You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdepim/libtdenetwork/libgpgme-copy/gpgme/w32-io.c

1153 lines
33 KiB

/* w32-io.c - W32 API I/O functions.
Copyright (C) 2000 Werner Koch (dd9jn)
Copyright (C) 2001, 2002, 2003, 2004 g10 Code GmbH
This file is part of GPGME.
GPGME is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
GPGME is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <windows.h>
#include <io.h>
#include "util.h"
#include "sema.h"
#include "priv-io.h"
#include "debug.h"
/* We assume that a HANDLE can be represented by an int which should
be true for all i386 systems (HANDLE is defined as void *) and
these are the only systems for which Windows is available. Further
we assume that -1 denotes an invalid handle. */
#define fd_to_handle(a) ((HANDLE)(a))
#define handle_to_fd(a) ((int)(a))
#define pid_to_handle(a) ((HANDLE)(a))
#define handle_to_pid(a) ((int)(a))
#define READBUF_SIZE 4096
#define WRITEBUF_SIZE 4096
#define PIPEBUF_SIZE 4096
#define MAX_READERS 20
#define MAX_WRITERS 20
static struct {
int inuse;
int fd;
void (*handler)(int,void*);
void *value;
} notify_table[256];
DEFINE_STATIC_LOCK (notify_table_lock);
struct reader_context_s {
HANDLE file_hd;
HANDLE thread_hd;
DECLARE_LOCK (mutex);
int stop_me;
int eof;
int eof_shortcut;
int error;
int error_code;
HANDLE have_data_ev; /* manually reset */
HANDLE have_space_ev; /* auto reset */
HANDLE stopped;
size_t readpos, writepos;
char buffer[READBUF_SIZE];
};
static struct {
volatile int used;
int fd;
struct reader_context_s *context;
} reader_table[MAX_READERS];
static int reader_table_size= MAX_READERS;
DEFINE_STATIC_LOCK (reader_table_lock);
struct writer_context_s {
HANDLE file_hd;
HANDLE thread_hd;
DECLARE_LOCK (mutex);
int stop_me;
int error;
int error_code;
HANDLE have_data; /* manually reset */
HANDLE is_empty;
HANDLE stopped;
size_t nbytes;
char buffer[WRITEBUF_SIZE];
};
static struct {
volatile int used;
int fd;
struct writer_context_s *context;
} writer_table[MAX_WRITERS];
static int writer_table_size= MAX_WRITERS;
DEFINE_STATIC_LOCK (writer_table_lock);
static int
get_desired_thread_priority (void)
{
int value;
if (!_gpgme_get_conf_int ("IOThreadPriority", &value))
{
value = THREAD_PRIORITY_HIGHEST;
DEBUG1 ("** Using standard IOThreadPriority of %d\n", value);
}
else
DEBUG1 ("** Configured IOThreadPriority is %d\n", value);
return value;
}
static HANDLE
set_synchronize (HANDLE h)
{
HANDLE tmp;
/* For NT we have to set the sync flag. It seems that the only
* way to do it is by duplicating the handle. Tsss.. */
if (!DuplicateHandle( GetCurrentProcess(), h,
GetCurrentProcess(), &tmp,
EVENT_MODIFY_STATE|SYNCHRONIZE, FALSE, 0 ) ) {
DEBUG1 ("** Set SYNCRONIZE failed: ec=%d\n", (int)GetLastError());
}
else {
CloseHandle (h);
h = tmp;
}
return h;
}
static DWORD CALLBACK
reader (void *arg)
{
struct reader_context_s *c = arg;
int nbytes;
DWORD nread;
DEBUG2 ("reader thread %p for file %p started", c->thread_hd, c->file_hd );
for (;;) {
LOCK (c->mutex);
/* leave a 1 byte gap so that we can see whether it is empty or full*/
if ((c->writepos + 1) % READBUF_SIZE == c->readpos) {
/* wait for space */
if (!ResetEvent (c->have_space_ev) )
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
DEBUG1 ("reader thread %p: waiting for space ...", c->thread_hd );
WaitForSingleObject (c->have_space_ev, INFINITE);
DEBUG1 ("reader thread %p: got space", c->thread_hd );
LOCK (c->mutex);
}
if ( c->stop_me ) {
UNLOCK (c->mutex);
break;
}
nbytes = (c->readpos + READBUF_SIZE - c->writepos-1) % READBUF_SIZE;
if ( nbytes > READBUF_SIZE - c->writepos )
nbytes = READBUF_SIZE - c->writepos;
UNLOCK (c->mutex);
DEBUG2 ("reader thread %p: reading %d bytes", c->thread_hd, nbytes );
if ( !ReadFile ( c->file_hd,
c->buffer+c->writepos, nbytes, &nread, NULL) ) {
c->error_code = (int)GetLastError ();
if (c->error_code == ERROR_BROKEN_PIPE ) {
c->eof=1;
DEBUG1 ("reader thread %p: got eof (broken pipe)",
c->thread_hd );
}
else {
c->error = 1;
DEBUG2 ("reader thread %p: read error: ec=%d",
c->thread_hd, c->error_code );
}
break;
}
if ( !nread ) {
c->eof = 1;
DEBUG1 ("reader thread %p: got eof", c->thread_hd );
break;
}
DEBUG2 ("reader thread %p: got %d bytes", c->thread_hd, (int)nread );
LOCK (c->mutex);
if (c->stop_me) {
UNLOCK (c->mutex);
break;
}
c->writepos = (c->writepos + nread) % READBUF_SIZE;
if ( !SetEvent (c->have_data_ev) )
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
}
/* indicate that we have an error or eof */
if ( !SetEvent (c->have_data_ev) )
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
DEBUG1 ("reader thread %p ended", c->thread_hd );
SetEvent (c->stopped);
return 0;
}
static struct reader_context_s *
create_reader (HANDLE fd)
{
struct reader_context_s *c;
SECURITY_ATTRIBUTES sec_attr;
DWORD tid;
DEBUG1 ("creating new read thread for file handle %p", fd );
memset (&sec_attr, 0, sizeof sec_attr );
sec_attr.nLength = sizeof sec_attr;
sec_attr.bInheritHandle = FALSE;
c = calloc (1, sizeof *c );
if (!c)
return NULL;
c->file_hd = fd;
c->have_data_ev = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
c->have_space_ev = CreateEvent (&sec_attr, FALSE, TRUE, NULL);
c->stopped = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
if (!c->have_data_ev || !c->have_space_ev || !c->stopped ) {
DEBUG1 ("** CreateEvent failed: ec=%d\n", (int)GetLastError ());
if (c->have_data_ev)
CloseHandle (c->have_data_ev);
if (c->have_space_ev)
CloseHandle (c->have_space_ev);
if (c->stopped)
CloseHandle (c->stopped);
free (c);
return NULL;
}
c->have_data_ev = set_synchronize (c->have_data_ev);
INIT_LOCK (c->mutex);
c->thread_hd = CreateThread (&sec_attr, 0, reader, c, 0, &tid );
if (!c->thread_hd) {
DEBUG1 ("** failed to create reader thread: ec=%d\n",
(int)GetLastError ());
DESTROY_LOCK (c->mutex);
if (c->have_data_ev)
CloseHandle (c->have_data_ev);
if (c->have_space_ev)
CloseHandle (c->have_space_ev);
if (c->stopped)
CloseHandle (c->stopped);
free (c);
return NULL;
}
else {
/* We set the priority of the thread higher because we know that
it only runs for a short time. This greatly helps to increase
the performance of the I/O. */
SetThreadPriority (c->thread_hd, get_desired_thread_priority ());
}
return c;
}
static void
destroy_reader (struct reader_context_s *c)
{
LOCK (c->mutex);
c->stop_me = 1;
if (c->have_space_ev)
SetEvent (c->have_space_ev);
UNLOCK (c->mutex);
DEBUG1 ("waiting for thread %p termination ...", c->thread_hd );
WaitForSingleObject (c->stopped, INFINITE);
DEBUG1 ("thread %p has terminated", c->thread_hd );
if (c->stopped)
CloseHandle (c->stopped);
if (c->have_data_ev)
CloseHandle (c->have_data_ev);
if (c->have_space_ev)
CloseHandle (c->have_space_ev);
CloseHandle (c->thread_hd);
DESTROY_LOCK (c->mutex);
free (c);
}
/*
* Find a reader context or create a new one
* Note that the reader context will last until a io_close.
*/
static struct reader_context_s *
find_reader (int fd, int start_it)
{
int i;
for (i=0; i < reader_table_size ; i++ ) {
if ( reader_table[i].used && reader_table[i].fd == fd )
return reader_table[i].context;
}
if (!start_it)
return NULL;
LOCK (reader_table_lock);
for (i=0; i < reader_table_size; i++ ) {
if (!reader_table[i].used) {
reader_table[i].fd = fd;
reader_table[i].context = create_reader (fd_to_handle (fd));
reader_table[i].used = 1;
UNLOCK (reader_table_lock);
return reader_table[i].context;
}
}
UNLOCK (reader_table_lock);
return NULL;
}
static void
kill_reader (int fd)
{
int i;
LOCK (reader_table_lock);
for (i=0; i < reader_table_size; i++ ) {
if (reader_table[i].used && reader_table[i].fd == fd ) {
destroy_reader (reader_table[i].context);
reader_table[i].context = NULL;
reader_table[i].used = 0;
break;
}
}
UNLOCK (reader_table_lock);
}
int
_gpgme_io_read ( int fd, void *buffer, size_t count )
{
int nread;
struct reader_context_s *c = find_reader (fd,1);
DEBUG2 ("fd %d: about to read %d bytes\n", fd, (int)count );
if ( !c ) {
DEBUG0 ( "no reader thread\n");
return -1;
}
if (c->eof_shortcut) {
DEBUG1 ("fd %d: EOF (again)", fd );
return 0;
}
LOCK (c->mutex);
if (c->readpos == c->writepos && !c->error) { /*no data avail*/
UNLOCK (c->mutex);
DEBUG2 ("fd %d: waiting for data from thread %p", fd, c->thread_hd);
WaitForSingleObject (c->have_data_ev, INFINITE);
DEBUG2 ("fd %d: data from thread %p available", fd, c->thread_hd);
LOCK (c->mutex);
}
if (c->readpos == c->writepos || c->error) {
UNLOCK (c->mutex);
c->eof_shortcut = 1;
if (c->eof) {
DEBUG1 ("fd %d: EOF", fd );
return 0;
}
if (!c->error) {
DEBUG1 ("fd %d: EOF but eof flag not set", fd );
return 0;
}
DEBUG1 ("fd %d: read error", fd );
return -1;
}
nread = c->readpos < c->writepos? c->writepos - c->readpos
: READBUF_SIZE - c->readpos;
if (nread > count)
nread = count;
memcpy (buffer, c->buffer+c->readpos, nread);
c->readpos = (c->readpos + nread) % READBUF_SIZE;
if (c->readpos == c->writepos && !c->eof) {
if ( !ResetEvent (c->have_data_ev) )
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
}
if (!SetEvent (c->have_space_ev))
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
DEBUG2 ("fd %d: got %d bytes\n", fd, nread );
if (nread > 0)
_gpgme_debug (2, "fd %d: got `%.*s'\n", fd, nread, buffer);
return nread;
}
/*
* The writer does use a simple buffering strategy so that we are
* informed about write errors as soon as possible (i.e. with the the
* next call to the write function
*/
static DWORD CALLBACK
writer (void *arg)
{
struct writer_context_s *c = arg;
DWORD nwritten;
DEBUG2 ("writer thread %p for file %p started", c->thread_hd, c->file_hd );
for (;;) {
LOCK (c->mutex);
if ( c->stop_me ) {
UNLOCK (c->mutex);
break;
}
if ( !c->nbytes ) {
if (!SetEvent (c->is_empty))
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
if (!ResetEvent (c->have_data) )
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
DEBUG1 ("writer thread %p: idle ...", c->thread_hd );
WaitForSingleObject (c->have_data, INFINITE);
DEBUG1 ("writer thread %p: got data to send", c->thread_hd );
LOCK (c->mutex);
}
if ( c->stop_me ) {
UNLOCK (c->mutex);
break;
}
UNLOCK (c->mutex);
DEBUG2 ("writer thread %p: writing %d bytes",
c->thread_hd, c->nbytes );
if ( c->nbytes && !WriteFile ( c->file_hd, c->buffer, c->nbytes,
&nwritten, NULL)) {
c->error_code = (int)GetLastError ();
c->error = 1;
DEBUG2 ("writer thread %p: write error: ec=%d",
c->thread_hd, c->error_code );
break;
}
DEBUG2 ("writer thread %p: wrote %d bytes",
c->thread_hd, (int)nwritten );
LOCK (c->mutex);
c->nbytes -= nwritten;
UNLOCK (c->mutex);
}
/* indicate that we have an error */
if ( !SetEvent (c->is_empty) )
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
DEBUG1 ("writer thread %p ended", c->thread_hd );
SetEvent (c->stopped);
return 0;
}
static struct writer_context_s *
create_writer (HANDLE fd)
{
struct writer_context_s *c;
SECURITY_ATTRIBUTES sec_attr;
DWORD tid;
DEBUG1 ("creating new write thread for file handle %p", fd );
memset (&sec_attr, 0, sizeof sec_attr );
sec_attr.nLength = sizeof sec_attr;
sec_attr.bInheritHandle = FALSE;
c = calloc (1, sizeof *c );
if (!c)
return NULL;
c->file_hd = fd;
c->have_data = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
c->is_empty = CreateEvent (&sec_attr, TRUE, TRUE, NULL);
c->stopped = CreateEvent (&sec_attr, TRUE, FALSE, NULL);
if (!c->have_data || !c->is_empty || !c->stopped ) {
DEBUG1 ("** CreateEvent failed: ec=%d\n", (int)GetLastError ());
if (c->have_data)
CloseHandle (c->have_data);
if (c->is_empty)
CloseHandle (c->is_empty);
if (c->stopped)
CloseHandle (c->stopped);
free (c);
return NULL;
}
c->is_empty = set_synchronize (c->is_empty);
INIT_LOCK (c->mutex);
c->thread_hd = CreateThread (&sec_attr, 0, writer, c, 0, &tid );
if (!c->thread_hd) {
DEBUG1 ("** failed to create writer thread: ec=%d\n",
(int)GetLastError ());
DESTROY_LOCK (c->mutex);
if (c->have_data)
CloseHandle (c->have_data);
if (c->is_empty)
CloseHandle (c->is_empty);
if (c->stopped)
CloseHandle (c->stopped);
free (c);
return NULL;
}
else {
/* We set the priority of the thread higher because we know that
it only runs for a short time. This greatly helps to increase
the performance of the I/O. */
SetThreadPriority (c->thread_hd, get_desired_thread_priority ());
}
return c;
}
static void
destroy_writer (struct writer_context_s *c)
{
LOCK (c->mutex);
c->stop_me = 1;
if (c->have_data)
SetEvent (c->have_data);
UNLOCK (c->mutex);
DEBUG1 ("waiting for thread %p termination ...", c->thread_hd );
WaitForSingleObject (c->stopped, INFINITE);
DEBUG1 ("thread %p has terminated", c->thread_hd );
if (c->stopped)
CloseHandle (c->stopped);
if (c->have_data)
CloseHandle (c->have_data);
if (c->is_empty)
CloseHandle (c->is_empty);
CloseHandle (c->thread_hd);
DESTROY_LOCK (c->mutex);
free (c);
}
/*
* Find a writer context or create a new one
* Note that the writer context will last until a io_close.
*/
static struct writer_context_s *
find_writer (int fd, int start_it)
{
int i;
for (i=0; i < writer_table_size ; i++ ) {
if ( writer_table[i].used && writer_table[i].fd == fd )
return writer_table[i].context;
}
if (!start_it)
return NULL;
LOCK (writer_table_lock);
for (i=0; i < writer_table_size; i++ ) {
if (!writer_table[i].used) {
writer_table[i].fd = fd;
writer_table[i].context = create_writer (fd_to_handle (fd));
writer_table[i].used = 1;
UNLOCK (writer_table_lock);
return writer_table[i].context;
}
}
UNLOCK (writer_table_lock);
return NULL;
}
static void
kill_writer (int fd)
{
int i;
LOCK (writer_table_lock);
for (i=0; i < writer_table_size; i++ ) {
if (writer_table[i].used && writer_table[i].fd == fd ) {
destroy_writer (writer_table[i].context);
writer_table[i].context = NULL;
writer_table[i].used = 0;
break;
}
}
UNLOCK (writer_table_lock);
}
int
_gpgme_io_write ( int fd, const void *buffer, size_t count )
{
struct writer_context_s *c = find_writer (fd,1);
DEBUG2 ("fd %d: about to write %d bytes\n", fd, (int)count );
_gpgme_debug (2, "fd %d: write `%.*s'\n", fd, (int) count, buffer);
if ( !c ) {
DEBUG0 ( "no writer thread\n");
return -1;
}
LOCK (c->mutex);
if ( c->nbytes ) { /* bytes are pending for send */
/* Reset the is_empty event. Better safe than sorry. */
if (!ResetEvent (c->is_empty))
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
DEBUG2 ("fd %d: waiting for empty buffer in thread %p",
fd, c->thread_hd);
WaitForSingleObject (c->is_empty, INFINITE);
DEBUG2 ("fd %d: thread %p buffer is empty", fd, c->thread_hd);
LOCK (c->mutex);
}
if ( c->error) {
UNLOCK (c->mutex);
DEBUG1 ("fd %d: write error", fd );
return -1;
}
/* If no error occured, the number of bytes in the buffer must be
zero. */
assert (!c->nbytes);
if (count > WRITEBUF_SIZE)
count = WRITEBUF_SIZE;
memcpy (c->buffer, buffer, count);
c->nbytes = count;
/* We have to reset the is_empty event early, because it is also
used by the select() implementation to probe the channel. */
if (!ResetEvent (c->is_empty))
DEBUG1 ("ResetEvent failed: ec=%d", (int)GetLastError ());
if (!SetEvent (c->have_data))
DEBUG1 ("SetEvent failed: ec=%d", (int)GetLastError ());
UNLOCK (c->mutex);
DEBUG2 ("fd %d: copied %d bytes\n",
fd, (int)count );
return (int)count;
}
int
_gpgme_io_pipe ( int filedes[2], int inherit_idx )
{
HANDLE r, w;
SECURITY_ATTRIBUTES sec_attr;
memset (&sec_attr, 0, sizeof sec_attr );
sec_attr.nLength = sizeof sec_attr;
sec_attr.bInheritHandle = FALSE;
if (!CreatePipe ( &r, &w, &sec_attr, PIPEBUF_SIZE))
return -1;
/* Make one end inheritable. */
if ( inherit_idx == 0 ) {
HANDLE h;
if (!DuplicateHandle( GetCurrentProcess(), r,
GetCurrentProcess(), &h, 0,
TRUE, DUPLICATE_SAME_ACCESS ) ) {
DEBUG1 ("DuplicateHandle failed: ec=%d\n", (int)GetLastError());
CloseHandle (r);
CloseHandle (w);
return -1;
}
CloseHandle (r);
r = h;
}
else if ( inherit_idx == 1 ) {
HANDLE h;
if (!DuplicateHandle( GetCurrentProcess(), w,
GetCurrentProcess(), &h, 0,
TRUE, DUPLICATE_SAME_ACCESS ) ) {
DEBUG1 ("DuplicateHandle failed: ec=%d\n", (int)GetLastError());
CloseHandle (r);
CloseHandle (w);
return -1;
}
CloseHandle (w);
w = h;
}
filedes[0] = handle_to_fd (r);
filedes[1] = handle_to_fd (w);
DEBUG5 ("CreatePipe %p %p %d %d inherit=%d\n", r, w,
filedes[0], filedes[1], inherit_idx );
return 0;
}
int
_gpgme_io_close ( int fd )
{
int i;
void (*handler)(int, void*) = NULL;
void *value = NULL;
if ( fd == -1 )
return -1;
DEBUG1 ("** closing handle for fd %d\n", fd);
kill_reader (fd);
kill_writer (fd);
LOCK (notify_table_lock);
for ( i=0; i < DIM (notify_table); i++ ) {
if (notify_table[i].inuse && notify_table[i].fd == fd) {
handler = notify_table[i].handler;
value = notify_table[i].value;
notify_table[i].handler = NULL;
notify_table[i].value = NULL;
notify_table[i].inuse = 0;
break;
}
}
UNLOCK (notify_table_lock);
if (handler)
handler (fd, value);
if ( !CloseHandle (fd_to_handle (fd)) ) {
DEBUG2 ("CloseHandle for fd %d failed: ec=%d\n",
fd, (int)GetLastError ());
return -1;
}
return 0;
}
int
_gpgme_io_set_close_notify (int fd, void (*handler)(int, void*), void *value)
{
int i;
assert (fd != -1);
LOCK (notify_table_lock);
for (i=0; i < DIM (notify_table); i++ ) {
if ( notify_table[i].inuse && notify_table[i].fd == fd )
break;
}
if ( i == DIM (notify_table) ) {
for (i=0; i < DIM (notify_table); i++ ) {
if ( !notify_table[i].inuse )
break;
}
}
if ( i == DIM (notify_table) ) {
UNLOCK (notify_table_lock);
return -1;
}
notify_table[i].fd = fd;
notify_table[i].handler = handler;
notify_table[i].value = value;
notify_table[i].inuse = 1;
UNLOCK (notify_table_lock);
DEBUG2 ("set notification for fd %d (idx=%d)", fd, i );
return 0;
}
int
_gpgme_io_set_nonblocking ( int fd )
{
return 0;
}
static char *
build_commandline (char **argv)
{
int i;
int j;
int n = 0;
char *buf;
char *p;
/* We have to quote some things because under Windows the program
parses the commandline and does some unquoting. We enclose the
whole argument in double-quotes, and escape literal double-quotes
as well as backslashes with a backslash. We end up with a
trailing space at the end of the line, but that is harmless. */
for (i = 0; argv[i]; i++)
{
p = argv[i];
/* The leading double-quote. */
n++;
while (*p)
{
/* An extra one for each literal that must be escaped. */
if (*p == '\\' || *p == '"')
n++;
n++;
p++;
}
/* The trailing double-quote and the delimiter. */
n += 2;
}
/* And a trailing zero. */
n++;
buf = p = malloc (n);
if (!buf)
return NULL;
for (i = 0; argv[i]; i++)
{
char *argvp = argv[i];
*(p++) = '"';
while (*argvp)
{
if (*argvp == '\\' || *argvp == '"')
*(p++) = '\\';
*(p++) = *(argvp++);
}
*(p++) = '"';
*(p++) = ' ';
}
*(p++) = 0;
return buf;
}
int
_gpgme_io_spawn ( const char *path, char **argv,
struct spawn_fd_item_s *fd_child_list,
struct spawn_fd_item_s *fd_parent_list )
{
SECURITY_ATTRIBUTES sec_attr;
PROCESS_INFORMATION pi = {
NULL, /* returns process handle */
0, /* returns primary thread handle */
0, /* returns pid */
0 /* returns tid */
};
STARTUPINFO si;
char *envblock = NULL;
int cr_flags = CREATE_DEFAULT_ERROR_MODE
| GetPriorityClass (GetCurrentProcess ());
int i;
char *arg_string;
int duped_stdin = 0;
int duped_stderr = 0;
HANDLE hnul = INVALID_HANDLE_VALUE;
/* FIXME. */
int debug_me = 0;
memset (&sec_attr, 0, sizeof sec_attr );
sec_attr.nLength = sizeof sec_attr;
sec_attr.bInheritHandle = FALSE;
arg_string = build_commandline ( argv );
if (!arg_string )
return -1;
memset (&si, 0, sizeof si);
si.cb = sizeof (si);
si.dwFlags = STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW;
si.wShowWindow = debug_me? SW_SHOW : SW_HIDE;
si.hStdInput = GetStdHandle (STD_INPUT_HANDLE);
si.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE);
si.hStdError = GetStdHandle (STD_ERROR_HANDLE);
for (i=0; fd_child_list[i].fd != -1; i++ ) {
if (fd_child_list[i].dup_to == 0 ) {
si.hStdInput = fd_to_handle (fd_child_list[i].fd);
DEBUG1 ("using %d for stdin", fd_child_list[i].fd );
duped_stdin=1;
}
else if (fd_child_list[i].dup_to == 1 ) {
si.hStdOutput = fd_to_handle (fd_child_list[i].fd);
DEBUG1 ("using %d for stdout", fd_child_list[i].fd );
}
else if (fd_child_list[i].dup_to == 2 ) {
si.hStdError = fd_to_handle (fd_child_list[i].fd);
DEBUG1 ("using %d for stderr", fd_child_list[i].fd );
duped_stderr = 1;
}
}
if( !duped_stdin || !duped_stderr ) {
SECURITY_ATTRIBUTES sa;
memset (&sa, 0, sizeof sa );
sa.nLength = sizeof sa;
sa.bInheritHandle = TRUE;
hnul = CreateFile ( "nul",
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
&sa,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL );
if ( hnul == INVALID_HANDLE_VALUE ) {
DEBUG1 ("can't open `nul': ec=%d\n", (int)GetLastError ());
free (arg_string);
return -1;
}
/* Make sure that the process has a connected stdin */
if ( !duped_stdin ) {
si.hStdInput = hnul;
DEBUG1 ("using %d for dummy stdin", (int)hnul );
}
/* We normally don't want all the normal output */
if ( !duped_stderr ) {
si.hStdError = hnul;
DEBUG1 ("using %d for dummy stderr", (int)hnul );
}
}
DEBUG2 ("CreateProcess, path=`%s' args=`%s'", path, arg_string);
cr_flags |= CREATE_SUSPENDED;
if ( !CreateProcessA (path,
arg_string,
&sec_attr, /* process security attributes */
&sec_attr, /* thread security attributes */
TRUE, /* inherit handles */
cr_flags, /* creation flags */
envblock, /* environment */
NULL, /* use current drive/directory */
&si, /* startup information */
&pi /* returns process information */
) ) {
DEBUG1 ("CreateProcess failed: ec=%d\n", (int) GetLastError ());
free (arg_string);
return -1;
}
/* Close the /dev/nul handle if used. */
if (hnul != INVALID_HANDLE_VALUE ) {
if ( !CloseHandle ( hnul ) )
DEBUG1 ("CloseHandle(hnul) failed: ec=%d\n", (int)GetLastError());
}
/* Close the other ends of the pipes. */
for (i = 0; fd_parent_list[i].fd != -1; i++)
_gpgme_io_close (fd_parent_list[i].fd);
DEBUG4 ("CreateProcess ready\n"
"- hProcess=%p hThread=%p\n"
"- dwProcessID=%d dwThreadId=%d\n",
pi.hProcess, pi.hThread,
(int) pi.dwProcessId, (int) pi.dwThreadId);
if ( ResumeThread ( pi.hThread ) < 0 ) {
DEBUG1 ("ResumeThread failed: ec=%d\n", (int)GetLastError ());
}
if ( !CloseHandle (pi.hThread) ) {
DEBUG1 ("CloseHandle of thread failed: ec=%d\n",
(int)GetLastError ());
}
return handle_to_pid (pi.hProcess);
}
/*
* Select on the list of fds.
* Returns: -1 = error
* 0 = timeout or nothing to select
* >0 = number of signaled fds
*/
int
_gpgme_io_select ( struct io_select_fd_s *fds, size_t nfds, int nonblock )
{
HANDLE waitbuf[MAXIMUM_WAIT_OBJECTS];
int waitidx[MAXIMUM_WAIT_OBJECTS];
int code, nwait;
int i, any;
int count;
void *dbg_help;
restart:
DEBUG_BEGIN (dbg_help, 3, "select on [ ");
any = 0;
nwait = 0;
count = 0;
for ( i=0; i < nfds; i++ ) {
if ( fds[i].fd == -1 )
continue;
fds[i].signaled = 0;
if ( fds[i].for_read || fds[i].for_write ) {
if ( fds[i].frozen ) {
DEBUG_ADD1 (dbg_help, "f%d ", fds[i].fd );
}
else if ( fds[i].for_read ) {
struct reader_context_s *c = find_reader (fds[i].fd,1);
if (!c) {
DEBUG1 ("oops: no reader thread for fd %d", fds[i].fd);
}
else {
if ( nwait >= DIM (waitbuf) ) {
DEBUG_END (dbg_help, "oops ]");
DEBUG0 ("Too many objects for WFMO!" );
return -1;
}
waitidx[nwait] = i;
waitbuf[nwait++] = c->have_data_ev;
}
DEBUG_ADD1 (dbg_help, "r%d ", fds[i].fd );
any = 1;
}
else if ( fds[i].for_write ) {
struct writer_context_s *c = find_writer (fds[i].fd,1);
if (!c) {
DEBUG1 ("oops: no writer thread for fd %d", fds[i].fd);
}
else {
if ( nwait >= DIM (waitbuf) ) {
DEBUG_END (dbg_help, "oops ]");
DEBUG0 ("Too many objects for WFMO!" );
return -1;
}
waitidx[nwait] = i;
waitbuf[nwait++] = c->is_empty;
}
DEBUG_ADD1 (dbg_help, "w%d ", fds[i].fd );
any = 1;
}
}
}
DEBUG_END (dbg_help, "]");
if (!any)
return 0;
code = WaitForMultipleObjects ( nwait, waitbuf, 0, nonblock ? 0 : 1000);
if ( code >= WAIT_OBJECT_0 && code < WAIT_OBJECT_0 + nwait ) {
/* This WFMO is a really silly function: It does return either
* the index of the signaled object or if 2 objects have been
* signalled at the same time, the index of the object with the
* lowest object is returned - so and how do we find out
* how many objects have been signaled???.
* The only solution I can imagine is to test each object starting
* with the returned index individually - how dull.
*/
any = 0;
for (i=code - WAIT_OBJECT_0; i < nwait; i++ ) {
if (WaitForSingleObject (waitbuf[i], 0) == WAIT_OBJECT_0) {
assert (waitidx[i] >=0 && waitidx[i] < nfds);
fds[waitidx[i]].signaled = 1;
any = 1;
count++;
}
}
if (!any) {
DEBUG0 ("Oops: No signaled objects found after WFMO");
count = -1;
}
}
else if ( code == WAIT_TIMEOUT ) {
DEBUG0 ("WFMO timed out\n" );
}
else if (code == WAIT_FAILED ) {
int le = (int)GetLastError ();
if ( le == ERROR_INVALID_HANDLE ) {
int k, j = handle_to_fd (waitbuf[i]);
DEBUG1 ("WFMO invalid handle %d removed\n", j);
for (k=0 ; k < nfds; k++ ) {
if ( fds[k].fd == j ) {
fds[k].for_read = fds[k].for_write = 0;
goto restart;
}
}
DEBUG0 (" oops, or not???\n");
}
DEBUG1 ("WFMO failed: %d\n", le );
count = -1;
}
else {
DEBUG1 ("WFMO returned %d\n", code );
count = -1;
}
if ( count ) {
DEBUG_BEGIN (dbg_help, 3, " signaled [ ");
for ( i=0; i < nfds; i++ ) {
if ( fds[i].fd == -1 )
continue;
if ( (fds[i].for_read || fds[i].for_write) && fds[i].signaled ) {
DEBUG_ADD2 (dbg_help, "%c%d ",
fds[i].for_read? 'r':'w',fds[i].fd );
}
}
DEBUG_END (dbg_help, "]");
}
return count;
}
void
_gpgme_io_subsystem_init (void)
{
}
/* Write the printable version of FD to the buffer BUF of length
BUFLEN. The printable version is the representation on the command
line that the child process expects. */
int
_gpgme_io_fd2str (char *buf, int buflen, int fd)
{
return snprintf (buf, buflen, "%d", fd);
}
/* The following interface is only useful for GPGME Glib. */
/* Look up the giochannel for file descriptor FD. */
void *
gpgme_get_giochannel (int fd)
{
return NULL;
}