|
|
|
/* ****************************************************************************
|
|
|
|
Copyright (C) 2003-2004 Eva Brucherseifer <eva.brucherseifer@basyskom.com>
|
|
|
|
2005 Stanislav visnovsky <visnovsky@kde.org>
|
|
|
|
|
|
|
|
This file is part of the KDE project
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
|
|
|
|
In addition, as a special exception, the copyright holders give
|
|
|
|
permission to link the code of this program with any edition of
|
|
|
|
the TQt library by Trolltech AS, Norway (or with modified versions
|
|
|
|
of TQt that use the same license as TQt), and distribute linked
|
|
|
|
combinations including the two. You must obey the GNU General
|
|
|
|
Public License in all respects for all of the code used other than
|
|
|
|
TQt. If you modify this file, you may extend this exception to
|
|
|
|
your version of the file, but you are not obligated to do so. If
|
|
|
|
you do not wish to do so, delete this exception statement from
|
|
|
|
your version.
|
|
|
|
|
|
|
|
**************************************************************************** */
|
|
|
|
|
|
|
|
#include "stringdistance.h"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
//! Debug-Messages 0 : off 1 : a few 10 : more
|
|
|
|
int Distance::debug = 0;
|
|
|
|
const int Distance::editCost_replace_base = 1;
|
|
|
|
|
|
|
|
const int HammingDistance::editCost = 1;
|
|
|
|
|
|
|
|
const int LevenshteinDistance::editCost_tqreplace = 1;
|
|
|
|
const int LevenshteinDistance::editCost_insert = 1;
|
|
|
|
const int LevenshteinDistance::editCost_delete = 1;
|
|
|
|
|
|
|
|
|
|
|
|
double relativeDistance(double distance, const TQString& left_string, const TQString& right_string)
|
|
|
|
{
|
|
|
|
double maxsize=0;
|
|
|
|
double compsize=0;
|
|
|
|
maxsize = left_string.length();
|
|
|
|
compsize=right_string.length();
|
|
|
|
if (compsize>maxsize)
|
|
|
|
maxsize=compsize;
|
|
|
|
return distance/(double)maxsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** This function walk trough the treeS(left & right) at the same time.
|
|
|
|
* There are in both entities the same number of trees!
|
|
|
|
* This function sums all the distances between all trees.
|
|
|
|
* For the calculation of the distance between two trees, it calls the function calculate.
|
|
|
|
*/
|
|
|
|
double Distance::operator()(const TQString& left_string, const TQString& right_string)
|
|
|
|
{
|
|
|
|
m_distance = 0.00;
|
|
|
|
if (left_string == right_string)
|
|
|
|
return 0.00; // saves calculation time, both entities are the same
|
|
|
|
|
|
|
|
// swap strings, our matrix requires that
|
|
|
|
if (left_string.length () < right_string.length() )
|
|
|
|
{
|
|
|
|
m_distance = calculate(right_string, left_string);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
m_distance = calculate(left_string, right_string);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if (debug > 0) cout << " --> total distance: " << m_distance << endl;
|
|
|
|
return m_distance;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** This function calculates the distance between two nodes.
|
|
|
|
* For the calculation you can specify two variables gap & distance.
|
|
|
|
*/
|
|
|
|
int Distance::nodeDistance(const TQString& left_letter, const TQString& right_letter)
|
|
|
|
{
|
|
|
|
if ( left_letter == right_letter )
|
|
|
|
{
|
|
|
|
// if (debug > 0) cout << ".";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// if (debug > 0) cout << "!";
|
|
|
|
return editCostReplace();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** This function walks along the treeS(left & right) at the same time.
|
|
|
|
* There are in both entities the same number of nodes, hopefully! But it doesn't care.
|
|
|
|
* This function sums all the distances between all nodes.
|
|
|
|
* For the calculation you can specify the distance between two nodes in variable distance
|
|
|
|
*/
|
|
|
|
double HammingDistance::calculate(const TQString& left_string, const TQString& right_string)
|
|
|
|
{
|
|
|
|
double hammingDistance = 0.00;
|
|
|
|
// if (debug > 0)
|
|
|
|
// cout << left_string.length() << " " << right_string.length() << "\t";
|
|
|
|
|
|
|
|
unsigned int i=0;
|
|
|
|
unsigned int j=0;
|
|
|
|
for ( ; i != left_string.length() && j != right_string.length() ;
|
|
|
|
++i,++j)
|
|
|
|
hammingDistance += double(nodeDistance(left_string[i], right_string[i]));
|
|
|
|
for ( ; i != left_string.length() ; ++i )
|
|
|
|
{
|
|
|
|
++hammingDistance;
|
|
|
|
// if (debug > 9) cout << "!";
|
|
|
|
}
|
|
|
|
for ( ; j != right_string.length() ; ++j)
|
|
|
|
{
|
|
|
|
++hammingDistance;
|
|
|
|
// if (debug > 9) cout << "!";
|
|
|
|
}
|
|
|
|
return hammingDistance;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** This function walk along the treeS(left & right) at the same time.
|
|
|
|
* It uses the Levenshtein-algorithm for the calculation of the distance between two trees.
|
|
|
|
* A matrice D is generated which represent the distribution of distances between two trees.
|
|
|
|
* The last element represent the Levenshtein-distance.
|
|
|
|
*/
|
|
|
|
double LevenshteinDistance::calculate(const TQString& left_string, const TQString& right_string)
|
|
|
|
{
|
|
|
|
// if (debug > 0)
|
|
|
|
// cout << left_string.length() << " " << right_string.length() << "\t";
|
|
|
|
|
|
|
|
unsigned int left_size = left_string.length()+1;
|
|
|
|
unsigned int right_size = right_string.length()+1;
|
|
|
|
|
|
|
|
int *_D = new int[left_size * right_size];
|
|
|
|
|
|
|
|
for (unsigned int i = 0 ; i < left_size * right_size; i++ )
|
|
|
|
_D[i] = 0;
|
|
|
|
|
|
|
|
#define D(a,b) (_D[(a)+(b)*left_size])
|
|
|
|
|
|
|
|
|
|
|
|
// boost::numeric::ublas::matrix<int> D(left_size, right_size);
|
|
|
|
// D = zero_boost::numeric::ublas::matrix<int>(left_size, right_size);
|
|
|
|
|
|
|
|
unsigned int l,r;
|
|
|
|
D(0,0) = 0;
|
|
|
|
for(l = 1; l < left_size; l++)
|
|
|
|
D(l,0) = D(l-1,0) + editCost_delete;
|
|
|
|
for(r = 1; r < right_size; r++)
|
|
|
|
D(0,r) = D(0,r-1) + editCost_insert;
|
|
|
|
|
|
|
|
int tmp_value;
|
|
|
|
for(l = 1; l < left_size; l++)
|
|
|
|
{
|
|
|
|
for(r = 1; r < right_size; r++)
|
|
|
|
{
|
|
|
|
tmp_value = TQMIN( ( D(l-1,r) + editCost_delete ),
|
|
|
|
( D(l-1,r-1) + nodeDistance(left_string[l-1], right_string[r-1]) ) ) ;
|
|
|
|
D(l,r) = TQMIN( tmp_value,
|
|
|
|
( D(l,r-1) + editCost_insert ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double res (D(left_size-1,right_size-1));
|
|
|
|
|
|
|
|
delete[] _D;
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|