You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdevelop/languages/ada/ada.g

1983 lines
55 KiB

/*
* Ada95 Grammar for ANTLR, target language C++
*
* Copyright (C) 2003 Oliver M. Kellogg <okellogg@users.sourceforge.net>
* Modifications (C) 2005 Daniel Zuberbuehler <dzubi@users.sourceforge.net>
*
* Adapted from lexer9x.l/grammar9x.y,
*
******* A YACC grammar for Ada 9X *********************************
* Copyright (C) Intermetrics, Inc. 1994 Cambridge, MA USA *
* Copying permitted if accompanied by this statement. *
* Derivative works are permitted if accompanied by this statement.*
* This grammar is thought to be correct as of May 1, 1994 *
* but as usual there is *no warranty* to that effect. *
*******************************************************************
*
* $Id$
*
* Not all rules from the Ada95 Reference Manual (RM) Annex P,
* Syntax Summary, are mirrored as rules here.
* The tree nodes follow the RM grammar as closely as sensible.
* This applies in particular to the terminals. OTOH, trivially
* reconstructable non-terminal rules are not reflected in the tree.
* FIXME: Document the exact rationale of the tree design.
*
*/
header "pre_include_hpp" {
#include <antlr/SemanticException.h> // antlr wants this
#include "AdaAST.h"
#include "preambles.h"
}
options {
language="Cpp";
}
//-----------------------------------------------------------------------------
// Define a Parser, calling it AdaParser
//-----------------------------------------------------------------------------
class AdaParser extends Parser;
options {
k = 2; // token lookahead
exportVocab=Ada; // Call its vocabulary "Ada"
// codeGenMakeSwitchThreshold = 2; // Some optimizations
// codeGenBitsetTestThreshold = 3;
defaultErrorHandler = false; // Generate parser error handlers
buildAST = true;
ASTLabelType = "RefAdaAST";
}
{
ANTLR_PARSER_PREAMBLE
public:
// Ada support stuff
void push_def_id (const RefAdaAST& defid);
const RefAdaAST& pop_def_id ();
bool end_id_matches_def_id (const RefAdaAST& endid);
bool definable_operator (const char *string); // operator_symbol sans "/="
bool is_operator_symbol (const char *string);
}
// Compilation Unit: This is the start rule for this parser.
// The rules in this grammar are listed in the order in which
// compilation_unit introduces them, depth first, with the
// exception of the expression related rules which are listed
// towards the end.
compilation_unit
: context_items_opt ( library_item | subunit ) ( pragma )*
;
// The pragma related rules are pulled up here to get them out of the way.
pragma : PRAGMA^ IDENTIFIER pragma_args_opt SEMI!
;
pragma_args_opt : ( LPAREN! pragma_arg ( COMMA! pragma_arg )* RPAREN! )?
;
pragma_arg : ( IDENTIFIER RIGHT_SHAFT^ )? expression
;
context_items_opt : ( pragma | with_clause | use_clause )*
{ #context_items_opt =
#(#[CONTEXT_CLAUSE, "CONTEXT_CLAUSE"], #context_items_opt); }
// RM Annex P neglects pragmas; we include them.
// The node should really be named CONTEXT_ITEMS_OPT but we
// stick with the RM wording.
;
with_clause : w:WITH^ c_name_list SEMI!
{ Set(#w, WITH_CLAUSE); }
;
c_name_list : compound_name ( COMMA! compound_name )*
;
compound_name : IDENTIFIER ( DOT^ IDENTIFIER )*
// Strangely, the RM never defines this rule, which however is
// required for tightening up the syntax of certain names
// (library unit names etc.)
;
use_clause : u:USE^
( TYPE! subtype_mark ( COMMA! subtype_mark )*
{ Set(#u, USE_TYPE_CLAUSE); }
| c_name_list { Set(#u, USE_CLAUSE); }
)
SEMI!
;
subtype_mark : compound_name ( TIC^ attribute_id )?
// { #subtype_mark = #(#[SUBTYPE_MARK, "SUBTYPE_MARK"], #subtype_mark); }
;
attribute_id : RANGE
| DIGITS
| DELTA
| ACCESS
| IDENTIFIER
;
library_item : private_opt
/* Slightly loose; PRIVATE can only precede
{generic|package|subprog}_decl.
Semantic check required to ensure it.*/
( lib_pkg_spec_or_body
| subprog_decl_or_rename_or_inst_or_body[true]
| generic_decl[true]
)
{ #library_item = #(#[LIBRARY_ITEM, "LIBRARY_ITEM"], #library_item); }
;
private_opt : ( PRIVATE )?
{ #private_opt = #(#[MODIFIERS, "MODIFIERS"], #private_opt); }
;
lib_pkg_spec_or_body
: pkg:PACKAGE^
( BODY! def_id[true] IS! pkg_body_part SEMI!
{ Set(#pkg, PACKAGE_BODY); }
| def_id[true] spec_decl_part[#pkg]
)
;
subprog_decl [boolean lib_level]
{ RefAdaAST t; }
: p:PROCEDURE^ def_id[lib_level]
( generic_subp_inst
{ Set(#p, GENERIC_PROCEDURE_INSTANTIATION); }
| formal_part_opt
( renames { Set(#p, PROCEDURE_RENAMING_DECLARATION); }
| is_separate_or_abstract_or_decl[#p]
)
SEMI!
)
| f:FUNCTION^ def_designator[lib_level]
( generic_subp_inst
{ Set(#f, GENERIC_FUNCTION_INSTANTIATION); }
| function_tail
( renames { Set(#f, FUNCTION_RENAMING_DECLARATION); }
| is_separate_or_abstract_or_decl[#f]
)
SEMI!
)
;
def_id [boolean lib_level]
: { lib_level }? cn:compound_name { push_def_id(#cn); }
| { !lib_level }? n:IDENTIFIER { push_def_id(#n); }
;
generic_subp_inst : IS! generic_inst SEMI!
;
generic_inst : NEW! compound_name ( LPAREN! value_s RPAREN! )?
{ pop_def_id(); }
;
parenth_values : LPAREN! value ( COMMA! value )* RPAREN!
;
value : ( OTHERS^ RIGHT_SHAFT! expression
| ranged_expr_s ( RIGHT_SHAFT^ expression )?
)
// { #value = #(#[VALUE, "VALUE"], #value); }
;
ranged_expr_s : ranged_expr ( PIPE^ ranged_expr )*
// { #ranged_expr_s =
// #(#[RANGED_EXPRS, "RANGED_EXPRS"], #ranged_expr_s); }
;
ranged_expr : expression
( DOT_DOT^ simple_expression
| RANGE^ range
)?
;
range_constraint : r:RANGE^ range
{ Set(#r, RANGE_CONSTRAINT); }
;
range : ( (range_dots) => range_dots
| range_attrib_ref
)
// Current assumption is we don't need an extra node for range,
// otherwise uncomment the following line:
// { #range = #(#[RANGE_EXPR, "RANGE_EXPR"], #range); }
;
range_dots : simple_expression DOT_DOT^ simple_expression
;
range_attrib_ref : // "name TIC RANGE" is ambiguous; instead:
prefix TIC! r:RANGE^ ( LPAREN! expression RPAREN! )?
{ Set(#r, RANGE_ATTRIBUTE_REFERENCE); }
;
// Here, the definition of `prefix' deviates from the RM.
// This gives us some more strictness than `name' (which the RM uses to
// define `prefix'.)
prefix : IDENTIFIER
( DOT^ ( ALL | IDENTIFIER )
| p:LPAREN^ value_s RPAREN!
{ Set(#p, INDEXED_COMPONENT); }
)*
;
formal_part_opt : ( LPAREN! parameter_specification
( SEMI! parameter_specification )*
RPAREN! )?
{ #formal_part_opt = #([FORMAL_PART_OPT, "FORMAL_PART_OPT"],
#formal_part_opt); }
;
parameter_specification : def_ids_colon mode_opt subtype_mark init_opt
{ #parameter_specification =
#(#[PARAMETER_SPECIFICATION,
"PARAMETER_SPECIFICATION"], #parameter_specification); }
;
def_ids_colon : defining_identifier_list COLON!
;
defining_identifier_list : IDENTIFIER ( COMMA! IDENTIFIER )*
{ #defining_identifier_list =
#(#[DEFINING_IDENTIFIER_LIST,
"DEFINING_IDENTIFIER_LIST"], #defining_identifier_list); }
;
mode_opt : ( IN ( OUT )? | OUT | ACCESS )?
{ #mode_opt = #(#[MODIFIERS, "MODIFIERS"], #mode_opt); }
;
renames { RefAdaAST dummy; }
: RENAMES! ( name
| dummy=definable_operator_symbol
)
{ pop_def_id(); }
;
name { RefAdaAST dummy; }
: IDENTIFIER
( DOT^ ( ALL
| IDENTIFIER
| CHARACTER_LITERAL
| dummy=is_operator
)
| p:LPAREN^ value_s RPAREN!
{ Set(#p, INDEXED_COMPONENT); }
| TIC^ attribute_id // must be in here because of e.g.
// Character'Pos (x)
)*
// { #name = #(#[NAME, "NAME"], #name); }
;
is_operator returns [RefAdaAST d]
: { is_operator_symbol(LT(1)->getText().c_str()) }?
op:CHAR_STRING { #op->setType(OPERATOR_SYMBOL); d=#op; }
;
definable_operator_symbol returns [RefAdaAST d]
: { definable_operator(LT(1)->getText().c_str()) }?
op:CHAR_STRING { #op->setType(OPERATOR_SYMBOL); d=#op; }
;
parenthesized_primary : pp:LPAREN^
( NuLL RECORD!
| value_s extension_opt
)
RPAREN!
{ Set(#pp, PARENTHESIZED_PRIMARY); }
;
extension_opt : ( WITH! ( NuLL RECORD! | value_s ) )?
{ #extension_opt =
#(#[EXTENSION_OPT, "EXTENSION_OPT"], #extension_opt); }
;
is_separate_or_abstract_or_decl! [RefAdaAST t]
: IS! separate_or_abstract[t]
| { pop_def_id();
if (t->getType() == AdaTokenTypes::PROCEDURE)
Set(t, PROCEDURE_DECLARATION);
else
Set(t, FUNCTION_DECLARATION);
}
;
separate_or_abstract! [RefAdaAST t]
: SEPARATE!
{ pop_def_id();
if (t->getType() == AdaTokenTypes::PROCEDURE)
Set(t, PROCEDURE_BODY_STUB);
else
Set(t, FUNCTION_BODY_STUB);
}
| ABSTRACT!
{ pop_def_id();
if (t->getType() == AdaTokenTypes::PROCEDURE)
Set(t, ABSTRACT_PROCEDURE_DECLARATION);
else
Set(t, ABSTRACT_FUNCTION_DECLARATION);
}
;
def_designator [boolean lib_level]
{ RefAdaAST d; }
: { lib_level }? n:compound_name { push_def_id(#n); }
| { !lib_level }? d=designator { push_def_id(d); }
;
designator returns [RefAdaAST d]
{ RefAdaAST op; }
: op=definable_operator_symbol { d = op; }
| n:IDENTIFIER { d = #n; }
;
function_tail : func_formal_part_opt RETURN! subtype_mark
;
// formal_part_opt is not strict enough for functions, i.e. it permits
// "in out" and "out" as modes, thus we make an extra rule:
func_formal_part_opt : ( LPAREN! func_param ( SEMI! func_param )* RPAREN! )?
{ #func_formal_part_opt =
#([FORMAL_PART_OPT,
"FORMAL_PART_OPT"], #func_formal_part_opt); }
;
func_param : def_ids_colon in_access_opt subtype_mark init_opt
{ #func_param =
#(#[PARAMETER_SPECIFICATION,
"PARAMETER_SPECIFICATION"], #func_param); }
;
in_access_opt : ( IN | ACCESS )?
{ #in_access_opt = #(#[MODIFIERS, "MODIFIERS"], #in_access_opt); }
;
spec_decl_part [RefAdaAST pkg]
: ( IS! ( generic_inst { Set(pkg, GENERIC_PACKAGE_INSTANTIATION); }
| pkg_spec_part { Set(pkg, PACKAGE_SPECIFICATION); }
)
| renames { Set(pkg, PACKAGE_RENAMING_DECLARATION); }
)
SEMI!
;
pkg_spec_part : basic_declarative_items_opt
private_declarative_items_opt
end_id_opt
;
private_declarative_items_opt : ( PRIVATE! ( basic_decl_item | pragma )* )?
{ #private_declarative_items_opt =
#(#[PRIVATE_DECLARATIVE_ITEMS_OPT,
"PRIVATE_DECLARATIVE_ITEMS_OPT"],
#private_declarative_items_opt); }
;
basic_declarative_items_opt : ( basic_decl_item | pragma )*
{ #basic_declarative_items_opt =
#(#[BASIC_DECLARATIVE_ITEMS_OPT,
"BASIC_DECLARATIVE_ITEMS_OPT"],
#basic_declarative_items_opt); }
;
basic_declarative_items : ( basic_decl_item | pragma )+
{ #basic_declarative_items =
#(#[BASIC_DECLARATIVE_ITEMS_OPT,
"BASIC_DECLARATIVE_ITEMS_OPT"],
#basic_declarative_items); }
;
basic_decl_item
: pkg:PACKAGE^ def_id[false] spec_decl_part[#pkg]
| tsk:TASK^ task_type_or_single_decl[#tsk]
| pro:PROTECTED^ prot_type_or_single_decl[#pro] SEMI!
| subprog_decl[false]
| decl_common
;
task_type_or_single_decl [RefAdaAST tsk]
: TYPE! def_id[false] discrim_part_opt task_definition_opt
{ Set(tsk, TASK_TYPE_DECLARATION); }
| def_id[false] task_definition_opt
{ Set(tsk, SINGLE_TASK_DECLARATION); }
;
task_definition_opt
: IS! task_items_opt private_task_items_opt end_id_opt SEMI!
| SEMI! { pop_def_id(); }
;
discrim_part_opt
: ( discrim_part_text )?
{ #discrim_part_opt =
#(#[DISCRIM_PART_OPT,
"DISCRIM_PART_OPT"], #discrim_part_opt); }
;
discrim_part_text : LPAREN! (BOX | discriminant_specifications) RPAREN!
;
known_discrim_part
: LPAREN! discriminant_specifications RPAREN!
{ #known_discrim_part =
#(#[DISCRIM_PART_OPT,
"DISCRIM_PART_OPT"], #known_discrim_part); }
;
empty_discrim_opt : /* empty */
{ #empty_discrim_opt =
#(#[DISCRIM_PART_OPT,
"DISCRIM_PART_OPT"], #empty_discrim_opt); }
;
discrim_part
: discrim_part_text
{ #discrim_part =
#(#[DISCRIM_PART_OPT,
"DISCRIM_PART_OPT"], #discrim_part); }
;
discriminant_specifications : discriminant_specification
( SEMI! discriminant_specification )*
{ #discriminant_specifications =
#(#[DISCRIMINANT_SPECIFICATIONS,
"DISCRIMINANT_SPECIFICATIONS"],
#discriminant_specifications); }
;
discriminant_specification : def_ids_colon access_opt subtype_mark init_opt
{ #discriminant_specification =
#(#[DISCRIMINANT_SPECIFICATION,
"DISCRIMINANT_SPECIFICATION"],
#discriminant_specification); }
;
access_opt : ( ACCESS )?
{ #access_opt = #(#[MODIFIERS, "MODIFIERS"], #access_opt); }
;
init_opt : ( ASSIGN! expression )?
{ #init_opt = #(#[INIT_OPT, "INIT_OPT"], #init_opt); }
; // `expression' is of course much too loose;
// semantic checks are required in the usage contexts.
task_items_opt : ( pragma )* entrydecls_repspecs_opt
{ #task_items_opt =
#(#[TASK_ITEMS_OPT, "TASK_ITEMS_OPT"], #task_items_opt); }
;
entrydecls_repspecs_opt : ( entry_declaration ( pragma | rep_spec )* )*
;
entry_declaration : e:ENTRY^ IDENTIFIER
discrete_subtype_def_opt formal_part_opt SEMI!
{ Set (#e, ENTRY_DECLARATION); }
;
discrete_subtype_def_opt : ( (LPAREN discrete_subtype_definition RPAREN) =>
LPAREN! discrete_subtype_definition RPAREN!
| /* empty */
)
{ #discrete_subtype_def_opt =
#(#[DISCRETE_SUBTYPE_DEF_OPT,
"DISCRETE_SUBTYPE_DEF_OPT"], #discrete_subtype_def_opt); }
;
discrete_subtype_definition : ( (range) => range
| subtype_ind
)
// Looks alot like discrete_range, but it's not
// (as soon as we start doing semantics.)
/* TBC: No need for extra node, just use the inner nodes?
{ #discrete_subtype_definition =
#(#[DISCRETE_SUBTYPE_DEFINITION,
"DISCRETE_SUBTYPE_DEFINITION"],
#discrete_subtype_definition); }
*/
;
rep_spec : r:FOR^ subtype_mark USE! rep_spec_part[#r] SEMI!
;
rep_spec_part [RefAdaAST t]
: RECORD! align_opt comp_loc_s END! RECORD! // record_type_spec
{ Set(t, RECORD_REPRESENTATION_CLAUSE); }
| AT! expression // address_spec (Ada83)
{ Set(t, AT_CLAUSE); }
| expression // attrib_def. Semantic check must ensure that the
// respective subtype_mark contains an attribute reference.
{ Set(t, ATTRIBUTE_DEFINITION_CLAUSE); }
;
align_opt : ( AT! MOD! expression SEMI! )?
{ #align_opt = #(#[MOD_CLAUSE_OPT, "MOD_CLAUSE_OPT"], #align_opt); }
;
comp_loc_s : ( pragma | subtype_mark AT! expression RANGE! range SEMI! )*
{ #comp_loc_s = #(#[COMPONENT_CLAUSES_OPT, "COMPONENT_CLAUSES_OPT"],
#comp_loc_s); }
;
private_task_items_opt : ( PRIVATE! ( pragma )* entrydecls_repspecs_opt )?
{ #private_task_items_opt =
#(#[PRIVATE_TASK_ITEMS_OPT,
"PRIVATE_TASK_ITEMS_OPT"], #private_task_items_opt); }
// Maybe we could just reuse TASK_ITEMS_OPT here instead of
// making a separate node type.
;
prot_type_or_single_decl [RefAdaAST pro]
: TYPE! def_id[false] discrim_part_opt protected_definition
{ Set(pro, PROTECTED_TYPE_DECLARATION); }
| def_id[false] protected_definition
{ Set(pro, SINGLE_PROTECTED_DECLARATION); }
;
prot_private_opt : ( PRIVATE! ( prot_op_decl | comp_decl )* )?
{ #prot_private_opt =
#(#[PROT_PRIVATE_OPT,
"PROT_PRIVATE_OPT"], #prot_private_opt); }
;
protected_definition
: IS! prot_op_decl_s prot_private_opt end_id_opt
;
prot_op_decl_s : ( prot_op_decl )*
{ #prot_op_decl_s = #(#[PROT_OP_DECLARATIONS,
"PROT_OP_DECLARATIONS"], #prot_op_decl_s); }
;
prot_op_decl : entry_declaration
| p:PROCEDURE^ def_id[false] formal_part_opt SEMI!
{ pop_def_id(); Set(#p, PROCEDURE_DECLARATION); }
| f:FUNCTION^ def_designator[false] function_tail SEMI!
{ pop_def_id(); Set(#f, FUNCTION_DECLARATION); }
| rep_spec
| pragma
;
prot_member_decl_s : ( prot_op_decl | comp_decl )*
{ #prot_member_decl_s =
#(#[PROT_MEMBER_DECLARATIONS,
"PROT_MEMBER_DECLARATIONS"], #prot_member_decl_s); }
;
comp_decl : def_ids_colon component_subtype_def init_opt SEMI!
{ #comp_decl =
#(#[COMPONENT_DECLARATION,
"COMPONENT_DECLARATION"], #comp_decl); }
;
// decl_common is shared between declarative_item and basic_decl_item.
// decl_common only contains specifications.
decl_common
: t:TYPE^ IDENTIFIER
( IS! type_def[#t]
| ( discrim_part
( IS! derived_or_private_or_record[#t, true]
| { Set(#t, INCOMPLETE_TYPE_DECLARATION); }
)
| empty_discrim_opt
{ Set(#t, INCOMPLETE_TYPE_DECLARATION); }
// NB: In this case, the discrim_part_opt does not
// appear in the INCOMPLETE_TYPE_DECLARATION node.
)
/* The artificial derived_or_private_or_record rule
gives us some syntax-level control over where a
discrim_part may appear.
However, a semantic check is still necessary to make
sure the discrim_part is not given for a derived type
of an elementary type, or for the full view of a
private type that turns out to be such. */
)
SEMI!
| s:SUBTYPE^ IDENTIFIER IS! subtype_ind SEMI! // subtype_decl
{ Set(#s, SUBTYPE_DECLARATION); }
| generic_decl[false]
| use_clause
| r:FOR^ ( (local_enum_name USE LPAREN) => local_enum_name USE!
enumeration_aggregate
{ Set(#r, ENUMERATION_REPESENTATION_CLAUSE); }
| subtype_mark USE! rep_spec_part[#r]
)
SEMI!
| (IDENTIFIER COLON EXCEPTION RENAMES) =>
IDENTIFIER erd:COLON^ EXCEPTION! RENAMES! compound_name SEMI!
{ Set(#erd, EXCEPTION_RENAMING_DECLARATION); }
| (IDENTIFIER COLON subtype_mark RENAMES) =>
IDENTIFIER ord:COLON^ subtype_mark RENAMES! name SEMI!
{ Set(#ord, OBJECT_RENAMING_DECLARATION); }
| defining_identifier_list od:COLON^ // object_declaration
( EXCEPTION!
{ Set(#od, EXCEPTION_DECLARATION); }
| (CONSTANT ASSIGN) => CONSTANT! ASSIGN! expression
{ Set(#od, NUMBER_DECLARATION); }
| aliased_constant_opt
( array_type_definition[#od] init_opt
{ Set(#od, ARRAY_OBJECT_DECLARATION); }
// Not an RM rule, but simplifies distinction
// from the non-array object_declaration.
| subtype_ind init_opt
{ Set(#od, OBJECT_DECLARATION); }
)
)
SEMI!
;
type_def [RefAdaAST t]
: LPAREN! enum_id_s RPAREN!
{ Set(t, ENUMERATION_TYPE_DECLARATION); }
| RANGE! range
{ Set(t, SIGNED_INTEGER_TYPE_DECLARATION); }
| MOD! expression
{ Set(t, MODULAR_TYPE_DECLARATION); }
| DIGITS! expression range_constraint_opt
{ Set(t, FLOATING_POINT_DECLARATION); }
| DELTA! expression
( RANGE! range
{ Set(t, ORDINARY_FIXED_POINT_DECLARATION); }
| DIGITS! expression range_constraint_opt
{ Set(t, DECIMAL_FIXED_POINT_DECLARATION); }
)
| array_type_definition[t]
| access_type_definition[t]
| empty_discrim_opt derived_or_private_or_record[t, false]
;
enum_id_s : enumeration_literal_specification
( COMMA! enumeration_literal_specification )*
;
enumeration_literal_specification : IDENTIFIER | CHARACTER_LITERAL
;
range_constraint_opt : ( range_constraint )?
;
array_type_definition [RefAdaAST t]
: ARRAY! LPAREN! index_or_discrete_range_s RPAREN!
OF! component_subtype_def
{ Set(t, ARRAY_TYPE_DECLARATION); }
;
index_or_discrete_range_s
: index_or_discrete_range ( COMMA^ index_or_discrete_range )*
;
index_or_discrete_range
: simple_expression
( DOT_DOT^ simple_expression // constrained
| RANGE^ ( BOX // unconstrained
| range // constrained
)
)?
;
component_subtype_def : aliased_opt subtype_ind
;
aliased_opt : ( ALIASED )?
{ #aliased_opt = #(#[MODIFIERS, "MODIFIERS"], #aliased_opt); }
;
subtype_ind : subtype_mark constraint_opt
{ #subtype_ind = #(#[SUBTYPE_INDICATION, "SUBTYPE_INDICATION"],
#subtype_ind); }
;
constraint_opt : ( range_constraint
| digits_constraint
| delta_constraint
| (index_constraint) => index_constraint
| discriminant_constraint
)?
;
digits_constraint : d:DIGITS^ expression range_constraint_opt
{ Set(#d, DIGITS_CONSTRAINT); }
;
delta_constraint : d:DELTA^ expression range_constraint_opt
{ Set(#d, DELTA_CONSTRAINT); }
;
index_constraint : p:LPAREN^ discrete_range ( COMMA! discrete_range )* RPAREN!
{ Set(#p, INDEX_CONSTRAINT); }
;
discrete_range
: (range) => range
| subtype_ind
;
discriminant_constraint : p:LPAREN^ discriminant_association
( COMMA! discriminant_association )* RPAREN!
{ Set(#p, DISCRIMINANT_CONSTRAINT); }
;
discriminant_association : selector_names_opt expression
{ #discriminant_association =
#(#[DISCRIMINANT_ASSOCIATION,
"DISCRIMINANT_ASSOCIATION"], #discriminant_association); }
;
selector_names_opt : ( (association_head) => association_head
| /* empty */
)
{ #selector_names_opt =
#(#[SELECTOR_NAMES_OPT,
"SELECTOR_NAMES_OPT"], #selector_names_opt); }
;
association_head : selector_name ( PIPE! selector_name )* RIGHT_SHAFT!
;
selector_name : IDENTIFIER // TBD: sem pred
;
access_type_definition [RefAdaAST t]
: ACCESS!
( protected_opt
( PROCEDURE! formal_part_opt
{ Set(t, ACCESS_TO_PROCEDURE_DECLARATION); }
| FUNCTION! func_formal_part_opt RETURN! subtype_mark
{ Set(t, ACCESS_TO_FUNCTION_DECLARATION); }
)
| constant_all_opt subtype_ind
{ Set(t, ACCESS_TO_OBJECT_DECLARATION); }
)
;
protected_opt : ( PROTECTED )?
{ #protected_opt = #(#[MODIFIERS, "MODIFIERS"], #protected_opt); }
;
constant_all_opt : ( CONSTANT | ALL )?
{ #constant_all_opt =
#(#[MODIFIERS, "MODIFIERS"], #constant_all_opt); }
;
derived_or_private_or_record [RefAdaAST t, boolean has_discrim]
: ( ( ABSTRACT )? NEW subtype_ind WITH ) =>
abstract_opt NEW! subtype_ind WITH!
( PRIVATE! { Set(t, PRIVATE_EXTENSION_DECLARATION); }
| record_definition[has_discrim]
{ Set(t, DERIVED_RECORD_EXTENSION); }
)
| NEW! subtype_ind { Set(t, ORDINARY_DERIVED_TYPE_DECLARATION); }
| abstract_tagged_limited_opt
( PRIVATE! { Set(t, PRIVATE_TYPE_DECLARATION); }
| record_definition[has_discrim]
{ Set(t, RECORD_TYPE_DECLARATION); }
)
;
abstract_opt : ( ABSTRACT )?
{ #abstract_opt = #(#[MODIFIERS, "MODIFIERS"], #abstract_opt); }
;
record_definition [boolean has_discrim]
: RECORD! component_list[has_discrim] END! RECORD!
| NuLL! RECORD! // Thus the component_list is optional in the tree.
;
component_list [boolean has_discrim]
: NuLL! SEMI! // Thus the component_list is optional in the tree.
| component_items ( variant_part { has_discrim }? )?
| empty_component_items variant_part { has_discrim }?
;
component_items : ( pragma | comp_decl )+
{ #component_items =
#(#[COMPONENT_ITEMS,
"COMPONENT_ITEMS"], #component_items); }
;
empty_component_items :
{ #empty_component_items =
#(#[COMPONENT_ITEMS,
"COMPONENT_ITEMS"], #empty_component_items); }
;
variant_part : c:CASE^ discriminant_direct_name IS! variant_s END! CASE! SEMI!
{ Set (#c, VARIANT_PART); }
;
discriminant_direct_name : IDENTIFIER // TBD: symtab lookup.
;
variant_s : ( variant )+
{ #variant_s = #(#[VARIANTS, "VARIANTS"], #variant_s); }
;
variant : w:WHEN^ choice_s RIGHT_SHAFT! component_list[true]
{ Set (#w, VARIANT); }
;
choice_s : choice ( PIPE^ choice )*
;
choice : OTHERS
| (discrete_with_range) => discrete_with_range
| expression // ( DOT_DOT^ simple_expression )?
; // No, that's already in discrete_with_range
discrete_with_range : (mark_with_constraint) => mark_with_constraint
| range
;
mark_with_constraint : subtype_mark range_constraint
{ #mark_with_constraint =
#(#[MARK_WITH_CONSTRAINT,
"MARK_WITH_CONSTRAINT"], #mark_with_constraint); }
;
abstract_tagged_limited_opt
: ( ABSTRACT TAGGED! | TAGGED )?
( LIMITED )?
{ #abstract_tagged_limited_opt =
#(#[MODIFIERS, "MODIFIERS"], #abstract_tagged_limited_opt); }
;
local_enum_name : IDENTIFIER // to be refined: do a symbol table lookup
;
enumeration_aggregate : parenth_values
;
aliased_constant_opt : ( ALIASED )? ( CONSTANT )?
{ #aliased_constant_opt =
#(#[MODIFIERS, "MODIFIERS"], #aliased_constant_opt); }
;
generic_decl [boolean lib_level]
: g:GENERIC^ generic_formal_part_opt
( PACKAGE! def_id[lib_level]
( renames { Set(#g, GENERIC_PACKAGE_RENAMING); }
| IS! pkg_spec_part { Set(#g, GENERIC_PACKAGE_DECLARATION); }
)
| PROCEDURE! def_id[lib_level] formal_part_opt
( renames { Set(#g, GENERIC_PROCEDURE_RENAMING); }
// ^^^ Semantic check must ensure that the (generic_formal)*
// after GENERIC is not given here.
| { Set(#g, GENERIC_PROCEDURE_DECLARATION); pop_def_id(); }
)
| FUNCTION! def_designator[lib_level] function_tail
( renames { Set(#g, GENERIC_FUNCTION_RENAMING); }
// ^^^ Semantic check must ensure that the (generic_formal)*
// after GENERIC is not given here.
| { Set(#g, GENERIC_FUNCTION_DECLARATION); pop_def_id(); }
)
)
SEMI!
;
generic_formal_part_opt : ( use_clause | pragma | generic_formal_parameter )*
{ #generic_formal_part_opt =
#(#[GENERIC_FORMAL_PART,
"GENERIC_FORMAL_PART"],
#generic_formal_part_opt); }
;
generic_formal_parameter :
( t:TYPE^ def_id[false]
( IS!
( LPAREN! BOX! RPAREN!
{ Set (#t, FORMAL_DISCRETE_TYPE_DECLARATION); }
| RANGE! BOX!
{ Set (#t, FORMAL_SIGNED_INTEGER_TYPE_DECLARATION); }
| MOD! BOX!
{ Set (#t, FORMAL_MODULAR_TYPE_DECLARATION); }
| DELTA! BOX!
( DIGITS! BOX!
{ Set (#t, FORMAL_DECIMAL_FIXED_POINT_DECLARATION); }
| { Set (#t, FORMAL_ORDINARY_FIXED_POINT_DECLARATION); }
)
| DIGITS! BOX!
{ Set (#t, FORMAL_FLOATING_POINT_DECLARATION); }
| array_type_definition[#t]
| access_type_definition[#t]
| empty_discrim_opt discriminable_type_definition[#t]
)
| discrim_part IS! discriminable_type_definition[#t]
)
{ pop_def_id(); }
| w:WITH^ ( PROCEDURE! def_id[false] formal_part_opt subprogram_default_opt
{ Set(#w, FORMAL_PROCEDURE_DECLARATION); }
| FUNCTION! def_designator[false] function_tail subprogram_default_opt
{ Set(#w, FORMAL_FUNCTION_DECLARATION); }
| PACKAGE! def_id[false] IS! NEW! compound_name formal_package_actual_part_opt
{ Set(#w, FORMAL_PACKAGE_DECLARATION); }
)
{ pop_def_id(); }
| parameter_specification
)
SEMI!
;
discriminable_type_definition [RefAdaAST t]
: ( ( ABSTRACT )? NEW subtype_ind WITH ) =>
abstract_opt NEW! subtype_ind WITH! PRIVATE!
{ Set (t, FORMAL_PRIVATE_EXTENSION_DECLARATION); }
| NEW! subtype_ind
{ Set (t, FORMAL_ORDINARY_DERIVED_TYPE_DECLARATION); }
| abstract_tagged_limited_opt PRIVATE!
{ Set (t, FORMAL_PRIVATE_TYPE_DECLARATION); }
;
subprogram_default_opt : ( IS! ( BOX | name ) )?
;
formal_package_actual_part_opt
: ( LPAREN! ( BOX | defining_identifier_list ) RPAREN! )?
;
subprog_decl_or_rename_or_inst_or_body [boolean lib_level]
{ RefAdaAST t; }
: p:PROCEDURE^ def_id[lib_level]
( generic_subp_inst
{ Set(#p, GENERIC_PROCEDURE_INSTANTIATION); }
| formal_part_opt
( renames { Set(#p, PROCEDURE_RENAMING_DECLARATION); }
| IS! ( separate_or_abstract[#p]
| body_part { Set(#p, PROCEDURE_BODY); }
)
| { pop_def_id();
Set(#p, PROCEDURE_DECLARATION); }
)
SEMI!
)
| f:FUNCTION^ def_designator[lib_level]
( generic_subp_inst
{ Set(#f, GENERIC_FUNCTION_INSTANTIATION); }
| function_tail
( renames { Set(#f, FUNCTION_RENAMING_DECLARATION); }
| IS! ( separate_or_abstract[#f]
| body_part { Set(#f, FUNCTION_BODY); }
)
| { pop_def_id();
Set(#f, FUNCTION_DECLARATION); }
)
SEMI!
)
;
body_part : declarative_part block_body end_id_opt
;
declarative_part : ( pragma | declarative_item )*
{ #declarative_part =
#(#[DECLARATIVE_PART, "DECLARATIVE_PART"],
#declarative_part); }
;
// A declarative_item may appear in the declarative part of any body.
declarative_item :
( pkg:PACKAGE^ ( body_is
( separate { Set(#pkg, PACKAGE_BODY_STUB); }
| pkg_body_part
{ Set(#pkg, PACKAGE_BODY); }
)
SEMI!
| def_id[false] spec_decl_part[#pkg]
)
| tsk:TASK^ ( body_is
( separate { Set(#tsk, TASK_BODY_STUB); }
| body_part { Set(#tsk, TASK_BODY); }
)
SEMI!
| task_type_or_single_decl[#tsk]
)
| pro:PROTECTED^
( body_is
( separate { Set(#pro, PROTECTED_BODY_STUB); }
| prot_op_bodies_opt end_id_opt
{ Set(#pro, PROTECTED_BODY); }
)
| prot_type_or_single_decl[#pro]
)
SEMI!
| subprog_decl_or_rename_or_inst_or_body[false]
| decl_common
)
/* DECLARATIVE_ITEM is just a pass-thru node so we omit it.
Objections anybody?
{ #declarative_item =
#(#[DECLARATIVE_ITEM,
"DECLARATIVE_ITEM"], #declarative_item); }
*/
;
body_is : BODY! def_id[false] IS!
;
separate : SEPARATE! { pop_def_id(); }
;
pkg_body_part : declarative_part block_body_opt end_id_opt
;
block_body_opt : ( BEGIN! handled_stmt_s )?
{ #block_body_opt =
#(#[BLOCK_BODY_OPT,
"BLOCK_BODY_OPT"], #block_body_opt); }
;
prot_op_bodies_opt : ( entry_body
| subprog_decl_or_body
| pragma
)*
{ #prot_op_bodies_opt =
#(#[PROT_OP_BODIES_OPT,
"PROT_OP_BODIES_OPT"], #prot_op_bodies_opt); }
;
subprog_decl_or_body
: p:PROCEDURE^ def_id[false] formal_part_opt
( IS! body_part { Set(#p, PROCEDURE_BODY); }
| { pop_def_id(); Set(#p, PROCEDURE_DECLARATION); }
)
SEMI!
| f:FUNCTION^ def_designator[false] function_tail
( IS! body_part { Set(#f, FUNCTION_BODY); }
| { pop_def_id(); Set(#f, FUNCTION_DECLARATION); }
)
SEMI!
;
block_body : b:BEGIN^ handled_stmt_s
{ Set(#b, BLOCK_BODY); }
;
handled_stmt_s : statements except_handler_part_opt
{ #handled_stmt_s =
#(#[HANDLED_SEQUENCE_OF_STATEMENTS,
"HANDLED_SEQUENCE_OF_STATEMENTS"], #handled_stmt_s); }
;
handled_stmts_opt : ( statements except_handler_part_opt )?
{ #handled_stmts_opt =
#(#[HANDLED_STMTS_OPT,
"HANDLED_STMTS_OPT"], #handled_stmts_opt); }
;
statements : ( pragma | statement )+
{ #statements = #(#[SEQUENCE_OF_STATEMENTS,
"SEQUENCE_OF_STATEMENTS"], #statements); }
;
statement : def_label_opt
( null_stmt
| exit_stmt
| return_stmt
| goto_stmt
| delay_stmt
| abort_stmt
| raise_stmt
| requeue_stmt
| accept_stmt
| select_stmt
| if_stmt
| case_stmt
| loop_stmt SEMI!
| block END! SEMI!
| statement_identifier
( loop_stmt id_opt SEMI!
| block end_id_opt SEMI!
)
| call_or_assignment
// | code_stmt // TBD: resolve ambiguity
)
{ #statement = #(#[STATEMENT, "STATEMENT"], #statement); }
;
def_label_opt : ( LT_LT! IDENTIFIER GT_GT! )?
{ #def_label_opt = #(#[LABEL_OPT, "LABEL_OPT"], #def_label_opt); }
;
null_stmt : s:NuLL SEMI!
{ Set(#s, NULL_STATEMENT); }
;
if_stmt : s:IF^ cond_clause elsifs_opt
else_opt
END! IF! SEMI!
{ Set(#s, IF_STATEMENT); }
;
cond_clause : condition c:THEN^ statements
{ Set(#c, COND_CLAUSE); }
;
condition : expression
// { #condition = #(#[CONDITION, "CONDITION"], #condition); }
;
elsifs_opt : ( ELSIF! cond_clause )*
{ #elsifs_opt = #(#[ELSIFS_OPT, "ELSIFS_OPT"], #elsifs_opt); }
;
else_opt : ( ELSE! statements )?
{ #else_opt = #(#[ELSE_OPT, "ELSE_OPT"], #else_opt); }
;
case_stmt : s:CASE^ expression IS! alternative_s END! CASE! SEMI!
{ Set(#s, CASE_STATEMENT); }
;
alternative_s : ( case_statement_alternative )+
;
case_statement_alternative : s:WHEN^ choice_s RIGHT_SHAFT! statements
{ Set(#s, CASE_STATEMENT_ALTERNATIVE); }
;
loop_stmt : iteration_scheme_opt
l:LOOP^ statements END! LOOP! // basic_loop
{ Set(#l, LOOP_STATEMENT); }
;
iteration_scheme_opt : ( WHILE^ condition
| FOR^ IDENTIFIER IN! reverse_opt discrete_subtype_definition
)?
{ #iteration_scheme_opt =
#(#[ITERATION_SCHEME_OPT,
"ITERATION_SCHEME_OPT"], #iteration_scheme_opt); }
;
reverse_opt : ( REVERSE )?
{ #reverse_opt = #(#[MODIFIERS, "MODIFIERS"], #reverse_opt); }
;
id_opt_aux { RefAdaAST endid; } :
endid=definable_operator_symbol { end_id_matches_def_id (endid) }?
| n:compound_name { end_id_matches_def_id (#n) }?
/* Ordinarily we would need to be stricter here, i.e.
match compound_name only for the library-level case
(and IDENTIFIER otherwise), but end_id_matches_def_id
does the right thing for us. */
| { pop_def_id(); }
;
id_opt : id_opt_aux
{ #id_opt = #(#[ID_OPT, "ID_OPT"], #id_opt); }
;
end_id_opt : e:END^ id_opt_aux
{ Set(#e, END_ID_OPT); }
;
/* Note: This rule should really be `statement_identifier_opt'.
However, manual disambiguation of `loop_stmt' from `block'
in the presence of the statement_identifier in `statement'
results in this rule. The case of loop_stmt/block given
without the statement_identifier is directly coded in
`statement'. */
statement_identifier! : n:IDENTIFIER COLON!
{ push_def_id(#n); }
;
/*
statement_identifier_opt : ( n:IDENTIFIER COLON! { push_def_id(#n); } )?
{ #statement_identifier_opt =
#(#[STATEMENT_IDENTIFIER_OPT,
"STATEMENT_IDENTIFIER_OPT"], #statement_identifier_opt); }
;
*/
block : declare_opt block_body
{ #block = #(#[BLOCK_STATEMENT, "BLOCK_STATEMENT"], #block); }
;
declare_opt : ( DECLARE! declarative_part )?
{ #declare_opt = #(#[DECLARE_OPT, "DECLARE_OPT"], #declare_opt); }
;
exit_stmt : s:EXIT^ ( label_name )? ( WHEN condition )? SEMI!
{ Set(#s, EXIT_STATEMENT); }
;
label_name : IDENTIFIER
;
return_stmt : s:RETURN^ ( expression )? SEMI!
{ Set(#s, RETURN_STATEMENT); }
;
goto_stmt : s:GOTO^ label_name SEMI!
{ Set(#s, GOTO_STATEMENT); }
;
call_or_assignment : // procedure_call is in here.
name ( ASSIGN! expression
{ #call_or_assignment =
#(#[ASSIGNMENT_STATEMENT,
"ASSIGNMENT_STATEMENT"], #call_or_assignment); }
| { #call_or_assignment =
#(#[CALL_STATEMENT,
"CALL_STATEMENT"], #call_or_assignment); }
/* Preliminary. Use semantic analysis to produce
{PROCEDURE|ENTRY}_CALL_STATEMENT. */
)
SEMI!
;
entry_body : e:ENTRY^ def_id[false] entry_body_formal_part entry_barrier IS!
body_part SEMI!
{ Set (#e, ENTRY_BODY); }
;
entry_body_formal_part : entry_index_spec_opt formal_part_opt
;
entry_index_spec_opt :
( (LPAREN FOR) =>
LPAREN! FOR! def_id[false] IN! discrete_subtype_definition RPAREN!
| /* empty */
)
{ #entry_index_spec_opt =
#(#[ENTRY_INDEX_SPECIFICATION,
"ENTRY_INDEX_SPECIFICATION"], #entry_index_spec_opt); }
;
entry_barrier : WHEN! condition
;
entry_call_stmt : name SEMI! // Semantic analysis required, for example
// to ensure `name' is an entry.
{ #entry_call_stmt =
#(#[ENTRY_CALL_STATEMENT,
"ENTRY_CALL_STATEMENT"], #entry_call_stmt); }
;
accept_stmt : a:ACCEPT^ def_id[false] entry_index_opt formal_part_opt
( DO! handled_stmts_opt end_id_opt SEMI!
| SEMI! { pop_def_id(); }
)
{ Set (#a, ACCEPT_STATEMENT); }
;
entry_index_opt : ( (LPAREN expression RPAREN) => LPAREN! expression RPAREN!
// Looks alot like parenthesized_expr_opt, but it's not.
// We need the syn pred for the usage context in accept_stmt.
// The formal_part_opt that follows the entry_index_opt there
// creates ambiguity (due to the opening LPAREN.)
| /* empty */
)
{ #entry_index_opt =
#(#[ENTRY_INDEX_OPT,
"ENTRY_INDEX_OPT"], #entry_index_opt); }
;
delay_stmt : d:DELAY^ until_opt expression SEMI!
{ Set (#d, DELAY_STATEMENT); }
;
until_opt : ( UNTIL )?
{ #until_opt = #(#[MODIFIERS, "MODIFIERS"], #until_opt); }
;
// SELECT_STATEMENT itself is not modeled since it is trivially
// reconstructed:
// select_statement ::= selective_accept | timed_entry_call
// | conditional_entry_call | asynchronous_select
//
select_stmt : s:SELECT^
( (triggering_alternative THEN ABORT) =>
triggering_alternative THEN! ABORT! abortable_part
{ Set (#s, ASYNCHRONOUS_SELECT); }
| selective_accept
{ Set (#s, SELECTIVE_ACCEPT); }
| entry_call_alternative
( OR! delay_alternative { Set (#s, TIMED_ENTRY_CALL); }
| ELSE! statements { Set (#s, CONDITIONAL_ENTRY_CALL); }
)
)
END! SELECT! SEMI!
// { Set (#s, SELECT_STATEMENT); }
;
triggering_alternative : ( delay_stmt | entry_call_stmt ) stmts_opt
{ #triggering_alternative =
#(#[TRIGGERING_ALTERNATIVE,
"TRIGGERING_ALTERNATIVE"], #triggering_alternative); }
;
abortable_part : stmts_opt
{ #abortable_part =
#(#[ABORTABLE_PART,
"ABORTABLE_PART"], #abortable_part); }
;
entry_call_alternative : entry_call_stmt stmts_opt
{ #entry_call_alternative =
#(#[ENTRY_CALL_ALTERNATIVE,
"ENTRY_CALL_ALTERNATIVE"], #entry_call_alternative); }
;
selective_accept : guard_opt select_alternative or_select_opt else_opt
;
guard_opt : ( w:WHEN^ condition RIGHT_SHAFT! ( pragma )* )?
{ Set(#w, GUARD_OPT); }
;
select_alternative // Not modeled since it's just a pass-through.
: accept_alternative
| delay_alternative
| t:TERMINATE SEMI! { Set(#t, TERMINATE_ALTERNATIVE); }
;
accept_alternative : accept_stmt stmts_opt
{ #accept_alternative =
#(#[ACCEPT_ALTERNATIVE,
"ACCEPT_ALTERNATIVE"], #accept_alternative); }
;
delay_alternative : delay_stmt stmts_opt
{ #delay_alternative =
#(#[DELAY_ALTERNATIVE,
"DELAY_ALTERNATIVE"], #delay_alternative); }
;
stmts_opt : ( pragma | statement )*
;
or_select_opt : ( OR! guard_opt select_alternative )*
{ #or_select_opt =
#(#[OR_SELECT_OPT, "OR_SELECT_OPT"], #or_select_opt); }
;
abort_stmt : a:ABORT^ name ( COMMA! name )* SEMI!
{ Set (#a, ABORT_STATEMENT); }
;
except_handler_part_opt : ( EXCEPTION! ( exception_handler )+ )?
{ #except_handler_part_opt =
#(#[EXCEPT_HANDLER_PART_OPT,
"EXCEPT_HANDLER_PART_OPT"], #except_handler_part_opt); }
;
exception_handler : w:WHEN^ identifier_colon_opt except_choice_s RIGHT_SHAFT!
statements
{ Set (#w, EXCEPTION_HANDLER); }
;
identifier_colon_opt : ( IDENTIFIER COLON! )?
{ #identifier_colon_opt =
#(#[IDENTIFIER_COLON_OPT,
"IDENTIFIER_COLON_OPT"], #identifier_colon_opt); }
;
except_choice_s : exception_choice ( PIPE^ exception_choice )*
;
exception_choice : compound_name
| OTHERS
;
raise_stmt : r:RAISE^ ( compound_name )? SEMI!
{ Set (#r, RAISE_STATEMENT); }
;
requeue_stmt : r:REQUEUE^ name ( WITH! ABORT )? SEMI!
{ Set (#r, REQUEUE_STATEMENT); }
;
operator_call : cs:CHAR_STRING^ operator_call_tail[#cs]
;
operator_call_tail [RefAdaAST opstr]
: LPAREN! { is_operator_symbol(opstr->getText().c_str()) }?
value_s RPAREN! { opstr->setType(OPERATOR_SYMBOL); }
;
value_s : value ( COMMA! value )*
{ #value_s = #(#[VALUES, "VALUES"], #value_s); }
;
/*
literal : NUMERIC_LIT
| CHARACTER_LITERAL
| CHAR_STRING
| NuLL
;
*/
expression : relation
( a:AND^ ( THEN! { Set (#a, AND_THEN); } )? relation
| o:OR^ ( ELSE! { Set (#o, OR_ELSE); } )? relation
| XOR^ relation
)*
;
relation : simple_expression
( IN^ range_or_mark
| n:NOT^ IN! range_or_mark { Set (#n, NOT_IN); }
| EQ^ simple_expression
| NE^ simple_expression
| LT_^ simple_expression
| LE^ simple_expression
| GT^ simple_expression
| GE^ simple_expression
)?
;
range_or_mark : (range) => range
| subtype_mark
;
simple_expression : signed_term
( PLUS^ signed_term
| MINUS^ signed_term
| CONCAT^ signed_term
)*
;
signed_term
: p:PLUS^ term { Set(#p, UNARY_PLUS); }
| m:MINUS^ term { Set(#m, UNARY_MINUS); }
| term
;
term : factor ( STAR^ factor
| DIV^ factor
| MOD^ factor
| REM^ factor
)*
;
factor : ( NOT^ primary
| ABS^ primary
| primary ( EXPON^ primary )?
)
;
primary : ( name_or_qualified
| parenthesized_primary
| allocator
| NuLL
| NUMERIC_LIT
| CHARACTER_LITERAL
| cs:CHAR_STRING^ ( operator_call_tail[#cs] )?
)
;
// Temporary, to be turned into just `qualified'.
// We get away with it because `qualified' is always mentioned
// together with `name'.
// Only exception: `code_stmt', which is not yet implemented.
name_or_qualified { RefAdaAST dummy; }
: IDENTIFIER
( DOT^ ( ALL
| IDENTIFIER
| CHARACTER_LITERAL
| dummy=is_operator
)
| p:LPAREN^ value_s RPAREN!
{ Set(#p, INDEXED_COMPONENT); }
| TIC^ ( parenthesized_primary | attribute_id )
)*
;
allocator : n:NEW^ name_or_qualified
{ Set(#n, ALLOCATOR); }
;
subunit : sep:SEPARATE^ LPAREN! compound_name RPAREN!
{ Set(#sep, SUBUNIT); }
( subprogram_body
| package_body
| task_body
| protected_body
)
;
subprogram_body
: p:PROCEDURE^ def_id[false] formal_part_opt IS! body_part SEMI!
{ pop_def_id(); Set(#p, PROCEDURE_BODY); }
| f:FUNCTION^ def_designator[false] function_tail IS! body_part SEMI!
{ pop_def_id(); Set(#f, FUNCTION_BODY); }
;
package_body : p:PACKAGE^ body_is pkg_body_part SEMI!
{ Set(#p, PACKAGE_BODY); }
;
task_body : t:TASK^ body_is body_part SEMI!
{ Set(#t, TASK_BODY); }
;
protected_body : p:PROTECTED^ body_is prot_op_bodies_opt end_id_opt SEMI!
{ Set(#p, PROTECTED_BODY); }
;
// TBD
// code_stmt : qualified SEMI!
// ;
//----------------------------------------------------------------------------
// The Ada scanner
//----------------------------------------------------------------------------
{
#include "preambles.h"
}
class AdaLexer extends Lexer;
options {
charVocabulary = '\3'..'\377';
exportVocab = Ada; // call the vocabulary "Ada"
testLiterals = false; // don't automatically test for literals
k = 4; // number of characters of lookahead
caseSensitive = false;
caseSensitiveLiterals = false;
///defaultErrorHandler = true;
}
tokens {
// part 1: keywords
ABORT = "abort" ;
ABS = "abs" ;
ABSTRACT = "abstract" ;
ACCEPT = "accept" ;
ACCESS = "access" ;
ALIASED = "aliased" ;
ALL = "all" ;
AND = "and" ;
ARRAY = "array" ;
AT = "at" ;
BEGIN = "begin" ;
BODY = "body" ;
CASE = "case" ;
CONSTANT = "constant" ;
DECLARE = "declare" ;
DELAY = "delay" ;
DELTA = "delta" ;
DIGITS = "digits" ;
DO = "do" ;
ELSE = "else" ;
ELSIF = "elsif" ;
END = "end" ;
ENTRY = "entry" ;
EXCEPTION = "exception" ;
EXIT = "exit" ;
FOR = "for" ;
FUNCTION = "function" ;
GENERIC = "generic" ;
GOTO = "goto" ;
IF = "if" ;
IN = "in" ;
IS = "is" ;
LIMITED = "limited" ;
LOOP = "loop" ;
MOD = "mod" ;
NEW = "new" ;
NOT = "not" ;
NuLL = "null" ;
OF = "of" ;
OR = "or" ;
OTHERS = "others" ;
OUT = "out" ;
PACKAGE = "package" ;
PRAGMA = "pragma" ;
PRIVATE = "private" ;
PROCEDURE = "procedure" ;
PROTECTED = "protected" ;
RAISE = "raise" ;
RANGE = "range" ;
RECORD = "record" ;
REM = "rem" ;
RENAMES = "renames" ;
REQUEUE = "requeue" ;
RETURN = "return" ;
REVERSE = "reverse" ;
SELECT = "select" ;
SEPARATE = "separate" ;
SUBTYPE = "subtype" ;
TAGGED = "tagged" ;
TASK = "task" ;
TERMINATE = "terminate" ;
THEN = "then" ;
TYPE = "type" ;
UNTIL = "until" ;
USE = "use" ;
WHEN = "when" ;
WHILE = "while" ;
WITH = "with" ;
XOR = "xor" ;
// part 2: RM tokens (synthetic)
ABORTABLE_PART;
ABORT_STATEMENT;
/*ABSTRACT_SUBPROGRAM_DECLARATION; =>
ABSTRACT_{FUNCTION|PROCEDURE}_DECLARATION */
ACCEPT_ALTERNATIVE;
ACCEPT_STATEMENT;
/* ACCESS_TO_FUNCTION_DEFINITION => ACCESS_TO_FUNCTION_DECLARATION */
/* ACCESS_TO_OBJECT_DEFINITION => ACCESS_TO_OBJECT_DECLARATION */
/* ACCESS_TO_PROCEDURE_DEFINITION => ACCESS_TO_PROCEDURE_DECLARATION */
/* ACCESS_TYPE_DEFINITION => ACCESS_TYPE_DECLARATION */
ALLOCATOR;
/* ARRAY_TYPE_DEFINITION => ARRAY_TYPE_DECLARATION */
ASSIGNMENT_STATEMENT;
ASYNCHRONOUS_SELECT;
ATTRIBUTE_DEFINITION_CLAUSE;
AT_CLAUSE;
BLOCK_STATEMENT;
CASE_STATEMENT;
CASE_STATEMENT_ALTERNATIVE;
CODE_STATEMENT;
COMPONENT_DECLARATION;
// COMPONENT_LIST; // not currently used as an explicit node
// CONDITION; // not currently used
CONDITIONAL_ENTRY_CALL;
CONTEXT_CLAUSE;
/* DECIMAL_FIXED_POINT_DEFINITION => DECIMAL_FIXED_POINT_DECLARATION */
// DECLARATIVE_ITEM; // not currently used
DECLARATIVE_PART;
DEFINING_IDENTIFIER_LIST;
DELAY_ALTERNATIVE;
DELAY_STATEMENT;
DELTA_CONSTRAINT;
/* DERIVED_TYPE_DEFINITION; =>
DERIVED_RECORD_EXTENSION, ORDINARY_DERIVED_TYPE_DECLARATION */
DIGITS_CONSTRAINT;
// DISCRETE_RANGE; // Not used; instead, directly use its RHS alternatives.
DISCRIMINANT_ASSOCIATION;
DISCRIMINANT_CONSTRAINT;
DISCRIMINANT_SPECIFICATION;
ENTRY_BODY;
ENTRY_CALL_ALTERNATIVE;
ENTRY_CALL_STATEMENT;
ENTRY_DECLARATION;
ENTRY_INDEX_SPECIFICATION;
ENUMERATION_REPESENTATION_CLAUSE;
/* ENUMERATION_TYPE_DEFINITION => ENUMERATION_TYPE_DECLARATION */
EXCEPTION_DECLARATION;
EXCEPTION_HANDLER;
EXCEPTION_RENAMING_DECLARATION;
EXIT_STATEMENT;
/* FLOATING_POINT_DEFINITION => FLOATING_POINT_DECLARATION */
/* FORMAL_ACCESS_TYPE_DEFINITION => FORMAL_ACCESS_TYPE_DECLARATION */
/* FORMAL_ARRAY_TYPE_DEFINITION => FORMAL_ARRAY_TYPE_DECLARATION */
/* FORMAL_DECIMAL_FIXED_POINT_DEFINITION =>
FORMAL_DECIMAL_FIXED_POINT_DECLARATION */
/* FORMAL_DERIVED_TYPE_DEFINITION =>
FORMAL_{ORDINARY_DERIVED_TYPE|PRIVATE_EXTENSION}_DECLARATION */
/* FORMAL_DISCRETE_TYPE_DEFINITION => FORMAL_DISCRETE_TYPE_DECLARATION */
/* FORMAL_FLOATING_POINT_DEFINITION =>
FORMAL_FLOATING_POINT_DECLARATION */
/* FORMAL_MODULAR_TYPE_DEFINITION => FORMAL_MODULAR_TYPE_DECLARATION */
/* FORMAL_ORDINARY_FIXED_POINT_DEFINITION =>
FORMAL_ORDINARY_FIXED_POINT_DECLARATION */
FORMAL_PACKAGE_DECLARATION;
/* FORMAL_PRIVATE_TYPE_DEFINITION => FORMAL_PRIVATE_TYPE_DECLARATION */
/* FORMAL_SIGNED_INTEGER_TYPE_DEFINITION =>
FORMAL_SIGNED_INTEGER_TYPE_DECLARATION */
/* FORMAL_SUBPROGRAM_DECLARATION; =>
FORMAL_{FUNCTION|PROCEDURE}_DECLARATION */
/* FORMAL_TYPE_DECLARATION; not used, replaced by the corresponding
finer grained declarations */
/* FORMAL_TYPE_DEFINITION; not used at all; we use declarations
not definitions */
/* FULL_TYPE_DECLARATION; not used, replaced by the corresponding
finer grained declarations */
GENERIC_FORMAL_PART;
/* GENERIC_INSTANTIATION; =>
GENERIC_{FUNCTION|PACKAGE|PROCEDURE}_INSTANTIATION */
GENERIC_PACKAGE_DECLARATION;
/* GENERIC_RENAMING_DECLARATION; =>
GENERIC_{FUNCTION|PACKAGE|PROCEDURE}_RENAMING */
/* GENERIC_SUBPROGRAM_DECLARATION; =>
GENERIC_{FUNCTION|PROCEDURE}_DECLARATION */
GOTO_STATEMENT;
HANDLED_SEQUENCE_OF_STATEMENTS;
HANDLED_STMTS_OPT;
IF_STATEMENT;
INCOMPLETE_TYPE_DECLARATION;
INDEXED_COMPONENT;
INDEX_CONSTRAINT;
LIBRARY_ITEM;
LOOP_STATEMENT;
/* MODULAR_TYPE_DEFINITION => MODULAR_TYPE_DECLARATION */
NAME;
NULL_STATEMENT;
NUMBER_DECLARATION;
OBJECT_DECLARATION;
OBJECT_RENAMING_DECLARATION;
OPERATOR_SYMBOL;
/* ORDINARY_FIXED_POINT_DEFINITION => ORDINARY_FIXED_POINT_DECLARATION */
PACKAGE_BODY;
PACKAGE_BODY_STUB;
PACKAGE_RENAMING_DECLARATION;
PACKAGE_SPECIFICATION;
PARAMETER_SPECIFICATION;
// PREFIX; // not used
// PRIMARY; // not used
PRIVATE_EXTENSION_DECLARATION;
PRIVATE_TYPE_DECLARATION;
// PROCEDURE_CALL_STATEMENT; // NYI, using CALL_STATEMENT for now.
PROTECTED_BODY;
PROTECTED_BODY_STUB;
PROTECTED_TYPE_DECLARATION;
RAISE_STATEMENT;
RANGE_ATTRIBUTE_REFERENCE;
RECORD_REPRESENTATION_CLAUSE;
/* RECORD_TYPE_DEFINITION => RECORD_TYPE_DECLARATION */
REQUEUE_STATEMENT;
RETURN_STATEMENT;
SELECTIVE_ACCEPT;
/* SELECT_ALTERNATIVE; Not used - instead, we use the finer grained rules
ACCEPT_ALTERNATIVE | DELAY_ALTERNATIVE
| TERMINATE_ALTERNATIVE */
/* SELECT_STATEMENT; Not used - instead, we use the finer grained rules
SELECTIVE_ACCEPT | TIMED_ENTRY_CALL
| CONDITIONAL_ENTRY_CALL | ASYNCHRONOUS_SELECT */
SEQUENCE_OF_STATEMENTS;
/* SIGNED_INTEGER_TYPE_DEFINITION => SIGNED_INTEGER_TYPE_DECLARATION */
SINGLE_PROTECTED_DECLARATION;
SINGLE_TASK_DECLARATION;
STATEMENT;
/* SUBPROGRAM_BODY; => {FUNCTION|PROCEDURE}_BODY */
/* SUBPROGRAM_BODY_STUB; => {FUNCTION|PROCEDURE}_BODY_STUB */
/* SUBPROGRAM_DECLARATION; => {FUNCTION|PROCEDURE}_DECLARATION */
/* SUBPROGRAM_RENAMING_DECLARATION; =>
{FUNCTION|PROCEDURE}_RENAMING_DECLARATION */
SUBTYPE_DECLARATION;
SUBTYPE_INDICATION;
SUBTYPE_MARK;
SUBUNIT;
TASK_BODY;
TASK_BODY_STUB;
TASK_TYPE_DECLARATION;
TERMINATE_ALTERNATIVE;
TIMED_ENTRY_CALL;
TRIGGERING_ALTERNATIVE;
/* TYPE_DECLARATION; not used, replaced by the corresponding
finer grained declarations */
USE_CLAUSE;
USE_TYPE_CLAUSE;
VARIANT;
VARIANT_PART;
WITH_CLAUSE;
// part 3: Non-RM synthetic tokens.
// They exist mainly to normalize the node structure with respect to
// optional items. (Without them, the presence or absence of an optional
// item would change the node layout, but we want a fixed layout.)
ABSTRACT_FUNCTION_DECLARATION;
ABSTRACT_PROCEDURE_DECLARATION;
ACCESS_TO_FUNCTION_DECLARATION;
ACCESS_TO_OBJECT_DECLARATION;
ACCESS_TO_PROCEDURE_DECLARATION;
/* ACCESS_TYPE_DECLARATION; not used, replaced by
ACCESS_TO_{FUNCTION|OBJECT|PROCEDURE}_DECLARATION
*/
ARRAY_OBJECT_DECLARATION;
ARRAY_TYPE_DECLARATION;
AND_THEN;
BASIC_DECLARATIVE_ITEMS_OPT;
BLOCK_BODY;
BLOCK_BODY_OPT;
CALL_STATEMENT; // See {PROCEDURE|ENTRY}_CALL_STATEMENT
COMPONENT_CLAUSES_OPT;
COMPONENT_ITEMS;
COND_CLAUSE;
DECIMAL_FIXED_POINT_DECLARATION;
DECLARE_OPT;
DERIVED_RECORD_EXTENSION;
// DERIVED_TYPE_DECLARATION; // not used
DISCRETE_SUBTYPE_DEF_OPT;
DISCRIMINANT_SPECIFICATIONS;
DISCRIM_PART_OPT;
ELSE_OPT;
ELSIFS_OPT;
END_ID_OPT;
ENTRY_INDEX_OPT;
ENUMERATION_TYPE_DECLARATION;
EXCEPT_HANDLER_PART_OPT;
EXTENSION_OPT;
FLOATING_POINT_DECLARATION;
/* FORMAL_ACCESS_TYPE_DECLARATION => ACCESS_TYPE_DECLARATION */
/* FORMAL_ARRAY_TYPE_DECLARATION => ARRAY_TYPE_DECLARATION */
FORMAL_DECIMAL_FIXED_POINT_DECLARATION;
FORMAL_DISCRETE_TYPE_DECLARATION;
FORMAL_FLOATING_POINT_DECLARATION;
FORMAL_FUNCTION_DECLARATION;
FORMAL_MODULAR_TYPE_DECLARATION;
FORMAL_ORDINARY_DERIVED_TYPE_DECLARATION;
FORMAL_ORDINARY_FIXED_POINT_DECLARATION;
FORMAL_PART_OPT;
FORMAL_PRIVATE_EXTENSION_DECLARATION;
FORMAL_PRIVATE_TYPE_DECLARATION;
FORMAL_PROCEDURE_DECLARATION;
FORMAL_SIGNED_INTEGER_TYPE_DECLARATION;
FUNCTION_BODY;
FUNCTION_BODY_STUB;
FUNCTION_DECLARATION;
FUNCTION_RENAMING_DECLARATION;
GENERIC_FUNCTION_DECLARATION;
GENERIC_FUNCTION_INSTANTIATION;
GENERIC_FUNCTION_RENAMING;
GENERIC_PACKAGE_INSTANTIATION;
GENERIC_PACKAGE_RENAMING;
GENERIC_PROCEDURE_DECLARATION;
GENERIC_PROCEDURE_INSTANTIATION;
GENERIC_PROCEDURE_RENAMING;
GUARD_OPT;
IDENTIFIER_COLON_OPT;
ID_OPT;
INIT_OPT;
ITERATION_SCHEME_OPT;
LABEL_OPT;
MARK_WITH_CONSTRAINT;
MODIFIERS; /* Possible values: abstract access aliased all constant in
limited out private protected reverse tagged */
MODULAR_TYPE_DECLARATION;
MOD_CLAUSE_OPT;
// NAME_OR_QUALIFIED;
NOT_IN;
ORDINARY_DERIVED_TYPE_DECLARATION;
ORDINARY_FIXED_POINT_DECLARATION;
OR_ELSE;
OR_SELECT_OPT;
PARENTHESIZED_PRIMARY;
// PARENTHESIZED_VALUES;
// PARENTHESIZED_VALUES_OPT;
PRIVATE_DECLARATIVE_ITEMS_OPT;
PRIVATE_TASK_ITEMS_OPT;
PROCEDURE_BODY;
PROCEDURE_BODY_STUB;
PROCEDURE_DECLARATION;
PROCEDURE_RENAMING_DECLARATION;
PROT_MEMBER_DECLARATIONS;
PROT_OP_BODIES_OPT;
PROT_OP_DECLARATIONS;
PROT_PRIVATE_OPT;
RANGED_EXPRS; // ugh, what an ugly name
RANGE_CONSTRAINT;
RECORD_TYPE_DECLARATION;
SELECTOR_NAMES_OPT;
SIGNED_INTEGER_TYPE_DECLARATION;
TASK_ITEMS_OPT;
UNARY_MINUS;
UNARY_PLUS;
VALUE;
VALUES;
VARIANTS;
}
{
ANTLR_LEXER_PREAMBLE
private:
bool lastTokenWasTicCompatible;
}
//----------------------------------------------------------------------------
// OPERATORS
//----------------------------------------------------------------------------
COMMENT_INTRO : "--" {lastTokenWasTicCompatible=false;};
DOT_DOT : ".." {lastTokenWasTicCompatible=false;};
LT_LT : "<<" {lastTokenWasTicCompatible=false;};
OX : "<>" {lastTokenWasTicCompatible=false;};
GT_GT : ">>" {lastTokenWasTicCompatible=false;};
ASSIGN : ":=" {lastTokenWasTicCompatible=false;};
RIGHT_SHAFT : "=>" {lastTokenWasTicCompatible=false;};
NE : "/=" {lastTokenWasTicCompatible=false;};
LE : "<=" {lastTokenWasTicCompatible=false;};
GE : ">=" {lastTokenWasTicCompatible=false;};
EXPON : "**" {lastTokenWasTicCompatible=false;};
PIPE : '|' {lastTokenWasTicCompatible=false;};
CONCAT : '&' {lastTokenWasTicCompatible=false;};
DOT : '.' {lastTokenWasTicCompatible=false;};
EQ : '=' {lastTokenWasTicCompatible=false;};
LT_ : '<' {lastTokenWasTicCompatible=false;};
GT : '>' {lastTokenWasTicCompatible=false;};
PLUS : '+' {lastTokenWasTicCompatible=false;};
MINUS : '-' {lastTokenWasTicCompatible=false;};
STAR : '*' {lastTokenWasTicCompatible=false;};
DIV : '/' {lastTokenWasTicCompatible=false;};
LPAREN : '(' {lastTokenWasTicCompatible=false;};
RPAREN : ')' {lastTokenWasTicCompatible=true;};
COLON : ':' {lastTokenWasTicCompatible=false;};
COMMA : ',' {lastTokenWasTicCompatible=false;};
SEMI : ';' {lastTokenWasTicCompatible=false;};
// Literals.
// Rule for IDENTIFIER: testLiterals is set to true. This means that
// after we match the rule, we look in the literals table to see if
// it's a keyword or really an identifier.
IDENTIFIER
options {testLiterals=true;}
: ( 'a'..'z' ) ( ('_')? ( 'a'..'z'|'0'..'9' ) )*
;
TIC_OR_CHARACTER_LITERAL :
"'"! { $setType(TIC); } (
{ ! lastTokenWasTicCompatible }? . "'"!
{ $setType(CHARACTER_LITERAL); }
)?
{lastTokenWasTicCompatible=false;};
CHAR_STRING : '"'! ("\"\"" | ~('"'))* '"'!
{lastTokenWasTicCompatible=true;};
NUMERIC_LIT : ( DIGIT )+
( '#' BASED_INTEGER ( '.' BASED_INTEGER )? '#'
| ( '_' ( DIGIT )+ )+ // INTEGER
)?
( { LA(2)!='.' }? //&& LA(3)!='.' }?
( '.' ( DIGIT )+ ( '_' ( DIGIT )+ )* ( EXPONENT )?
| EXPONENT
)
)?
{lastTokenWasTicCompatible=false;};
// a couple protected methods to assist in matching the various numbers
protected
DIGIT : ( '0'..'9' ) {lastTokenWasTicCompatible=false;};
protected
EXPONENT : ('e') ('+'|'-')? ( DIGIT )+ {lastTokenWasTicCompatible=false;};
protected
EXTENDED_DIGIT : ( DIGIT | 'a'..'f' ) {lastTokenWasTicCompatible=false;};
protected
BASED_INTEGER : ( EXTENDED_DIGIT ) ( ('_')? EXTENDED_DIGIT )* {lastTokenWasTicCompatible=false;};
// Whitespace -- ignored
WS_ : ( ' '
| '\t'
| '\f'
// handle newlines
| ( "\r\n" // Evil DOS
| '\r' // Macintosh
| '\n' // Unix (the right way)
)
{ newline(); }
)
{ $setType(antlr::Token::SKIP); }
;
// Single-line comments
COMMENT : COMMENT_INTRO (~('\n'|'\r'))* ('\n'|'\r'('\n')?)
{ $setType(antlr::Token::SKIP);
newline();
lastTokenWasTicCompatible=false; }
;