign * yShear;
// clipping
ulx1 = 0;
uly1 = 0;
urx1 = xSign * (scaledWidth - 1);
ury1 = (int)(yShear * urx1);
llx1 = splashRound(xShear * ySign * (scaledHeight - 1));
lly1 = ySign * (scaledHeight - 1) + (int)(yShear * llx1);
lrx1 = xSign * (scaledWidth - 1) +
splashRound(xShear * ySign * (scaledHeight - 1));
lry1 = ySign * (scaledHeight - 1) + (int)(yShear * lrx1);
if (rot) {
ulx = tx + uly1; uly = ty - ulx1;
urx = tx + ury1; ury = ty - urx1;
llx = tx + lly1; lly = ty - llx1;
lrx = tx + lry1; lry = ty - lrx1;
} else {
ulx = tx + ulx1; uly = ty + uly1;
urx = tx + urx1; ury = ty + ury1;
llx = tx + llx1; lly = ty + lly1;
lrx = tx + lrx1; lry = ty + lry1;
}
xMin = (ulx < urx) ? (ulx < llx) ? (ulx < lrx) ? ulx : lrx
: (llx < lrx) ? llx : lrx
: (urx < llx) ? (urx < lrx) ? urx : lrx
: (llx < lrx) ? llx : lrx;
xMax = (ulx > urx) ? (ulx > llx) ? (ulx > lrx) ? ulx : lrx
: (llx > lrx) ? llx : lrx
: (urx > llx) ? (urx > lrx) ? urx : lrx
: (llx > lrx) ? llx : lrx;
yMin = (uly < ury) ? (uly < lly) ? (uly < lry) ? uly : lry
: (lly < lry) ? lly : lry
: (ury < lly) ? (ury < lry) ? ury : lry
: (lly < lry) ? lly : lry;
yMax = (uly > ury) ? (uly > lly) ? (uly > lry) ? uly : lry
: (lly > lry) ? lly : lry
: (ury > lly) ? (ury > lry) ? ury : lry
: (lly > lry) ? lly : lry;
clipRes = state->clip->testRect(xMin, yMin, xMax, yMax);
opClipRes = clipRes;
// compute Bresenham parameters for x and y scaling
yp = h / scaledHeight;
yq = h % scaledHeight;
xp = w / scaledWidth;
xq = w % scaledWidth;
// allocate pixel buffer
if (yp < 0 || yp > INT_MAX - 1) {
return splashErrBadArg;
}
pixBuf = (SplashColorPtr)gmallocn(yp + 1, w);
// initialize the pixel pipe
pipeInit(&pipe, 0, 0, state->fillPattern, NULL, state->fillAlpha,
gTrue, gFalse);
if (vectorAntialias) {
drawAAPixelInit();
}
// init y scale Bresenham
yt = 0;
lastYStep = 1;
for (y = 0; y < scaledHeight; ++y) {
// y scale Bresenham
yStep = yp;
yt += yq;
if (yt >= scaledHeight) {
yt -= scaledHeight;
++yStep;
}
// read row(s) from image
n = (yp > 0) ? yStep : lastYStep;
if (n > 0) {
p = pixBuf;
for (i = 0; i < n; ++i) {
(*src)(srcData, p);
p += w;
}
}
lastYStep = yStep;
// loop-invariant constants
k1 = splashRound(xShear * ySign * y);
// clipping test
if (clipRes != splashClipAllInside &&
!rot &&
(int)(yShear * k1) ==
(int)(yShear * (xSign * (scaledWidth - 1) + k1))) {
if (xSign > 0) {
spanXMin = tx + k1;
spanXMax = spanXMin + (scaledWidth - 1);
} else {
spanXMax = tx + k1;
spanXMin = spanXMax - (scaledWidth - 1);
}
spanY = ty + ySign * y + (int)(yShear * k1);
clipRes2 = state->clip->testSpan(spanXMin, spanXMax, spanY);
if (clipRes2 == splashClipAllOutside) {
continue;
}
} else {
clipRes2 = clipRes;
}
// init x scale Bresenham
xt = 0;
xSrc = 0;
// x shear
x1 = k1;
// y shear
y1 = (SplashCoord)ySign * y + yShear * x1;
// this is a kludge: if yShear1 is negative, then (int)y1 would
// change immediately after the first pixel, which is not what we
// want
if (yShear1 < 0) {
y1 += 0.999;
}
// loop-invariant constants
n = yStep > 0 ? yStep : 1;
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the alpha value for (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
p = pixBuf + xSrc;
pixAcc = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc += *p++;
}
p += w - m;
}
// blend fill color with background
if (pixAcc != 0) {
pipe.shape = (pixAcc == n * m)
? (SplashCoord)1
: (SplashCoord)pixAcc / (SplashCoord)(n * m);
if (vectorAntialias && clipRes2 != splashClipAllInside) {
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2, clipRes2 == splashClipAllInside);
}
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
}
// free memory
gfree(pixBuf);
return splashOk;
}
SplashError Splash::drawImage(SplashImageSource src, void *srcData,
SplashColorMode srcMode, GBool srcAlpha,
int w, int h, SplashCoord *mat) {
SplashPipe pipe;
GBool ok, rot;
SplashCoord xScale, yScale, xShear, yShear, yShear1;
int tx, tx2, ty, ty2, scaledWidth, scaledHeight, xSign, ySign;
int ulx, uly, llx, lly, urx, ury, lrx, lry;
int ulx1, uly1, llx1, lly1, urx1, ury1, lrx1, lry1;
int xMin, xMax, yMin, yMax;
SplashClipResult clipRes, clipRes2;
int yp, yq, yt, yStep, lastYStep;
int xp, xq, xt, xStep, xSrc;
int k1, spanXMin, spanXMax, spanY;
SplashColorPtr colorBuf, p;
SplashColor pix;
Guchar *alphaBuf, *q;
#if SPLASH_CMYK
int pixAcc0, pixAcc1, pixAcc2, pixAcc3;
#else
int pixAcc0, pixAcc1, pixAcc2;
#endif
int alphaAcc;
SplashCoord pixMul, alphaMul, alpha;
int x, y, x1, x2, y2;
SplashCoord y1;
int nComps, n, m, i, j;
if (debugMode) {
printf("drawImage: srcMode=%d srcAlpha=%d w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
srcMode, srcAlpha, w, h, (double)mat[0], (double)mat[1], (double)mat[2],
(double)mat[3], (double)mat[4], (double)mat[5]);
}
// check color modes
ok = gFalse; // make gcc happy
nComps = 0; // make gcc happy
switch (bitmap->mode) {
case splashModeMono1:
case splashModeMono8:
ok = srcMode == splashModeMono8;
nComps = 1;
break;
case splashModeRGB8:
ok = srcMode == splashModeRGB8;
nComps = 3;
break;
case splashModeBGR8:
ok = srcMode == splashModeBGR8;
nComps = 3;
break;
#if SPLASH_CMYK
case splashModeCMYK8:
ok = srcMode == splashModeCMYK8;
nComps = 4;
break;
#endif
}
if (!ok) {
return splashErrModeMismatch;
}
// check for singular matrix
if (splashAbs(mat[0] * mat[3] - mat[1] * mat[2]) < 0.000001) {
return splashErrSingularMatrix;
}
// compute scale, shear, rotation, translation parameters
rot = splashAbs(mat[1]) > splashAbs(mat[0]);
if (rot) {
xScale = -mat[1];
yScale = mat[2] - (mat[0] * mat[3]) / mat[1];
xShear = -mat[3] / yScale;
yShear = -mat[0] / mat[1];
} else {
xScale = mat[0];
yScale = mat[3] - (mat[1] * mat[2]) / mat[0];
xShear = mat[2] / yScale;
yShear = mat[1] / mat[0];
}
// Note 1: The PDF spec says that all pixels whose *centers* lie
// within the region get painted -- but that doesn't seem to match
// up with what Acrobat actually does: it ends up leaving gaps
// between image stripes. So we use the same rule here as for
// fills: any pixel that overlaps the region gets painted.
// Note 2: The +/-0.01 in these computations is to avoid floating
// point precision problems which can lead to gaps between image
// stripes (it can cause image stripes to overlap, but that's a much
// less visible problem).
if (xScale >= 0) {
tx = splashFloor(mat[4] - 0.01);
tx2 = splashFloor(mat[4] + xScale + 0.01);
} else {
tx = splashFloor(mat[4] + 0.01);
tx2 = splashFloor(mat[4] + xScale - 0.01);
}
scaledWidth = abs(tx2 - tx) + 1;
if (yScale >= 0) {
ty = splashFloor(mat[5] - 0.01);
ty2 = splashFloor(mat[5] + yScale + 0.01);
} else {
ty = splashFloor(mat[5] + 0.01);
ty2 = splashFloor(mat[5] + yScale - 0.01);
}
scaledHeight = abs(ty2 - ty) + 1;
xSign = (xScale < 0) ? -1 : 1;
ySign = (yScale < 0) ? -1 : 1;
yShear1 = (SplashCoord)xSign * yShear;
// clipping
ulx1 = 0;
uly1 = 0;
urx1 = xSign * (scaledWidth - 1);
ury1 = (int)(yShear * urx1);
llx1 = splashRound(xShear * ySign * (scaledHeight - 1));
lly1 = ySign * (scaledHeight - 1) + (int)(yShear * llx1);
lrx1 = xSign * (scaledWidth - 1) +
splashRound(xShear * ySign * (scaledHeight - 1));
lry1 = ySign * (scaledHeight - 1) + (int)(yShear * lrx1);
if (rot) {
ulx = tx + uly1; uly = ty - ulx1;
urx = tx + ury1; ury = ty - urx1;
llx = tx + lly1; lly = ty - llx1;
lrx = tx + lry1; lry = ty - lrx1;
} else {
ulx = tx + ulx1; uly = ty + uly1;
urx = tx + urx1; ury = ty + ury1;
llx = tx + llx1; lly = ty + lly1;
lrx = tx + lrx1; lry = ty + lry1;
}
xMin = (ulx < urx) ? (ulx < llx) ? (ulx < lrx) ? ulx : lrx
: (llx < lrx) ? llx : lrx
: (urx < llx) ? (urx < lrx) ? urx : lrx
: (llx < lrx) ? llx : lrx;
xMax = (ulx > urx) ? (ulx > llx) ? (ulx > lrx) ? ulx : lrx
: (llx > lrx) ? llx : lrx
: (urx > llx) ? (urx > lrx) ? urx : lrx
: (llx > lrx) ? llx : lrx;
yMin = (uly < ury) ? (uly < lly) ? (uly < lry) ? uly : lry
: (lly < lry) ? lly : lry
: (ury < lly) ? (ury < lry) ? ury : lry
: (lly < lry) ? lly : lry;
yMax = (uly > ury) ? (uly > lly) ? (uly > lry) ? uly : lry
: (lly > lry) ? lly : lry
: (ury > lly) ? (ury > lry) ? ury : lry
: (lly > lry) ? lly : lry;
clipRes = state->clip->testRect(xMin, yMin, xMax, yMax);
opClipRes = clipRes;
if (clipRes == splashClipAllOutside) {
return splashOk;
}
// compute Bresenham parameters for x and y scaling
yp = h / scaledHeight;
yq = h % scaledHeight;
xp = w / scaledWidth;
xq = w % scaledWidth;
// allocate pixel buffers
if (yp < 0 || yp > INT_MAX - 1 || w > INT_MAX / nComps) {
return splashErrBadArg;
}
colorBuf = (SplashColorPtr)gmallocn(yp + 1, w * nComps);
if (srcAlpha) {
alphaBuf = (Guchar *)gmallocn(yp + 1, w);
} else {
alphaBuf = NULL;
}
pixAcc0 = pixAcc1 = pixAcc2 = 0; // make gcc happy
#if SPLASH_CMYK
pixAcc3 = 0; // make gcc happy
#endif
// initialize the pixel pipe
pipeInit(&pipe, 0, 0, NULL, pix, state->fillAlpha,
srcAlpha || (vectorAntialias && clipRes != splashClipAllInside),
gFalse);
if (vectorAntialias) {
drawAAPixelInit();
}
if (srcAlpha) {
// init y scale Bresenham
yt = 0;
lastYStep = 1;
for (y = 0; y < scaledHeight; ++y) {
// y scale Bresenham
yStep = yp;
yt += yq;
if (yt >= scaledHeight) {
yt -= scaledHeight;
++yStep;
}
// read row(s) from image
n = (yp > 0) ? yStep : lastYStep;
if (n > 0) {
p = colorBuf;
q = alphaBuf;
for (i = 0; i < n; ++i) {
(*src)(srcData, p, q);
p += w * nComps;
q += w;
}
}
lastYStep = yStep;
// loop-invariant constants
k1 = splashRound(xShear * ySign * y);
// clipping test
if (clipRes != splashClipAllInside &&
!rot &&
(int)(yShear * k1) ==
(int)(yShear * (xSign * (scaledWidth - 1) + k1))) {
if (xSign > 0) {
spanXMin = tx + k1;
spanXMax = spanXMin + (scaledWidth - 1);
} else {
spanXMax = tx + k1;
spanXMin = spanXMax - (scaledWidth - 1);
}
spanY = ty + ySign * y + (int)(yShear * k1);
clipRes2 = state->clip->testSpan(spanXMin, spanXMax, spanY);
if (clipRes2 == splashClipAllOutside) {
continue;
}
} else {
clipRes2 = clipRes;
}
// init x scale Bresenham
xt = 0;
xSrc = 0;
// x shear
x1 = k1;
// y shear
y1 = (SplashCoord)ySign * y + yShear * x1;
// this is a kludge: if yShear1 is negative, then (int)y1 would
// change immediately after the first pixel, which is not what
// we want
if (yShear1 < 0) {
y1 += 0.999;
}
// loop-invariant constants
n = yStep > 0 ? yStep : 1;
switch (srcMode) {
case splashModeMono1:
case splashModeMono8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
alphaAcc = 0;
p = colorBuf + xSrc;
q = alphaBuf + xSrc;
pixAcc0 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
alphaAcc += *q++;
}
p += w - m;
q += w - m;
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
alphaMul = pixMul * (1.0 / 255.0);
alpha = (SplashCoord)alphaAcc * alphaMul;
if (alpha > 0) {
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
// set pixel
pipe.shape = alpha;
if (vectorAntialias && clipRes != splashClipAllInside) {
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
case splashModeRGB8:
case splashModeBGR8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
alphaAcc = 0;
p = colorBuf + xSrc * 3;
q = alphaBuf + xSrc;
pixAcc0 = pixAcc1 = pixAcc2 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
pixAcc1 += *p++;
pixAcc2 += *p++;
alphaAcc += *q++;
}
p += 3 * (w - m);
q += w - m;
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
alphaMul = pixMul * (1.0 / 255.0);
alpha = (SplashCoord)alphaAcc * alphaMul;
if (alpha > 0) {
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
pix[1] = (int)((SplashCoord)pixAcc1 * pixMul);
pix[2] = (int)((SplashCoord)pixAcc2 * pixMul);
// set pixel
pipe.shape = alpha;
if (vectorAntialias && clipRes != splashClipAllInside) {
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
#if SPLASH_CMYK
case splashModeCMYK8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
alphaAcc = 0;
p = colorBuf + xSrc * 4;
q = alphaBuf + xSrc;
pixAcc0 = pixAcc1 = pixAcc2 = pixAcc3 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
pixAcc1 += *p++;
pixAcc2 += *p++;
pixAcc3 += *p++;
alphaAcc += *q++;
}
p += 4 * (w - m);
q += w - m;
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
alphaMul = pixMul * (1.0 / 255.0);
alpha = (SplashCoord)alphaAcc * alphaMul;
if (alpha > 0) {
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
pix[1] = (int)((SplashCoord)pixAcc1 * pixMul);
pix[2] = (int)((SplashCoord)pixAcc2 * pixMul);
pix[3] = (int)((SplashCoord)pixAcc3 * pixMul);
// set pixel
pipe.shape = alpha;
if (vectorAntialias && clipRes != splashClipAllInside) {
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
#endif // SPLASH_CMYK
}
}
} else {
// init y scale Bresenham
yt = 0;
lastYStep = 1;
for (y = 0; y < scaledHeight; ++y) {
// y scale Bresenham
yStep = yp;
yt += yq;
if (yt >= scaledHeight) {
yt -= scaledHeight;
++yStep;
}
// read row(s) from image
n = (yp > 0) ? yStep : lastYStep;
if (n > 0) {
p = colorBuf;
for (i = 0; i < n; ++i) {
(*src)(srcData, p, NULL);
p += w * nComps;
}
}
lastYStep = yStep;
// loop-invariant constants
k1 = splashRound(xShear * ySign * y);
// clipping test
if (clipRes != splashClipAllInside &&
!rot &&
(int)(yShear * k1) ==
(int)(yShear * (xSign * (scaledWidth - 1) + k1))) {
if (xSign > 0) {
spanXMin = tx + k1;
spanXMax = spanXMin + (scaledWidth - 1);
} else {
spanXMax = tx + k1;
spanXMin = spanXMax - (scaledWidth - 1);
}
spanY = ty + ySign * y + (int)(yShear * k1);
clipRes2 = state->clip->testSpan(spanXMin, spanXMax, spanY);
if (clipRes2 == splashClipAllOutside) {
continue;
}
} else {
clipRes2 = clipRes;
}
// init x scale Bresenham
xt = 0;
xSrc = 0;
// x shear
x1 = k1;
// y shear
y1 = (SplashCoord)ySign * y + yShear * x1;
// this is a kludge: if yShear1 is negative, then (int)y1 would
// change immediately after the first pixel, which is not what
// we want
if (yShear1 < 0) {
y1 += 0.999;
}
// loop-invariant constants
n = yStep > 0 ? yStep : 1;
switch (srcMode) {
case splashModeMono1:
case splashModeMono8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
p = colorBuf + xSrc;
pixAcc0 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
}
p += w - m;
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
// set pixel
if (vectorAntialias && clipRes != splashClipAllInside) {
pipe.shape = (SplashCoord)1;
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
case splashModeRGB8:
case splashModeBGR8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
p = colorBuf + xSrc * 3;
pixAcc0 = pixAcc1 = pixAcc2 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
pixAcc1 += *p++;
pixAcc2 += *p++;
}
p += 3 * (w - m);
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
pix[1] = (int)((SplashCoord)pixAcc1 * pixMul);
pix[2] = (int)((SplashCoord)pixAcc2 * pixMul);
// set pixel
if (vectorAntialias && clipRes != splashClipAllInside) {
pipe.shape = (SplashCoord)1;
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
#if SPLASH_CMYK
case splashModeCMYK8:
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// rotation
if (rot) {
x2 = (int)y1;
y2 = -x1;
} else {
x2 = x1;
y2 = (int)y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
m = xStep > 0 ? xStep : 1;
p = colorBuf + xSrc * 4;
pixAcc0 = pixAcc1 = pixAcc2 = pixAcc3 = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc0 += *p++;
pixAcc1 += *p++;
pixAcc2 += *p++;
pixAcc3 += *p++;
}
p += 4 * (w - m);
}
pixMul = (SplashCoord)1 / (SplashCoord)(n * m);
pix[0] = (int)((SplashCoord)pixAcc0 * pixMul);
pix[1] = (int)((SplashCoord)pixAcc1 * pixMul);
pix[2] = (int)((SplashCoord)pixAcc2 * pixMul);
pix[3] = (int)((SplashCoord)pixAcc3 * pixMul);
// set pixel
if (vectorAntialias && clipRes != splashClipAllInside) {
pipe.shape = (SplashCoord)1;
drawAAPixel(&pipe, tx + x2, ty + y2);
} else {
drawPixel(&pipe, tx + x2, ty + y2,
clipRes2 == splashClipAllInside);
}
// x scale Bresenham
xSrc += xStep;
// x shear
x1 += xSign;
// y shear
y1 += yShear1;
}
break;
#endif // SPLASH_CMYK
}
}
}
gfree(colorBuf);
gfree(alphaBuf);
return splashOk;
}
SplashError Splash::composite(SplashBitmap *src, int xSrc, int ySrc,
int xDest, int yDest, int w, int h,
GBool noClip, GBool nonIsolated) {
SplashPipe pipe;
SplashColor pixel;
Guchar alpha;
Guchar *ap;
int x, y;
if (src->mode != bitmap->mode) {
return splashErrModeMismatch;
}
if (src->alpha) {
pipeInit(&pipe, xDest, yDest, NULL, pixel, state->fillAlpha,
gTrue, nonIsolated);
for (y = 0; y < h; ++y) {
pipeSetXY(&pipe, xDest, yDest + y);
ap = src->getAlphaPtr() + (ySrc + y) * src->getWidth() + xSrc;
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
alpha = *ap++;
if (noClip || state->clip->test(xDest + x, yDest + y)) {
// this uses shape instead of alpha, which isn't technically
// correct, but works out the same
pipe.shape = (SplashCoord)(alpha / 255.0);
pipeRun(&pipe);
updateModX(xDest + x);
updateModY(yDest + y);
} else {
pipeIncX(&pipe);
}
}
}
} else {
pipeInit(&pipe, xDest, yDest, NULL, pixel, state->fillAlpha,
gFalse, nonIsolated);
for (y = 0; y < h; ++y) {
pipeSetXY(&pipe, xDest, yDest + y);
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
if (noClip || state->clip->test(xDest + x, yDest + y)) {
pipeRun(&pipe);
updateModX(xDest + x);
updateModY(yDest + y);
} else {
pipeIncX(&pipe);
}
}
}
}
return splashOk;
}
void Splash::compositeBackground(SplashColorPtr color) {
SplashColorPtr p;
Guchar *q;
Guchar alpha, alpha1, c, color0, color1, color2, color3;
int x, y, mask;
switch (bitmap->mode) {
case splashModeMono1:
color0 = color[0];
for (y = 0; y < bitmap->height; ++y) {
p = &bitmap->data[y * bitmap->rowSize];
q = &bitmap->alpha[y * bitmap->width];
mask = 0x80;
for (x = 0; x < bitmap->width; ++x) {
alpha = *q++;
alpha1 = 255 - alpha;
c = (*p & mask) ? 0xff : 0x00;
c = div255(alpha1 * color0 + alpha * c);
if (c & 0x80) {
*p |= mask;
} else {
*p &= ~mask;
}
if (!(mask >>= 1)) {
mask = 0x80;
++p;
}
}
}
break;
case splashModeMono8:
color0 = color[0];
for (y = 0; y < bitmap->height; ++y) {
p = &bitmap->data[y * bitmap->rowSize];
q = &bitmap->alpha[y * bitmap->width];
for (x = 0; x < bitmap->width; ++x) {
alpha = *q++;
alpha1 = 255 - alpha;
p[0] = div255(alpha1 * color0 + alpha * p[0]);
++p;
}
}
break;
case splashModeRGB8:
case splashModeBGR8:
color0 = color[0];
color1 = color[1];
color2 = color[2];
for (y = 0; y < bitmap->height; ++y) {
p = &bitmap->data[y * bitmap->rowSize];
q = &bitmap->alpha[y * bitmap->width];
for (x = 0; x < bitmap->width; ++x) {
alpha = *q++;
alpha1 = 255 - alpha;
p[0] = div255(alpha1 * color0 + alpha * p[0]);
p[1] = div255(alpha1 * color1 + alpha * p[1]);
p[2] = div255(alpha1 * color2 + alpha * p[2]);
p += 3;
}
}
break;
#if SPLASH_CMYK
case splashModeCMYK8:
color0 = color[0];
color1 = color[1];
color2 = color[2];
color3 = color[3];
for (y = 0; y < bitmap->height; ++y) {
p = &bitmap->data[y * bitmap->rowSize];
q = &bitmap->alpha[y * bitmap->width];
for (x = 0; x < bitmap->width; ++x) {
alpha = *q++;
alpha1 = 255 - alpha;
p[0] = div255(alpha1 * color0 + alpha * p[0]);
p[1] = div255(alpha1 * color1 + alpha * p[1]);
p[2] = div255(alpha1 * color2 + alpha * p[2]);
p[3] = div255(alpha1 * color3 + alpha * p[3]);
p += 4;
}
}
break;
#endif
}
memset(bitmap->alpha, 255, bitmap->width * bitmap->height);
}
SplashError Splash::blitTransparent(SplashBitmap *src, int xSrc, int ySrc,
int xDest, int yDest, int w, int h) {
SplashColor pixel;
SplashColorPtr p;
Guchar *q;
int x, y, mask;
if (src->mode != bitmap->mode) {
return splashErrModeMismatch;
}
switch (bitmap->mode) {
case splashModeMono1:
for (y = 0; y < h; ++y) {
p = &bitmap->data[(yDest + y) * bitmap->rowSize + (xDest >> 3)];
mask = 0x80 >> (xDest & 7);
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
if (pixel[0]) {
*p |= mask;
} else {
*p &= ~mask;
}
if (!(mask >>= 1)) {
mask = 0x80;
++p;
}
}
}
break;
case splashModeMono8:
for (y = 0; y < h; ++y) {
p = &bitmap->data[(yDest + y) * bitmap->rowSize + xDest];
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
*p++ = pixel[0];
}
}
break;
case splashModeRGB8:
case splashModeBGR8:
for (y = 0; y < h; ++y) {
p = &bitmap->data[(yDest + y) * bitmap->rowSize + 3 * xDest];
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
*p++ = pixel[0];
*p++ = pixel[1];
*p++ = pixel[2];
}
}
break;
#if SPLASH_CMYK
case splashModeCMYK8:
for (y = 0; y < h; ++y) {
p = &bitmap->data[(yDest + y) * bitmap->rowSize + 4 * xDest];
for (x = 0; x < w; ++x) {
src->getPixel(xSrc + x, ySrc + y, pixel);
*p++ = pixel[0];
*p++ = pixel[1];
*p++ = pixel[2];
*p++ = pixel[3];
}
}
break;
#endif
}
if (bitmap->alpha) {
for (y = 0; y < h; ++y) {
q = &bitmap->alpha[(yDest + y) * bitmap->width + xDest];
for (x = 0; x < w; ++x) {
*q++ = 0x00;
}
}
}
return splashOk;
}
SplashPath *Splash::makeStrokePath(SplashPath *path, GBool flatten) {
SplashPath *pathIn, *pathOut;
SplashCoord w, d, dx, dy, wdx, wdy, dxNext, dyNext, wdxNext, wdyNext;
SplashCoord crossprod, dotprod, miter, m;
GBool first, last, closed;
int subpathStart, next, i;
int left0, left1, left2, right0, right1, right2, join0, join1, join2;
int leftFirst, rightFirst, firstPt;
if (flatten) {
pathIn = flattenPath(path, state->matrix, state->flatness);
if (state->lineDashLength > 0) {
pathOut = makeDashedPath(pathIn);
delete pathIn;
pathIn = pathOut;
}
} else {
pathIn = path;
}
subpathStart = 0; // make gcc happy
closed = gFalse; // make gcc happy
left0 = left1 = right0 = right1 = join0 = join1 = 0; // make gcc happy
leftFirst = rightFirst = firstPt = 0; // make gcc happy
pathOut = new SplashPath();
w = state->lineWidth;
for (i = 0; i < pathIn->length - 1; ++i) {
if (pathIn->flags[i] & splashPathLast) {
continue;
}
if ((first = pathIn->flags[i] & splashPathFirst)) {
subpathStart = i;
closed = pathIn->flags[i] & splashPathClosed;
}
last = pathIn->flags[i+1] & splashPathLast;
// compute the deltas for segment (i, i+1)
d = splashDist(pathIn->pts[i].x, pathIn->pts[i].y,
pathIn->pts[i+1].x, pathIn->pts[i+1].y);
if (d == 0) {
// we need to draw end caps on zero-length lines
//~ not clear what the behavior should be for splashLineCapButt
//~ with d==0
dx = 0;
dy = 1;
} else {
d = (SplashCoord)1 / d;
dx = d * (pathIn->pts[i+1].x - pathIn->pts[i].x);
dy = d * (pathIn->pts[i+1].y - pathIn->pts[i].y);
}
wdx = (SplashCoord)0.5 * w * dx;
wdy = (SplashCoord)0.5 * w * dy;
// compute the deltas for segment (i+1, next)
next = last ? subpathStart + 1 : i + 2;
d = splashDist(pathIn->pts[i+1].x, pathIn->pts[i+1].y,
pathIn->pts[next].x, pathIn->pts[next].y);
if (d == 0) {
// we need to draw end caps on zero-length lines
//~ not clear what the behavior should be for splashLineCapButt
//~ with d==0
dxNext = 0;
dyNext = 1;
} else {
d = (SplashCoord)1 / d;
dxNext = d * (pathIn->pts[next].x - pathIn->pts[i+1].x);
dyNext = d * (pathIn->pts[next].y - pathIn->pts[i+1].y);
}
wdxNext = (SplashCoord)0.5 * w * dxNext;
wdyNext = (SplashCoord)0.5 * w * dyNext;
// draw the start cap
pathOut->moveTo(pathIn->pts[i].x - wdy, pathIn->pts[i].y + wdx);
if (i == subpathStart) {
firstPt = pathOut->length - 1;
}
if (first && !closed) {
switch (state->lineCap) {
case splashLineCapButt:
pathOut->lineTo(pathIn->pts[i].x + wdy, pathIn->pts[i].y - wdx);
break;
case splashLineCapRound:
pathOut->curveTo(pathIn->pts[i].x - wdy - bezierCircle * wdx,
pathIn->pts[i].y + wdx - bezierCircle * wdy,
pathIn->pts[i].x - wdx - bezierCircle * wdy,
pathIn->pts[i].y - wdy + bezierCircle * wdx,
pathIn->pts[i].x - wdx,
pathIn->pts[i].y - wdy);
pathOut->curveTo(pathIn->pts[i].x - wdx + bezierCircle * wdy,
pathIn->pts[i].y - wdy - bezierCircle * wdx,
pathIn->pts[i].x + wdy - bezierCircle * wdx,
pathIn->pts[i].y - wdx - bezierCircle * wdy,
pathIn->pts[i].x + wdy,
pathIn->pts[i].y - wdx);
break;
case splashLineCapProjecting:
pathOut->lineTo(pathIn->pts[i].x - wdx - wdy,
pathIn->pts[i].y + wdx - wdy);
pathOut->lineTo(pathIn->pts[i].x - wdx + wdy,
pathIn->pts[i].y - wdx - wdy);
pathOut->lineTo(pathIn->pts[i].x + wdy,
pathIn->pts[i].y - wdx);
break;
}
} else {
pathOut->lineTo(pathIn->pts[i].x + wdy, pathIn->pts[i].y - wdx);
}
// draw the left side of the segment rectangle
left2 = pathOut->length - 1;
pathOut->lineTo(pathIn->pts[i+1].x + wdy, pathIn->pts[i+1].y - wdx);
// draw the end cap
if (last && !closed) {
switch (state->lineCap) {
case splashLineCapButt:
pathOut->lineTo(pathIn->pts[i+1].x - wdy, pathIn->pts[i+1].y + wdx);
break;
case splashLineCapRound:
pathOut->curveTo(pathIn->pts[i+1].x + wdy + bezierCircle * wdx,
pathIn->pts[i+1].y - wdx + bezierCircle * wdy,
pathIn->pts[i+1].x + wdx + bezierCircle * wdy,
pathIn->pts[i+1].y + wdy - bezierCircle * wdx,
pathIn->pts[i+1].x + wdx,
pathIn->pts[i+1].y + wdy);
pathOut->curveTo(pathIn->pts[i+1].x + wdx - bezierCircle * wdy,
pathIn->pts[i+1].y + wdy + bezierCircle * wdx,
pathIn->pts[i+1].x - wdy + bezierCircle * wdx,
pathIn->pts[i+1].y + wdx + bezierCircle * wdy,
pathIn->pts[i+1].x - wdy,
pathIn->pts[i+1].y + wdx);
break;
case splashLineCapProjecting:
pathOut->lineTo(pathIn->pts[i+1].x + wdy + wdx,
pathIn->pts[i+1].y - wdx + wdy);
pathOut->lineTo(pathIn->pts[i+1].x - wdy + wdx,
pathIn->pts[i+1].y + wdx + wdy);
pathOut->lineTo(pathIn->pts[i+1].x - wdy,
pathIn->pts[i+1].y + wdx);
break;
}
} else {
pathOut->lineTo(pathIn->pts[i+1].x - wdy, pathIn->pts[i+1].y + wdx);
}
// draw the right side of the segment rectangle
right2 = pathOut->length - 1;
pathOut->close();
// draw the join
join2 = pathOut->length;
if (!last || closed) {
crossprod = dx * dyNext - dy * dxNext;
dotprod = -(dx * dxNext + dy * dyNext);
if (dotprod > 0.99999) {
// avoid a divide-by-zero -- set miter to something arbitrary
// such that sqrt(miter) will exceed miterLimit (and m is never
// used in that situation)
miter = (state->miterLimit + 1) * (state->miterLimit + 1);
m = 0;
} else {
miter = (SplashCoord)2 / ((SplashCoord)1 - dotprod);
if (miter < 1) {
// this can happen because of floating point inaccuracies
miter = 1;
}
m = splashSqrt(miter - 1);
}
// round join
if (state->lineJoin == splashLineJoinRound) {
pathOut->moveTo(pathIn->pts[i+1].x + (SplashCoord)0.5 * w,
pathIn->pts[i+1].y);
pathOut->curveTo(pathIn->pts[i+1].x + (SplashCoord)0.5 * w,
pathIn->pts[i+1].y + bezierCircle2 * w,
pathIn->pts[i+1].x + bezierCircle2 * w,
pathIn->pts[i+1].y + (SplashCoord)0.5 * w,
pathIn->pts[i+1].x,
pathIn->pts[i+1].y + (SplashCoord)0.5 * w);
pathOut->curveTo(pathIn->pts[i+1].x - bezierCircle2 * w,
pathIn->pts[i+1].y + (SplashCoord)0.5 * w,
pathIn->pts[i+1].x - (SplashCoord)0.5 * w,
pathIn->pts[i+1].y + bezierCircle2 * w,
pathIn->pts[i+1].x - (SplashCoord)0.5 * w,
pathIn->pts[i+1].y);
pathOut->curveTo(pathIn->pts[i+1].x - (SplashCoord)0.5 * w,
pathIn->pts[i+1].y - bezierCircle2 * w,
pathIn->pts[i+1].x - bezierCircle2 * w,
pathIn->pts[i+1].y - (SplashCoord)0.5 * w,
pathIn->pts[i+1].x,
pathIn->pts[i+1].y - (SplashCoord)0.5 * w);
pathOut->curveTo(pathIn->pts[i+1].x + bezierCircle2 * w,
pathIn->pts[i+1].y - (SplashCoord)0.5 * w,
pathIn->pts[i+1].x + (SplashCoord)0.5 * w,
pathIn->pts[i+1].y - bezierCircle2 * w,
pathIn->pts[i+1].x + (SplashCoord)0.5 * w,
pathIn->pts[i+1].y);
} else {
pathOut->moveTo(pathIn->pts[i+1].x, pathIn->pts[i+1].y);
// angle < 180
if (crossprod < 0) {
pathOut->lineTo(pathIn->pts[i+1].x - wdyNext,
pathIn->pts[i+1].y + wdxNext);
// miter join inside limit
if (state->lineJoin == splashLineJoinMiter &&
splashSqrt(miter) <= state->miterLimit) {
pathOut->lineTo(pathIn->pts[i+1].x - wdy + wdx * m,
pathIn->pts[i+1].y + wdx + wdy * m);
pathOut->lineTo(pathIn->pts[i+1].x - wdy,
pathIn->pts[i+1].y + wdx);
// bevel join or miter join outside limit
} else {
pathOut->lineTo(pathIn->pts[i+1].x - wdy, pathIn->pts[i+1].y + wdx);
}
// angle >= 180
} else {
pathOut->lineTo(pathIn->pts[i+1].x + wdy,
pathIn->pts[i+1].y - wdx);
// miter join inside limit
if (state->lineJoin == splashLineJoinMiter &&
splashSqrt(miter) <= state->miterLimit) {
pathOut->lineTo(pathIn->pts[i+1].x + wdy + wdx * m,
pathIn->pts[i+1].y - wdx + wdy * m);
pathOut->lineTo(pathIn->pts[i+1].x + wdyNext,
pathIn->pts[i+1].y - wdxNext);
// bevel join or miter join outside limit
} else {
pathOut->lineTo(pathIn->pts[i+1].x + wdyNext,
pathIn->pts[i+1].y - wdxNext);
}
}
}
pathOut->close();
}
// add stroke adjustment hints
if (state->strokeAdjust) {
if (i >= subpathStart + 1) {
if (i >= subpathStart + 2) {
pathOut->addStrokeAdjustHint(left1, right1, left0 + 1, right0);
pathOut->addStrokeAdjustHint(left1, right1, join0, left2);
} else {
pathOut->addStrokeAdjustHint(left1, right1, firstPt, left2);
}
pathOut->addStrokeAdjustHint(left1, right1, right2 + 1, right2 + 1);
}
left0 = left1;
left1 = left2;
right0 = right1;
right1 = right2;
join0 = join1;
join1 = join2;
if (i == subpathStart) {
leftFirst = left2;
rightFirst = right2;
}
if (last) {
if (i >= subpathStart + 2) {
pathOut->addStrokeAdjustHint(left1, right1, left0 + 1, right0);
pathOut->addStrokeAdjustHint(left1, right1,
join0, pathOut->length - 1);
} else {
pathOut->addStrokeAdjustHint(left1, right1,
firstPt, pathOut->length - 1);
}
if (closed) {
pathOut->addStrokeAdjustHint(left1, right1, firstPt, leftFirst);
pathOut->addStrokeAdjustHint(left1, right1,
rightFirst + 1, rightFirst + 1);
pathOut->addStrokeAdjustHint(leftFirst, rightFirst,
left1 + 1, right1);
pathOut->addStrokeAdjustHint(leftFirst, rightFirst,
join1, pathOut->length - 1);
}
}
}
}
if (pathIn != path) {
delete pathIn;
}
return pathOut;
}
void Splash::dumpPath(SplashPath *path) {
int i;
for (i = 0; i < path->length; ++i) {
printf(" %3d: x=%8.2f y=%8.2f%s%s%s%s\n",
i, (double)path->pts[i].x, (double)path->pts[i].y,
(path->flags[i] & splashPathFirst) ? " first" : "",
(path->flags[i] & splashPathLast) ? " last" : "",
(path->flags[i] & splashPathClosed) ? " closed" : "",
(path->flags[i] & splashPathCurve) ? " curve" : "");
}
}
void Splash::dumpXPath(SplashXPath *path) {
int i;
for (i = 0; i < path->length; ++i) {
printf(" %4d: x0=%8.2f y0=%8.2f x1=%8.2f y1=%8.2f %s%s%s%s%s%s%s\n",
i, (double)path->segs[i].x0, (double)path->segs[i].y0,
(double)path->segs[i].x1, (double)path->segs[i].y1,
(path->segs[i].flags & splashXPathFirst) ? "F" : " ",
(path->segs[i].flags & splashXPathLast) ? "L" : " ",
(path->segs[i].flags & splashXPathEnd0) ? "0" : " ",
(path->segs[i].flags & splashXPathEnd1) ? "1" : " ",
(path->segs[i].flags & splashXPathHoriz) ? "H" : " ",
(path->segs[i].flags & splashXPathVert) ? "V" : " ",
(path->segs[i].flags & splashXPathFlip) ? "P" : " ");
}
}