<?xml version="1.0" ?>
<!DOCTYPE book PUBLIC "-//KDE//DTD DocBook XML V4.2-Based Variant V1.1//EN" "dtd/kdex.dtd" [
<!ENTITY kappname "&kcalc;" >
<!ENTITY package "tdeutils">
<!ENTITY % addindex "IGNORE">
<!ENTITY % English "INCLUDE" > <!-- change language only here -->
<!ENTITY commands SYSTEM "commands.docbook">
]>
<book lang="&language;">
<bookinfo>
<title>The &kcalc; Handbook</title>
<authorgroup>
<author>
&Bernd.Johannes.Wuebben; &Bernd.Johannes.Wuebben.mail;
</author>
<author>
&Pamela.Roberts;&Pamela.Roberts.mail;
<!-- <affiliation><jobtitle>Handbook maintainer</jobtitle>
</affiliation> -->
</author>
<author>
&Anne-Marie.Mahfouf;&Anne-Marie.Mahfouf.mail;
<!-- <affiliation><jobtitle>Handbook maintainer</jobtitle>
</affiliation> -->
</author>
<!-- TRANS:ROLES_OF_TRANSLATORS -->
</authorgroup>
<copyright>
<year>2001</year> <year>2002</year> <year>2005</year> <year>2006</year>
<holder>&Bernd.Johannes.Wuebben;, &Pamela.Roberts;,
&Anne-Marie.Mahfouf;</holder>
</copyright>
<legalnotice>&FDLNotice;</legalnotice>
<date>2006-02-13</date>
<releaseinfo>2.0.2</releaseinfo>
<abstract><para>&kcalc; is a scientific calculator for &kde;</para></abstract>
<keywordset>
<keyword>KDE</keyword>
<keyword>KCalc</keyword>
<keyword>calculator</keyword>
</keywordset>
</bookinfo>
<chapter id="introduction">
<title>Introduction</title>
<para>This document describes &kcalc; version 1.8.</para>
<para>&kcalc; offers many more mathematical functions than meet the eye
on a first glance. Please study the section on keyboard accelerators and
modes in this handbook to learn more about the many functions
available.</para>
<para>In addition to the usual functionality offered by most scientific
calculators, &kcalc; offers a number of features, which I think are
worthwhile pointing out:</para>
<itemizedlist>
<listitem>
<para>&kcalc; provides trigonometric functions, logic operations, and it is
able to do statistical calculations.</para>
</listitem>
<listitem>
<para>&kcalc; allows you to cut and paste numbers from/into its display.</para>
</listitem>
<listitem>
<para>&kcalc; features a <firstterm>results-stack</firstterm> which lets
you conveniently recall previous results.</para>
</listitem>
<listitem>
<para>You can configure &kcalc;'s display colors and font.</para>
</listitem>
<listitem>
<para>You can configure &kcalc;'s precision and the number
of digits after the period.</para>
</listitem>
<listitem>
<para> &kcalc; offers a great number of useful <link linkend="key-accels">
key-bindings</link>, which make using &kcalc; without using a pointing device easy.</para>
<para>Hint: pressing (and holding) the <keycap>&Ctrl;</keycap>-key, displays on
every button,
the corresponding key-binding.</para>
</listitem>
</itemizedlist>
<para>Have fun with &kcalc;!</para>
<para>Bernd Johannes Wuebben</para>
</chapter>
<chapter id="usage">
<title>Usage</title>
<sect1 id="general-usage">
<title>General Usage</title>
<para>General usage is straight forward and similar to the way most
simple scientific calculators operate, but take note of the following
special &kcalc; features:</para>
<variablelist>
<varlistentry>
<term>Result Stack</term>
<listitem><para>Each time you &LMB; click on the
<guibutton>=</guibutton> button or press your keyboard's
<keycap>Enter</keycap> or <keysym>=</keysym> keys, the display result is
written to &kcalc;'s result stack. You can navigate through the result
stack with your keyboard's
<keycombo action="simul">&Ctrl;<keycap>Z</keycap></keycombo>
and <keycombo action="simul">&Ctrl; &Shift;<keycap>Z</keycap></keycombo>
keys.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Percent Function</term>
<listitem>
<para>The percent function works somewhat differently to that on most
calculators. However, once understood, its enhanced functionality proves
quite useful. See the section about the <link
linkend="percent">percent</link> function for further details.</para>
</listitem></varlistentry>
<varlistentry>
<term>Cut and Paste</term>
<listitem>
<para><itemizedlist>
<listitem>
<para>Pressing <keycombo action="simul">&Ctrl;<keycap>C</keycap></keycombo>
will place the displayed number on to the clipboard.</para>
</listitem>
<listitem>
<para>Pressing <keycombo action="simul">&Ctrl;<keycap>V</keycap></keycombo>
will paste the clipboard content into the display if the content of the
clipboard is a valid floating point number.</para>
</listitem>
<listitem>
<para>It is still possible to copy/paste by clicking on &kcalc;'s display,
but this may disappear in future versions.</para>
</listitem>
</itemizedlist>
</para></listitem></varlistentry>
<varlistentry>
<term>Advanced functions</term>
<listitem>
<para>When you start &kcalc; for the first time, the calculator will only
display buttons for basic arithmetic computations.</para>
<para>Under the menu entry <guimenu>Settings</guimenu> it is possible to
open extra buttons for &kcalc;:
it is for example possible to choose
<link linkend="statistical-mode">Statistical</link> or
<link linkend="trigonometric-mode">Trigonometric</link> buttons.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="statistical-mode">
<title>Statistical Mode</title>
<para>In this mode the left column of buttons is allocated to statistical
functions:</para>
<para> Most of the functionality in this mode is centered around the <guibutton>Dat</guibutton>
button. To create a data list of numbers, enter a number into the calculator and press
<guibutton>Dat</guibutton>. A sequentially increasing number is shown on the display indicating
which position in the Data <quote>list</quote> the number occupies. A traditional calculator only
stores three values for statistical functions: The number of discrete items in a list, the sum of
the data items entered and the sum of the square of all data items in the list. &kcalc; differs by
actually storing each discrete value, allowing you to calculate the median value of the data.
</para>
<informaltable><tgroup cols="2">
<thead>
<row><entry>Buttons</entry>
<entry>Function</entry></row></thead>
<tbody>
<row><entry><guibutton>N</guibutton></entry>
<entry>Recall the number of data items entered</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>N</guibutton></entry>
<entry>Display the sum of all data items entered</entry></row>
<row><entry><guibutton>Mea</guibutton></entry>
<entry>Display the mean of the data items entered</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Mea</guibutton></entry>
<entry>Display the sum of the square of all data items entered</entry></row>
<row><entry><guibutton>Std</guibutton></entry>
<entry>Display the standard deviation (n)</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Std</guibutton></entry>
<entry>Display the population standard deviation (n-1)</entry></row>
<row><entry><guibutton>Med</guibutton></entry>
<entry>Display the median</entry></row>
<row><entry><guibutton>Dat</guibutton></entry>
<entry>Enter a data item</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Dat</guibutton></entry>
<entry>Clear last data item entered</entry></row>
<row><entry><guibutton>Cst</guibutton></entry>
<entry>Clear the store of all data item entered</entry></row>
</tbody></tgroup></informaltable>
</sect1>
<sect1 id="trigonometric-mode">
<title>Trigonometric Mode</title>
<para>In this mode the left column of buttons is allocated to trigonometric
functions:</para>
<informaltable><tgroup cols="2">
<thead>
<row><entry>Buttons</entry>
<entry>Function</entry></row>
</thead>
<tbody>
<row><entry><guibutton>Hyp</guibutton></entry>
<entry>Enter Hyperbolic sub mode. Hyp Sin for example is the hyperbolic sine:
sinh(x)</entry></row>
<row><entry><guibutton>Sin</guibutton></entry>
<entry>Compute the sine</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Sin</guibutton></entry>
<entry>Compute the inverse sine</entry></row>
<row><entry><guibutton>Cos</guibutton></entry>
<entry>Compute the cosine</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Cos</guibutton></entry>
<entry>Compute the inverse cosine</entry></row>
<row><entry><guibutton>Tan</guibutton></entry>
<entry>Compute the tangent</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Tan</guibutton></entry>
<entry>Compute the inverse tangent</entry></row>
<row><entry><guibutton>Log</guibutton></entry>
<entry>Compute the Log base 10</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Log</guibutton></entry>
<entry>Compute 10 to the power of x</entry></row>
<row><entry><guibutton>Ln</guibutton></entry>
<entry>Compute the natural logarithm. That is the log to base e</entry></row>
<row><entry><guibutton>Inv</guibutton> <guibutton>Ln</guibutton></entry>
<entry>Compute e to the power of x</entry></row>
</tbody></tgroup></informaltable>
</sect1>
<sect1 id="memory-operations">
<title>Memory Operations</title>
<para>&kcalc; supports the memory operations given by standard
calculators plus six slots to hold constants.</para>
<sect2 id="standard_memory">
<title> Standard Memory Operations</title>
<para>&kcalc; can remember results of operations for you, and re-use them in
later calculations. You can access these functions via several buttons
labelled <guibutton>MR</guibutton>, <guibutton>MS</guibutton>,
<guibutton>M+</guibutton> and <guibutton>MC</guibutton>.</para>
<variablelist>
<varlistentry>
<term><guibutton>MS</guibutton></term>
<listitem><para>The <guibutton>MS</guibutton> button stores the currently
displayed result in memory.</para></listitem>
</varlistentry>
<varlistentry>
<term><guibutton>M+</guibutton></term>
<listitem><para>The <guibutton>M+</guibutton> button adds the current result to the
one in memory. So, if you had stored a 20, and the current result is a 5,
your memory would contain 25 when you press it. If the memory is empty, it
acts like <guibutton>MS</guibutton> and simply stores the
result.</para></listitem>
</varlistentry>
<varlistentry>
<term><guibutton>MR</guibutton></term>
<listitem><para>The <guibutton>MR</guibutton> button gets the value stored
in memory and puts it in the display.</para></listitem>
</varlistentry>
<varlistentry>
<term><guibutton>MC</guibutton></term>
<listitem><para>The <guibutton>MC</guibutton> button clears the
memory.</para></listitem>
</varlistentry>
</variablelist>
<para>If a value is stored in memory a <guilabel>M</guilabel> will appear in
the status bar, next to the calculator mode indicator</para>
</sect2>
<sect2 id="constant_buttons">
<title>Constants</title>
<para>The six constants buttons <guibutton>C1</guibutton> to
<guibutton>C6</guibutton> will only be visible after activating the
item <guilabel>Constants Buttons</guilabel> in the menu
<guimenu>Settings</guimenu> of the menu bar.</para>
<para>To store the number shown in the &kcalc; display in one of the
six constants, first press <guibutton>Inv</guibutton> followed
by the desired button key <guibutton>C1</guibutton> up to
<guibutton>C6</guibutton>.</para>
<para>To use the value stored in any of the contants in a calculation, just
press the desired button (<guibutton>C1</guibutton> to <guibutton>C6</guibutton>),
and the corresponding number will appear in the display. </para>
<para>IIt is possible to change the label of the constants button to make it easier
to remember which button holds which constant. Click with the right mouse
button on one of the buttons <guibutton>C1</guibutton> to <guibutton>
C6</guibutton>. A popup menu appears, in which you select <guilabel>
Set Name</guilabel>. </para>
<para>There are many (mostly physical) predefined constants, which can
be put on any of the six buttons <guibutton>C1</guibutton> -
<guibutton>C6</guibutton> by selecting the desired constant in the
popup menu that appears after right clicking on one of the constant
buttons and selecting <guilabel>Choose from List</guilabel>. Though
the predefined constants can also be accessed via the
<guimenu>Constants</guimenu> in the menu bar, storing it on a
constants button is very handy, if the number is used
frequently.</para>
</sect2>
</sect1>
<sect1 id="key-accels">
<title>Single Key Accelerators</title>
<para>To simplify entering calculations from the keyboard &kcalc; has single key
accelerators for most functions. For example entering <userinput>7R</userinput>
or <userinput>7r</userinput> will calculate the reciprocal of 7 (1/7).</para>
<para>During a computation, you can always press <keycap>&Ctrl;</keycap> to make each
button display its key-binding.</para>
<informaltable><tgroup cols="3">
<thead>
<row><entry>Key</entry>
<entry>Function</entry>
<entry>Notes</entry></row>
</thead>
<tbody>
<row><entry><keycap>H</keycap></entry>
<entry><guibutton>Hyp</guibutton></entry>
<entry>Hyperbolic as in Hyp Sin,
the sinh(x)</entry></row>
<row><entry><keycap>S</keycap></entry>
<entry><guibutton>Sin</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>C</keycap></entry>
<entry><guibutton>Cos</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>T</keycap></entry>
<entry><guibutton>Tan</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>N</keycap></entry>
<entry><guibutton>Ln</guibutton></entry>
<entry>log base e</entry></row>
<row><entry><keycap>L</keycap></entry>
<entry><guibutton>Log</guibutton></entry>
<entry>log base 10</entry></row>
<row><entry><keycap>I</keycap></entry>
<entry> <guibutton>Inv</guibutton></entry>
<entry>Inverse, ⪚ if
you want arcsin(x) type <userinput>i s </userinput></entry></row>
<row><entry><keysym>\</keysym></entry>
<entry><guibutton>+/-</guibutton></entry>
<entry>Change sign</entry></row>
<row><entry><keysym>[</keysym></entry>
<entry><guibutton>x^2</guibutton></entry>
<entry></entry></row>
<row><entry><keysym>^</keysym></entry>
<entry><guibutton>x^y</guibutton></entry>
<entry></entry></row>
<row><entry><keysym>!</keysym></entry>
<entry><guibutton>x!</guibutton></entry>
<entry>Factorial</entry></row>
<row><entry><keysym><</keysym></entry>
<entry><guibutton>Lsh</guibutton></entry>
<entry>Left shift. Note: <guibutton>Inv</guibutton>
<guibutton>Lsh</guibutton> is Right shift</entry></row>
<row><entry><keysym>&</keysym></entry>
<entry><guibutton>And</guibutton></entry>
<entry>Logical AND</entry></row>
<row><entry><keysym>*</keysym></entry>
<entry><guibutton>X</guibutton></entry>
<entry>Multiply</entry></row>
<row><entry><keysym>/</keysym></entry>
<entry><guibutton>/</guibutton></entry>
<entry>Divide</entry></row>
<row><entry><keycap>D</keycap></entry>
<entry><guibutton>Dat</guibutton></entry>
<entry>Enter data item in statistical mode</entry></row>
<row><entry><keycap>O</keycap></entry>
<entry><guibutton>Or</guibutton></entry>
<entry>Logical OR. Note: <guibutton>Inv</guibutton>
<guibutton>Or</guibutton> is XOR</entry></row>
<row><entry><keycap>R</keycap></entry>
<entry><guibutton>1/x</guibutton></entry>
<entry>Reciprocal</entry></row>
<row><entry><keysym>=</keysym></entry>
<entry><guibutton>=</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>Enter</keycap></entry>
<entry><guibutton>=</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>Return</keycap></entry>
<entry><guibutton>=</guibutton></entry>
<entry></entry></row>
<row><entry><keycap>Page Up</keycap></entry>
<entry><guibutton>C</guibutton></entry>
<entry>Clear</entry></row>
<row><entry><keycap>Esc</keycap></entry>
<entry><guibutton>C</guibutton></entry>
<entry>Clear</entry></row>
<row><entry><keycap>Prior</keycap></entry>
<entry><guibutton>C</guibutton></entry>
<entry>Clear</entry></row>
<row><entry><keycap>Page Down</keycap></entry>
<entry><guibutton>AC</guibutton></entry>
<entry>Clear all</entry></row>
<row><entry><keycap>Next</keycap></entry>
<entry><guibutton>AC</guibutton></entry>
<entry>Clear all</entry></row>
<row><entry><keycap>Del</keycap></entry>
<entry><guibutton>AC</guibutton></entry>
<entry>Clear all</entry></row>
</tbody></tgroup></informaltable>
</sect1>
</chapter>
<chapter id="comments-on-specific-functions">
<title>Comments on Specific Functions</title>
<sect1 id="mod">
<title>Mod and Inv Mod</title>
<variablelist>
<varlistentry>
<term><guibutton>Mod</guibutton> gives the remainder of dividing the displayed
number by the next input number.</term>
<listitem><para><userinput>22 Mod 8 = </userinput> will give the result
<emphasis>6</emphasis></para>
<para><userinput>22.345 Mod 8 = </userinput> will give the result
<emphasis>6.345</emphasis></para>
</listitem></varlistentry>
<varlistentry>
<term><guibutton>Inv</guibutton> <guibutton>Mod</guibutton> does integer
division of the displayed number by the next input number.</term>
<listitem><para><userinput>22 Inv Mod 8 = </userinput> will give the result
<emphasis>2</emphasis></para>
<para><userinput>22.345 Inv Mod 8 = </userinput> also gives <emphasis>2</emphasis>
</para></listitem></varlistentry>
</variablelist>
</sect1>
<sect1 id="percent">
<title>%</title>
<para>Used instead of the <guibutton>=</guibutton> key,
<guibutton>%</guibutton> interprets the final operation carried out in the
current calculation as follows:</para>
<para><itemizedlist>
<listitem>
<para>If the final operator is + or - the second argument is interpreted as percentage of the first operand.
</para>
</listitem>
<listitem>
<para>If the final operator is * divide the result of the multiplication by 100.
</para>
</listitem>
<listitem>
<para>If the final operator is / give the left operand
as a percentage of the right operand.
</para>
</listitem>
<listitem>
<para> In all other cases the % key gives identical results to the = key.
</para>
</listitem>
</itemizedlist></para>
<variablelist>
<varlistentry>
<term>Examples:</term>
<listitem>
<para><userinput>150 + 50 %</userinput> gives <emphasis>225</emphasis> (150 plus 50 percent of this amount)</para>
<para><userinput>42 * 3 %</userinput> gives
<emphasis>1.26</emphasis> (42 * 3 / 100)</para>
<para><userinput>45 / 55 %</userinput> gives
<emphasis>81.81...</emphasis> (45 is 81.81.. percent of 55)</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="lsh-rsh">
<title>Lsh and Inv Lsh</title>
<variablelist>
<varlistentry>
<term><guibutton>Lsh</guibutton> left shifts the integer part of the displayed
value (multiplies it by 2) n times, where n is the next input number, and
gives an integer result:</term>
<listitem><para><userinput>10 Lsh 3 =</userinput> gives <emphasis>80</emphasis>
(10 multiplied by 2 three times).</para>
<para><userinput>10.345 Lsh 3 =</userinput> also gives
<emphasis>80</emphasis>.</para></listitem>
</varlistentry>
<varlistentry>
<term><guibutton>Inv</guibutton> <guibutton>Lsh</guibutton> right shifts the
value (performs an integer divide by 2) n times.</term>
<listitem><para><userinput>16 Inv Lsh 2 =</userinput> gives
<emphasis>4</emphasis> (16 divided by 2 twice).</para>
<para><userinput>16.999 Inv Lsh 2 =</userinput> also gives
<emphasis>4</emphasis>.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="and-or-xor">
<title>Cmp, And, Or and Xor</title>
<para>The <guibutton>Cmp</guibutton>, <guibutton>And</guibutton> and
<guibutton>Or</guibutton> functions perform bitwise logical operations and
therefore appear more meaningful if the <guilabel>Base</guilabel> is set to
<guilabel>Hex</guilabel>, <guilabel>Oct</guilabel> or <guilabel>Bin</guilabel>
rather than <guilabel>Dec</guilabel>. In the following
examples <guilabel>Base</guilabel> is set to <guilabel>Bin</guilabel>.</para>
<variablelist>
<varlistentry>
<term><guibutton>Cmp</guibutton> performs a 1's complement (inverts the
bits).</term>
<listitem><para><userinput>101 Cmp</userinput> gives
<emphasis>111...111010</emphasis></para> </listitem>
</varlistentry>
<varlistentry>
<term><guibutton>And</guibutton> does a logical AND.</term>
<listitem><para><userinput>101 And 110 =</userinput> gives
<emphasis>100</emphasis></para> </listitem>
</varlistentry>
<varlistentry>
<term><guibutton>Or</guibutton> does the logical OR.</term>
<listitem><para><userinput>101 Or 110 =</userinput> gives
<emphasis>111</emphasis></para> </listitem>
</varlistentry>
<varlistentry>
<term><guibutton>Xor</guibutton> performs the logical
XOR (exclusive OR) operation.</term>
<listitem><para><userinput>101 Xor 110 =</userinput> gives
<emphasis>11</emphasis></para> </listitem>
</varlistentry>
</variablelist>
</sect1>
</chapter>
<chapter id="questions-and-answers">
<title>Questions and Answers</title>
<qandaset>
<qandaentry>
<question><para>How do I get e, the Euler number?</para></question>
<answer><para>Type <userinput>1 Inv Ln</userinput>.</para></answer>
</qandaentry>
<qandaentry>
<question><para>How do I get two fixed digits after the period?</para></question>
<answer><para>Click on the <guibutton>Configure</guibutton> button, this will
bring up the configuration dialog. Check <guilabel>Set fixed
precision</guilabel> and adjust the spin control so that it shows a
2.</para></answer> </qandaentry>
<qandaentry>
<question><para>What about Precision?</para></question>
<answer><para>The main factor determining the precision of &kcalc; is whether your libc and libmath
supports the C data type <type>long double</type>. If this is the case, &kcalc; will detect this
at compile time and use it as its fundamental data type to represent numbers.
</para>
<para>Adjust the <guilabel>Precision</guilabel> in &kcalc;'s
<guibutton>Configure</guibutton> dialog so that the above computations
work correctly. I recommend a precision of 14 if the fundamental data type
for your copy of &kcalc; is <type>long double</type>, otherwise 8 or 10.</para>
<para>Higher precision doesn't necessarily lead to better results. Play with
the precision and you will see what I mean.</para>
</answer>
</qandaentry>
</qandaset>
</chapter>
&commands;
<chapter id="copyright">
<title>Credits and License</title>
<para>&kcalc; Program Copyright ©:</para>
<para>Bernd Johannes Wuebben 1996-2000</para>
<para>The &kde; Team 2000-2004</para>
<itemizedlist>
<listitem><para>&Bernd.Johannes.Wuebben; &Bernd.Johannes.Wuebben.mail;</para></listitem>
<listitem><para>&Evan.Teran; &Evan.Teran.mail;</para></listitem>
<listitem><para>&Espen.Sand; &Espen.Sand.mail;</para></listitem>
<listitem><para>&Chris.Howells; &Chris.Howells.mail;</para></listitem>
<listitem><para>&Aaron.J.Seigo; &Aaron.J.Seigo.mail;</para></listitem>
<listitem><para>&Charles.Samuels; &Charles.Samuels.mail;</para></listitem>
</itemizedlist>
<para>&kcalc; was inspired by <personname><firstname>Martin</firstname> <surname>Bartlett</surname></personname>'s <application>xfrmcalc</application>,
whose stack engine is still part of &kcalc;.</para>
<para>Documentation Copyright © 2001,2002,2005, 2006:</para>
<itemizedlist>
<listitem><para>&Bernd.Johannes.Wuebben; &Bernd.Johannes.Wuebben.mail;</para></listitem>
<listitem><para>&Pamela.Roberts; &Pamela.Roberts.mail;</para></listitem>
<listitem><para>&J.Hall; &J.Hall.mail;</para></listitem>
<listitem><para>&Anne-Marie.Mahfouf;&Anne-Marie.Mahfouf.mail;</para></listitem>
</itemizedlist>
&underFDL;
&underGPL;
</chapter>
<appendix id="installation">
<title>Installation</title>
<para>&kcalc; is part of the tdeutils package within the &kde; project and will
normally be provided as part of a &kde; installation. For more details about
&kde; visit <ulink url="http://www.kde.org">http://www.kde.org</ulink>.</para>
<!--
<para>&kcalc;'s home site is <ulink
url="http://math.cornell.edu/~wuebben/kde.html">
http://math.cornell.edu/~wuebben/kde.html</ulink></para>
-->
<sect1 id="compilation-and-installation">
<title>Compilation and Installation</title>
&install.intro.documentation;
&install.compile.documentation;
</sect1>
<sect1 id="enable-long-double-precision">
<title>How to enable long double precision for &kcalc;</title>
<para>If your machine supports the C data type <type>long double</type>
and if you have a working libc you can enable <type>long double</type>
precision for &kcalc;.</para>
<para>Here is what to do:</para>
<procedure>
<step>
<para> Check <filename>../config.h</filename> and see whether
HAVE_LONG_DOUBLE is defined, &ie; you should be able to locate a
line saying:</para>
<screen>#define HAVE_LONG_DOUBLE 1</screen>
<para>If you can't find such a line your system doesn't support long
double IEEE precision. </para>
</step>
<step>
<para>Edit the files <filename class="headerfile">kcalctype.h</filename>,
<filename>configdlg.cpp</filename>, <filename>kcalc.cpp</filename> and
<filename>kcalc_core.cpp</filename> and remove the lines:</para>
<screen>
#ifdef HAVE_LONG_DOUBLE
#undef HAVE_LONG_DOUBLE
#endif
</screen>
</step>
<step>
<para> Recompile &kcalc;.
</para>
</step>
</procedure>
</sect1>
</appendix>
</book>
<!--
Local Variables:
mode: sgml
sgml-minimize-attributes:nil
sgml-general-insert-case:lower
sgml-indent-step:0
sgml-indent-data:nil
End:
-->