|
|
|
/****************************************************************************
|
|
|
|
**
|
|
|
|
** Implementation of TQImage and TQImageIO classes
|
|
|
|
**
|
|
|
|
** Created : 950207
|
|
|
|
**
|
|
|
|
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
|
|
|
|
**
|
|
|
|
** This file is part of the kernel module of the TQt GUI Toolkit.
|
|
|
|
**
|
|
|
|
** This file may be used under the terms of the GNU General
|
|
|
|
** Public License versions 2.0 or 3.0 as published by the Free
|
|
|
|
** Software Foundation and appearing in the files LICENSE.GPL2
|
|
|
|
** and LICENSE.GPL3 included in the packaging of this file.
|
|
|
|
** Alternatively you may (at your option) use any later version
|
|
|
|
** of the GNU General Public License if such license has been
|
|
|
|
** publicly approved by Trolltech ASA (or its successors, if any)
|
|
|
|
** and the KDE Free TQt Foundation.
|
|
|
|
**
|
|
|
|
** Please review the following information to ensure GNU General
|
|
|
|
** Public Licensing requirements will be met:
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
|
|
|
|
** If you are unsure which license is appropriate for your use, please
|
|
|
|
** review the following information:
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
|
|
|
|
** or contact the sales department at sales@trolltech.com.
|
|
|
|
**
|
|
|
|
** This file may be used under the terms of the Q Public License as
|
|
|
|
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
|
|
|
|
** included in the packaging of this file. Licensees holding valid TQt
|
|
|
|
** Commercial licenses may use this file in accordance with the TQt
|
|
|
|
** Commercial License Agreement provided with the Software.
|
|
|
|
**
|
|
|
|
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
|
|
|
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
|
|
|
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
|
|
|
|
** herein.
|
|
|
|
**
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
#include "ntqimage.h"
|
|
|
|
#include "ntqregexp.h"
|
|
|
|
#include "ntqfile.h"
|
|
|
|
#include "ntqdatastream.h"
|
|
|
|
#include "ntqtextstream.h"
|
|
|
|
#include "ntqbuffer.h"
|
|
|
|
#include "ntqptrlist.h"
|
|
|
|
#include "ntqasyncimageio.h"
|
|
|
|
#include "ntqpngio.h"
|
|
|
|
#include "ntqmngio.h"
|
|
|
|
#include "ntqjpegio.h"
|
|
|
|
#include "ntqmap.h"
|
|
|
|
#include <private/qpluginmanager_p.h>
|
|
|
|
#include "qimageformatinterface_p.h"
|
|
|
|
#include "ntqwmatrix.h"
|
|
|
|
#include "ntqapplication.h"
|
|
|
|
#include "ntqmime.h"
|
|
|
|
#include "ntqdragobject.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
#include "qgfx_qws.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// 16bpp images on supported on TQt/Embedded
|
|
|
|
#if !defined( Q_WS_QWS ) && !defined(QT_NO_IMAGE_16_BIT)
|
|
|
|
#define QT_NO_IMAGE_16_BIT
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\class TQImage
|
|
|
|
\brief The TQImage class provides a hardware-independent pixmap
|
|
|
|
representation with direct access to the pixel data.
|
|
|
|
|
|
|
|
\ingroup images
|
|
|
|
\ingroup graphics
|
|
|
|
\ingroup shared
|
|
|
|
\mainclass
|
|
|
|
|
|
|
|
It is one of the two classes TQt provides for dealing with images,
|
|
|
|
the other being TQPixmap. TQImage is designed and optimized for I/O
|
|
|
|
and for direct pixel access/manipulation. TQPixmap is designed and
|
|
|
|
optimized for drawing. There are (slow) functions to convert
|
|
|
|
between TQImage and TQPixmap: TQPixmap::convertToImage() and
|
|
|
|
TQPixmap::convertFromImage().
|
|
|
|
|
|
|
|
An image has the parameters \link width() width\endlink, \link
|
|
|
|
height() height\endlink and \link depth() depth\endlink (bits per
|
|
|
|
pixel, bpp), a color table and the actual \link bits()
|
|
|
|
pixels\endlink. TQImage supports 1-bpp, 8-bpp and 32-bpp image
|
|
|
|
data. 1-bpp and 8-bpp images use a color lookup table; the pixel
|
|
|
|
value is a color table index.
|
|
|
|
|
|
|
|
32-bpp images encode an RGB value in 24 bits and ignore the color
|
|
|
|
table. The most significant byte is used for the \link
|
|
|
|
setAlphaBuffer() alpha buffer\endlink.
|
|
|
|
|
|
|
|
An entry in the color table is an RGB triplet encoded as a \c
|
|
|
|
uint. Use the \link ::tqRed() tqRed()\endlink, \link ::tqGreen()
|
|
|
|
tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink functions (\c
|
|
|
|
ntqcolor.h) to access the components, and \link ::tqRgb()
|
|
|
|
tqRgb\endlink to make an RGB triplet (see the TQColor class
|
|
|
|
documentation).
|
|
|
|
|
|
|
|
1-bpp (monochrome) images have a color table with a most two
|
|
|
|
colors. There are two different formats: big endian (MSB first) or
|
|
|
|
little endian (LSB first) bit order. To access a single bit you
|
|
|
|
will must do some bit shifts:
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQImage image;
|
|
|
|
// sets bit at (x,y) to 1
|
|
|
|
if ( image.bitOrder() == TQImage::LittleEndian )
|
|
|
|
*(image.scanLine(y) + (x >> 3)) |= 1 << (x & 7);
|
|
|
|
else
|
|
|
|
*(image.scanLine(y) + (x >> 3)) |= 1 << (7 - (x & 7));
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
If this looks complicated, it might be a good idea to convert the
|
|
|
|
1-bpp image to an 8-bpp image using convertDepth().
|
|
|
|
|
|
|
|
8-bpp images are much easier to work with than 1-bpp images
|
|
|
|
because they have a single byte per pixel:
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQImage image;
|
|
|
|
// set entry 19 in the color table to yellow
|
|
|
|
image.setColor( 19, tqRgb(255,255,0) );
|
|
|
|
// set 8 bit pixel at (x,y) to value yellow (in color table)
|
|
|
|
*(image.scanLine(y) + x) = 19;
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
32-bpp images ignore the color table; instead, each pixel contains
|
|
|
|
the RGB triplet. 24 bits contain the RGB value; the most
|
|
|
|
significant byte is reserved for the alpha buffer.
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQImage image;
|
|
|
|
// sets 32 bit pixel at (x,y) to yellow.
|
|
|
|
uint *p = (uint *)image.scanLine(y) + x;
|
|
|
|
*p = tqRgb(255,255,0);
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
On TQt/Embedded, scanlines are aligned to the pixel depth and may
|
|
|
|
be padded to any degree, while on all other platforms, the
|
|
|
|
scanlines are 32-bit aligned for all depths. The constructor
|
|
|
|
taking a \c{uchar*} argument always expects 32-bit aligned data.
|
|
|
|
On TQt/Embedded, an additional constructor allows the number of
|
|
|
|
bytes-per-line to be specified.
|
|
|
|
|
|
|
|
TQImage supports a variety of methods for getting information about
|
|
|
|
the image, for example, colorTable(), allGray(), isGrayscale(),
|
|
|
|
bitOrder(), bytesPerLine(), depth(), dotsPerMeterX() and
|
|
|
|
dotsPerMeterY(), hasAlphaBuffer(), numBytes(), numColors(), and
|
|
|
|
width() and height().
|
|
|
|
|
|
|
|
Pixel colors are retrieved with pixel() and set with setPixel().
|
|
|
|
|
|
|
|
TQImage also supports a number of functions for creating a new
|
|
|
|
image that is a transformed version of the original. For example,
|
|
|
|
copy(), convertBitOrder(), convertDepth(), createAlphaMask(),
|
|
|
|
createHeuristicMask(), mirror(), scale(), smoothScale(), swapRGB()
|
|
|
|
and xForm(). There are also functions for changing attributes of
|
|
|
|
an image in-place, for example, setAlphaBuffer(), setColor(),
|
|
|
|
setDotsPerMeterX() and setDotsPerMeterY() and setNumColors().
|
|
|
|
|
|
|
|
Images can be loaded and saved in the supported formats. Images
|
|
|
|
are saved to a file with save(). Images are loaded from a file
|
|
|
|
with load() (or in the constructor) or from an array of data with
|
|
|
|
loadFromData(). The lists of supported formats are available from
|
|
|
|
inputFormatList() and outputFormatList().
|
|
|
|
|
|
|
|
Strings of text may be added to images using setText().
|
|
|
|
|
|
|
|
The TQImage class uses explicit \link shclass.html sharing\endlink,
|
|
|
|
similar to that used by TQMemArray.
|
|
|
|
|
|
|
|
New image formats can be added as \link plugins-howto.html
|
|
|
|
plugins\endlink.
|
|
|
|
|
|
|
|
\sa TQImageIO TQPixmap \link shclass.html Shared Classes\endlink
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\enum TQImage::Endian
|
|
|
|
|
|
|
|
This enum type is used to describe the endianness of the CPU and
|
|
|
|
graphics hardware.
|
|
|
|
|
|
|
|
\value IgnoreEndian Endianness does not matter. Useful for some
|
|
|
|
operations that are independent of endianness.
|
|
|
|
\value BigEndian Network byte order, as on SPARC and Motorola CPUs.
|
|
|
|
\value LittleEndian PC/Alpha byte order.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\enum TQt::ImageConversionFlags
|
|
|
|
|
|
|
|
The conversion flag is a bitwise-OR of the following values. The
|
|
|
|
options marked "(default)" are set if no other values from the
|
|
|
|
list are included (since the defaults are zero):
|
|
|
|
|
|
|
|
Color/Mono preference (ignored for TQBitmap)
|
|
|
|
\value AutoColor (default) - If the image has \link
|
|
|
|
TQImage::depth() depth\endlink 1 and contains only
|
|
|
|
black and white pixels, the pixmap becomes monochrome.
|
|
|
|
\value ColorOnly The pixmap is dithered/converted to the
|
|
|
|
\link TQPixmap::defaultDepth() native display depth\endlink.
|
|
|
|
\value MonoOnly The pixmap becomes monochrome. If necessary,
|
|
|
|
it is dithered using the chosen dithering algorithm.
|
|
|
|
|
|
|
|
Dithering mode preference for RGB channels
|
|
|
|
\value DiffuseDither (default) - A high-quality dither.
|
|
|
|
\value OrderedDither A faster, more ordered dither.
|
|
|
|
\value ThresholdDither No dithering; closest color is used.
|
|
|
|
|
|
|
|
Dithering mode preference for alpha channel
|
|
|
|
\value ThresholdAlphaDither (default) - No dithering.
|
|
|
|
\value OrderedAlphaDither A faster, more ordered dither.
|
|
|
|
\value DiffuseAlphaDither A high-quality dither.
|
|
|
|
\value NoAlpha Not supported.
|
|
|
|
|
|
|
|
Color matching versus dithering preference
|
|
|
|
\value PreferDither (default when converting to a pixmap) - Always dither
|
|
|
|
32-bit images when the image is converted to 8 bits.
|
|
|
|
\value AvoidDither (default when converting for the purpose of saving to
|
|
|
|
file) - Dither 32-bit images only if the image has more than 256
|
|
|
|
colors and it is being converted to 8 bits.
|
|
|
|
\value AutoDither Not supported.
|
|
|
|
|
|
|
|
The following are not values that are used directly, but masks for
|
|
|
|
the above classes:
|
|
|
|
\value ColorMode_Mask Mask for the color mode.
|
|
|
|
\value Dither_Mask Mask for the dithering mode for RGB channels.
|
|
|
|
\value AlphaDither_Mask Mask for the dithering mode for the alpha channel.
|
|
|
|
\value DitherMode_Mask Mask for the mode that determines the preference of
|
|
|
|
color matching versus dithering.
|
|
|
|
|
|
|
|
Using 0 as the conversion flag sets all the default options.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)
|
|
|
|
#pragma message disable narrowptr
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
class TQImageDataMisc {
|
|
|
|
public:
|
|
|
|
TQImageDataMisc() { }
|
|
|
|
TQImageDataMisc( const TQImageDataMisc& o ) :
|
|
|
|
text_lang(o.text_lang) { }
|
|
|
|
|
|
|
|
TQImageDataMisc& operator=(const TQImageDataMisc& o)
|
|
|
|
{
|
|
|
|
text_lang = o.text_lang;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
TQValueList<TQImageTextKeyLang> list()
|
|
|
|
{
|
|
|
|
return text_lang.keys();
|
|
|
|
}
|
|
|
|
|
|
|
|
TQStringList languages()
|
|
|
|
{
|
|
|
|
TQStringList r;
|
|
|
|
TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin();
|
|
|
|
for ( ; it != text_lang.end(); ++it ) {
|
|
|
|
r.remove( it.key().lang );
|
|
|
|
r.append( it.key().lang );
|
|
|
|
}
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
TQStringList keys()
|
|
|
|
{
|
|
|
|
TQStringList r;
|
|
|
|
TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin();
|
|
|
|
for ( ; it != text_lang.end(); ++it ) {
|
|
|
|
r.remove( it.key().key );
|
|
|
|
r.append( it.key().key );
|
|
|
|
}
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQMap<TQImageTextKeyLang,TQString> text_lang;
|
|
|
|
};
|
|
|
|
#endif // QT_NO_IMAGE_TEXT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQImage member functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
// table to flip bits
|
|
|
|
static const uchar bitflip[256] = {
|
|
|
|
/*
|
|
|
|
open OUT, "| fmt";
|
|
|
|
for $i (0..255) {
|
|
|
|
print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |
|
|
|
|
(($i >> 3) & 0x04) | (($i >> 1) & 0x08) |
|
|
|
|
(($i << 7) & 0x80) | (($i << 5) & 0x40) |
|
|
|
|
(($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";
|
|
|
|
}
|
|
|
|
close OUT;
|
|
|
|
*/
|
|
|
|
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
|
|
|
|
8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
|
|
|
|
4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
|
|
|
|
12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
|
|
|
|
2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
|
|
|
|
10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
|
|
|
|
6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
|
|
|
|
14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
|
|
|
|
1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
|
|
|
|
9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
|
|
|
|
5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
|
|
|
|
13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
|
|
|
|
3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
|
|
|
|
11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
|
|
|
|
7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
|
|
|
|
15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
|
|
|
|
};
|
|
|
|
|
|
|
|
const uchar *qt_get_bitflip_array() // called from TQPixmap code
|
|
|
|
{
|
|
|
|
return bitflip;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a null image.
|
|
|
|
|
|
|
|
\sa isNull()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::TQImage()
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an image with \a w width, \a h height, \a depth bits
|
|
|
|
per pixel, \a numColors colors and bit order \a bitOrder.
|
|
|
|
|
|
|
|
Using this constructor is the same as first constructing a null
|
|
|
|
image and then calling the create() function.
|
|
|
|
|
|
|
|
\sa create()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::TQImage( int w, int h, int depth, int numColors, Endian bitOrder )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
create( w, h, depth, numColors, bitOrder );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an image with size \a size pixels, depth \a depth bits,
|
|
|
|
\a numColors and \a bitOrder endianness.
|
|
|
|
|
|
|
|
Using this constructor is the same as first constructing a null
|
|
|
|
image and then calling the create() function.
|
|
|
|
|
|
|
|
\sa create()
|
|
|
|
*/
|
|
|
|
TQImage::TQImage( const TQSize& size, int depth, int numColors, Endian bitOrder )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
create( size, depth, numColors, bitOrder );
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO
|
|
|
|
/*!
|
|
|
|
Constructs an image and tries to load the image from the file \a
|
|
|
|
fileName.
|
|
|
|
|
|
|
|
If \a format is specified, the loader attempts to read the image
|
|
|
|
using the specified format. If \a format is not specified (which
|
|
|
|
is the default), the loader reads a few bytes from the header to
|
|
|
|
guess the file format.
|
|
|
|
|
|
|
|
If the loading of the image failed, this object is a \link
|
|
|
|
isNull() null\endlink image.
|
|
|
|
|
|
|
|
The TQImageIO documentation lists the supported image formats and
|
|
|
|
explains how to add extra formats.
|
|
|
|
|
|
|
|
\sa load() isNull() TQImageIO
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::TQImage( const TQString &fileName, const char* format )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
load( fileName, format );
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_XPM
|
|
|
|
// helper
|
|
|
|
static void read_xpm_image_or_array( TQImageIO *, const char * const *, TQImage & );
|
|
|
|
#endif
|
|
|
|
/*!
|
|
|
|
Constructs an image from \a xpm, which must be a valid XPM image.
|
|
|
|
|
|
|
|
Errors are silently ignored.
|
|
|
|
|
|
|
|
Note that it's possible to squeeze the XPM variable a little bit
|
|
|
|
by using an unusual declaration:
|
|
|
|
|
|
|
|
\code
|
|
|
|
static const char * const start_xpm[]={
|
|
|
|
"16 15 8 1",
|
|
|
|
"a c #cec6bd",
|
|
|
|
....
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
The extra \c const makes the entire definition read-only, which is
|
|
|
|
slightly more efficient (e.g. when the code is in a shared
|
|
|
|
library) and ROMable when the application is to be stored in ROM.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::TQImage( const char * const xpm[] )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
#ifndef QT_NO_IMAGEIO_XPM
|
|
|
|
read_xpm_image_or_array( 0, xpm, *this );
|
|
|
|
#else
|
|
|
|
// We use a tqFatal rather than disabling the whole function, as this
|
|
|
|
// constructor may be ambiguous.
|
|
|
|
tqFatal("XPM not supported");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an image from the binary data \a array. It tries to
|
|
|
|
guess the file format.
|
|
|
|
|
|
|
|
If the loading of the image failed, this object is a \link
|
|
|
|
isNull() null\endlink image.
|
|
|
|
|
|
|
|
\sa loadFromData() isNull() imageFormat()
|
|
|
|
*/
|
|
|
|
TQImage::TQImage( const TQByteArray &array )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
loadFromData(array);
|
|
|
|
}
|
|
|
|
#endif //QT_NO_IMAGEIO
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a \link shclass.html shallow copy\endlink of \a image.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::TQImage( const TQImage &image )
|
|
|
|
{
|
|
|
|
data = image.data;
|
|
|
|
data->ref();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an image \a w pixels wide, \a h pixels high with a
|
|
|
|
color depth of \a depth, that uses an existing memory buffer, \a
|
|
|
|
yourdata. The buffer must remain valid throughout the life of the
|
|
|
|
TQImage. The image does not delete the buffer at destruction.
|
|
|
|
|
|
|
|
If \a colortable is 0, a color table sufficient for \a numColors
|
|
|
|
will be allocated (and destructed later).
|
|
|
|
|
|
|
|
Note that \a yourdata must be 32-bit aligned.
|
|
|
|
|
|
|
|
The endianness is given in \a bitOrder.
|
|
|
|
*/
|
|
|
|
TQImage::TQImage( uchar* yourdata, int w, int h, int depth,
|
|
|
|
TQRgb* colortable, int numColors,
|
|
|
|
Endian bitOrder )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
int bpl = ((w*depth+31)/32)*4; // bytes per scanline
|
|
|
|
if ( w <= 0 || h <= 0 || depth <= 0 || numColors < 0
|
|
|
|
|| INT_MAX / sizeof(uchar *) < uint(h)
|
|
|
|
|| INT_MAX / uint(depth) < uint(w)
|
|
|
|
|| bpl <= 0
|
|
|
|
|| INT_MAX / uint(bpl) < uint(h) )
|
|
|
|
return; // invalid parameter(s)
|
|
|
|
data->w = w;
|
|
|
|
data->h = h;
|
|
|
|
data->d = depth;
|
|
|
|
data->ncols = depth != 32 ? numColors : 0;
|
|
|
|
if ( !yourdata )
|
|
|
|
return; // Image header info can be saved without needing to allocate memory.
|
|
|
|
data->nbytes = bpl*h;
|
|
|
|
if ( colortable || !data->ncols ) {
|
|
|
|
data->ctbl = colortable;
|
|
|
|
data->ctbl_mine = FALSE;
|
|
|
|
} else {
|
|
|
|
// calloc since we realloc, etc. later (ick)
|
|
|
|
data->ctbl = (TQRgb*)calloc( data->ncols*sizeof(TQRgb), data->ncols );
|
|
|
|
TQ_CHECK_PTR(data->ctbl);
|
|
|
|
data->ctbl_mine = TRUE;
|
|
|
|
}
|
|
|
|
uchar** jt = (uchar**)malloc(h*sizeof(uchar*));
|
|
|
|
TQ_CHECK_PTR(jt);
|
|
|
|
for (int j=0; j<h; j++) {
|
|
|
|
jt[j] = yourdata+j*bpl;
|
|
|
|
}
|
|
|
|
data->bits = jt;
|
|
|
|
data->bitordr = bitOrder;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an image that uses an existing memory buffer. The
|
|
|
|
buffer must remain valid for the life of the TQImage. The image
|
|
|
|
does not delete the buffer at destruction. The buffer is passed as
|
|
|
|
\a yourdata. The image's width is \a w and its height is \a h. The
|
|
|
|
color depth is \a depth. \a bpl specifies the number of bytes per
|
|
|
|
line.
|
|
|
|
|
|
|
|
If \a colortable is 0, a color table sufficient for \a numColors
|
|
|
|
will be allocated (and destructed later).
|
|
|
|
|
|
|
|
The endianness is specified by \a bitOrder.
|
|
|
|
|
|
|
|
\warning This constructor is only available on TQt/Embedded.
|
|
|
|
*/
|
|
|
|
TQImage::TQImage( uchar* yourdata, int w, int h, int depth,
|
|
|
|
int bpl, TQRgb* colortable, int numColors,
|
|
|
|
Endian bitOrder )
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
if ( !yourdata || w <= 0 || h <= 0 || depth <= 0 || numColors < 0
|
|
|
|
|| INT_MAX / sizeof(uchar *) < uint(h)
|
|
|
|
|| INT_MAX / uint(bpl) < uint(h)
|
|
|
|
)
|
|
|
|
return; // invalid parameter(s)
|
|
|
|
data->w = w;
|
|
|
|
data->h = h;
|
|
|
|
data->d = depth;
|
|
|
|
data->ncols = numColors;
|
|
|
|
data->nbytes = bpl * h;
|
|
|
|
if ( colortable || !numColors ) {
|
|
|
|
data->ctbl = colortable;
|
|
|
|
data->ctbl_mine = FALSE;
|
|
|
|
} else {
|
|
|
|
// calloc since we realloc, etc. later (ick)
|
|
|
|
data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), numColors );
|
|
|
|
TQ_CHECK_PTR(data->ctbl);
|
|
|
|
data->ctbl_mine = TRUE;
|
|
|
|
}
|
|
|
|
uchar** jt = (uchar**)malloc(h*sizeof(uchar*));
|
|
|
|
TQ_CHECK_PTR(jt);
|
|
|
|
for (int j=0; j<h; j++) {
|
|
|
|
jt[j] = yourdata+j*bpl;
|
|
|
|
}
|
|
|
|
data->bits = jt;
|
|
|
|
data->bitordr = bitOrder;
|
|
|
|
}
|
|
|
|
#endif // Q_WS_QWS
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Destroys the image and cleans up.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::~TQImage()
|
|
|
|
{
|
|
|
|
if ( data && data->deref() ) {
|
|
|
|
reset();
|
|
|
|
delete data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! Convenience function. Gets the data associated with the absolute
|
|
|
|
name \a abs_name from the default mime source factory and decodes it
|
|
|
|
to an image.
|
|
|
|
|
|
|
|
\sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode()
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_MIME
|
|
|
|
TQImage TQImage::fromMimeSource( const TQString &abs_name )
|
|
|
|
{
|
|
|
|
const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name );
|
|
|
|
if ( !m ) {
|
|
|
|
#if defined(QT_CHECK_STATE)
|
|
|
|
tqWarning("TQImage::fromMimeSource: Cannot find image \"%s\" in the mime source factory", abs_name.latin1() );
|
|
|
|
#endif
|
|
|
|
return TQImage();
|
|
|
|
}
|
|
|
|
TQImage img;
|
|
|
|
TQImageDrag::decode( m, img );
|
|
|
|
return img;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Assigns a \link shclass.html shallow copy\endlink of \a image to
|
|
|
|
this image and returns a reference to this image.
|
|
|
|
|
|
|
|
\sa copy()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage &TQImage::operator=( const TQImage &image )
|
|
|
|
{
|
|
|
|
image.data->ref(); // avoid 'x = x'
|
|
|
|
if ( data->deref() ) {
|
|
|
|
reset();
|
|
|
|
delete data;
|
|
|
|
}
|
|
|
|
data = image.data;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Sets the image bits to the \a pixmap contents and returns a
|
|
|
|
reference to the image.
|
|
|
|
|
|
|
|
If the image shares data with other images, it will first
|
|
|
|
dereference the shared data.
|
|
|
|
|
|
|
|
Makes a call to TQPixmap::convertToImage().
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage &TQImage::operator=( const TQPixmap &pixmap )
|
|
|
|
{
|
|
|
|
*this = pixmap.convertToImage();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Detaches from shared image data and makes sure that this image is
|
|
|
|
the only one referring to the data.
|
|
|
|
|
|
|
|
If multiple images share common data, this image makes a copy of
|
|
|
|
the data and detaches itself from the sharing mechanism.
|
|
|
|
Nothing is done if there is just a single reference.
|
|
|
|
|
|
|
|
\sa copy()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::detach()
|
|
|
|
{
|
|
|
|
if ( data->count != 1 )
|
|
|
|
*this = copy();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a \link shclass.html deep copy\endlink of the image.
|
|
|
|
|
|
|
|
\sa detach()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::copy() const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
// maintain the fields of invalid TQImages when copied
|
|
|
|
return TQImage( 0, width(), height(), depth(), colorTable(), numColors(), bitOrder() );
|
|
|
|
} else {
|
|
|
|
TQImage image;
|
|
|
|
image.create( width(), height(), depth(), numColors(), bitOrder() );
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
// TQt/Embedded can create images with non-default bpl
|
|
|
|
// make sure we don't crash.
|
|
|
|
if ( image.numBytes() != numBytes() )
|
|
|
|
for ( int i = 0; i < height(); i++ )
|
|
|
|
memcpy( image.scanLine(i), scanLine(i), image.bytesPerLine() );
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
memcpy( image.bits(), bits(), numBytes() );
|
|
|
|
memcpy( image.colorTable(), colorTable(), numColors() * sizeof(TQRgb) );
|
|
|
|
image.setAlphaBuffer( hasAlphaBuffer() );
|
|
|
|
image.data->dpmx = dotsPerMeterX();
|
|
|
|
image.data->dpmy = dotsPerMeterY();
|
|
|
|
image.data->offset = offset();
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
if ( data->misc ) {
|
|
|
|
image.data->misc = new TQImageDataMisc;
|
|
|
|
*image.data->misc = misc();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns a \link shclass.html deep copy\endlink of a sub-area of
|
|
|
|
the image.
|
|
|
|
|
|
|
|
The returned image is always \a w by \a h pixels in size, and is
|
|
|
|
copied from position \a x, \a y in this image. In areas beyond
|
|
|
|
this image pixels are filled with pixel 0.
|
|
|
|
|
|
|
|
If the image needs to be modified to fit in a lower-resolution
|
|
|
|
result (e.g. converting from 32-bit to 8-bit), use the \a
|
|
|
|
conversion_flags to specify how you'd prefer this to happen.
|
|
|
|
|
|
|
|
\sa bitBlt() TQt::ImageConversionFlags
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::copy(int x, int y, int w, int h, int conversion_flags) const
|
|
|
|
{
|
|
|
|
int dx = 0;
|
|
|
|
int dy = 0;
|
|
|
|
if ( w <= 0 || h <= 0 ) return TQImage(); // Nothing to copy
|
|
|
|
|
|
|
|
TQImage image( w, h, depth(), numColors(), bitOrder() );
|
|
|
|
|
|
|
|
if ( x < 0 || y < 0 || x + w > width() || y + h > height() ) {
|
|
|
|
// bitBlt will not cover entire image - clear it.
|
|
|
|
// ### should deal with each side separately for efficiency
|
|
|
|
image.fill(0);
|
|
|
|
if ( x < 0 ) {
|
|
|
|
dx = -x;
|
|
|
|
x = 0;
|
|
|
|
}
|
|
|
|
if ( y < 0 ) {
|
|
|
|
dy = -y;
|
|
|
|
y = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool has_alpha = hasAlphaBuffer();
|
|
|
|
if ( has_alpha ) {
|
|
|
|
// alpha channel should be only copied, not used by bitBlt(), and
|
|
|
|
// this is mutable, we will restore the image state before returning
|
|
|
|
TQImage *that = (TQImage *) this;
|
|
|
|
that->setAlphaBuffer( FALSE );
|
|
|
|
}
|
|
|
|
memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
|
|
|
|
bitBlt( &image, dx, dy, this, x, y, -1, -1, conversion_flags );
|
|
|
|
if ( has_alpha ) {
|
|
|
|
// restore image state
|
|
|
|
TQImage *that = (TQImage *) this;
|
|
|
|
that->setAlphaBuffer( TRUE );
|
|
|
|
}
|
|
|
|
image.setAlphaBuffer(hasAlphaBuffer());
|
|
|
|
image.data->dpmx = dotsPerMeterX();
|
|
|
|
image.data->dpmy = dotsPerMeterY();
|
|
|
|
image.data->offset = offset();
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
if ( data->misc ) {
|
|
|
|
image.data->misc = new TQImageDataMisc;
|
|
|
|
*image.data->misc = misc();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload TQImage TQImage::copy(const TQRect& r) const
|
|
|
|
|
|
|
|
Returns a \link shclass.html deep copy\endlink of a sub-area of
|
|
|
|
the image.
|
|
|
|
|
|
|
|
The returned image always has the size of the rectangle \a r. In
|
|
|
|
areas beyond this image pixels are filled with pixel 0.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool TQImage::isNull() const
|
|
|
|
|
|
|
|
Returns TRUE if it is a null image; otherwise returns FALSE.
|
|
|
|
|
|
|
|
A null image has all parameters set to zero and no allocated data.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::width() const
|
|
|
|
|
|
|
|
Returns the width of the image.
|
|
|
|
|
|
|
|
\sa height() size() rect()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::height() const
|
|
|
|
|
|
|
|
Returns the height of the image.
|
|
|
|
|
|
|
|
\sa width() size() rect()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQSize TQImage::size() const
|
|
|
|
|
|
|
|
Returns the size of the image, i.e. its width and height.
|
|
|
|
|
|
|
|
\sa width() height() rect()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQRect TQImage::rect() const
|
|
|
|
|
|
|
|
Returns the enclosing rectangle (0, 0, width(), height()) of the
|
|
|
|
image.
|
|
|
|
|
|
|
|
\sa width() height() size()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::depth() const
|
|
|
|
|
|
|
|
Returns the depth of the image.
|
|
|
|
|
|
|
|
The image depth is the number of bits used to encode a single
|
|
|
|
pixel, also called bits per pixel (bpp) or bit planes of an image.
|
|
|
|
|
|
|
|
The supported depths are 1, 8, 16 (TQt/Embedded only) and 32.
|
|
|
|
|
|
|
|
\sa convertDepth()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::numColors() const
|
|
|
|
|
|
|
|
Returns the size of the color table for the image.
|
|
|
|
|
|
|
|
Notice that numColors() returns 0 for 16-bpp (TQt/Embedded only)
|
|
|
|
and 32-bpp images because these images do not use color tables,
|
|
|
|
but instead encode pixel values as RGB triplets.
|
|
|
|
|
|
|
|
\sa setNumColors() colorTable()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQImage::Endian TQImage::bitOrder() const
|
|
|
|
|
|
|
|
Returns the bit order for the image.
|
|
|
|
|
|
|
|
If it is a 1-bpp image, this function returns either
|
|
|
|
TQImage::BigEndian or TQImage::LittleEndian.
|
|
|
|
|
|
|
|
If it is not a 1-bpp image, this function returns
|
|
|
|
TQImage::IgnoreEndian.
|
|
|
|
|
|
|
|
\sa depth()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn uchar **TQImage::jumpTable() const
|
|
|
|
|
|
|
|
Returns a pointer to the scanline pointer table.
|
|
|
|
|
|
|
|
This is the beginning of the data block for the image.
|
|
|
|
|
|
|
|
\sa bits() scanLine()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQRgb *TQImage::colorTable() const
|
|
|
|
|
|
|
|
Returns a pointer to the color table.
|
|
|
|
|
|
|
|
\sa numColors()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::numBytes() const
|
|
|
|
|
|
|
|
Returns the number of bytes occupied by the image data.
|
|
|
|
|
|
|
|
\sa bytesPerLine() bits()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::bytesPerLine() const
|
|
|
|
|
|
|
|
Returns the number of bytes per image scanline. This is equivalent
|
|
|
|
to numBytes()/height().
|
|
|
|
|
|
|
|
\sa numBytes() scanLine()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQRgb TQImage::color( int i ) const
|
|
|
|
|
|
|
|
Returns the color in the color table at index \a i. The first
|
|
|
|
color is at index 0.
|
|
|
|
|
|
|
|
A color value is an RGB triplet. Use the \link ::tqRed()
|
|
|
|
tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link
|
|
|
|
::tqBlue() tqBlue()\endlink functions (defined in \c ntqcolor.h) to
|
|
|
|
get the color value components.
|
|
|
|
|
|
|
|
\sa setColor() numColors() TQColor
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn void TQImage::setColor( int i, TQRgb c )
|
|
|
|
|
|
|
|
Sets a color in the color table at index \a i to \a c.
|
|
|
|
|
|
|
|
A color value is an RGB triplet. Use the \link ::tqRgb()
|
|
|
|
tqRgb()\endlink function (defined in \c ntqcolor.h) to make RGB
|
|
|
|
triplets.
|
|
|
|
|
|
|
|
\sa color() setNumColors() numColors()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn uchar *TQImage::scanLine( int i ) const
|
|
|
|
|
|
|
|
Returns a pointer to the pixel data at the scanline with index \a
|
|
|
|
i. The first scanline is at index 0.
|
|
|
|
|
|
|
|
The scanline data is aligned on a 32-bit boundary.
|
|
|
|
|
|
|
|
\warning If you are accessing 32-bpp image data, cast the returned
|
|
|
|
pointer to \c{TQRgb*} (TQRgb has a 32-bit size) and use it to
|
|
|
|
read/write the pixel value. You cannot use the \c{uchar*} pointer
|
|
|
|
directly, because the pixel format depends on the byte order on
|
|
|
|
the underlying platform. Hint: use \link ::tqRed() tqRed()\endlink,
|
|
|
|
\link ::tqGreen() tqGreen()\endlink and \link ::tqBlue()
|
|
|
|
tqBlue()\endlink, etc. (ntqcolor.h) to access the pixels.
|
|
|
|
|
|
|
|
\warning If you are accessing 16-bpp image data, you must handle
|
|
|
|
endianness yourself. (TQt/Embedded only)
|
|
|
|
|
|
|
|
\sa bytesPerLine() bits() jumpTable()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn uchar *TQImage::bits() const
|
|
|
|
|
|
|
|
Returns a pointer to the first pixel data. This is equivalent to
|
|
|
|
scanLine(0).
|
|
|
|
|
|
|
|
\sa numBytes() scanLine() jumpTable()
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void TQImage::warningIndexRange( const char *func, int i )
|
|
|
|
{
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::%s: Index %d out of range", func, i );
|
|
|
|
#else
|
|
|
|
Q_UNUSED( func )
|
|
|
|
Q_UNUSED( i )
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Resets all image parameters and deallocates the image data.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::reset()
|
|
|
|
{
|
|
|
|
freeBits();
|
|
|
|
setNumColors( 0 );
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
delete data->misc;
|
|
|
|
#endif
|
|
|
|
reinit();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Fills the entire image with the pixel value \a pixel.
|
|
|
|
|
|
|
|
If the \link depth() depth\endlink of this image is 1, only the
|
|
|
|
lowest bit is used. If you say fill(0), fill(2), etc., the image
|
|
|
|
is filled with 0s. If you say fill(1), fill(3), etc., the image is
|
|
|
|
filled with 1s. If the depth is 8, the lowest 8 bits are used.
|
|
|
|
|
|
|
|
If the depth is 32 and the image has no alpha buffer, the \a pixel
|
|
|
|
value is written to each pixel in the image. If the image has an
|
|
|
|
alpha buffer, only the 24 RGB bits are set and the upper 8 bits
|
|
|
|
(alpha value) are left unchanged.
|
|
|
|
|
|
|
|
Note: TQImage::pixel() returns the color of the pixel at the given
|
|
|
|
coordinates; TQColor::pixel() returns the pixel value of the
|
|
|
|
underlying window system (essentially an index value), so normally
|
|
|
|
you will want to use TQImage::pixel() to use a color from an
|
|
|
|
existing image or TQColor::rgb() to use a specific color.
|
|
|
|
|
|
|
|
\sa invertPixels() depth() hasAlphaBuffer() create()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::fill( uint pixel )
|
|
|
|
{
|
|
|
|
if ( depth() == 1 || depth() == 8 ) {
|
|
|
|
if ( depth() == 1 ) {
|
|
|
|
if ( pixel & 1 )
|
|
|
|
pixel = 0xffffffff;
|
|
|
|
else
|
|
|
|
pixel = 0;
|
|
|
|
} else {
|
|
|
|
uint c = pixel & 0xff;
|
|
|
|
pixel = c | ((c << 8) & 0xff00) | ((c << 16) & 0xff0000) |
|
|
|
|
((c << 24) & 0xff000000);
|
|
|
|
}
|
|
|
|
int bpl = bytesPerLine();
|
|
|
|
for ( int i=0; i<height(); i++ )
|
|
|
|
memset( scanLine(i), pixel, bpl );
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
} else if ( depth() == 16 ) {
|
|
|
|
for ( int i=0; i<height(); i++ ) {
|
|
|
|
//optimize with 32-bit writes, since image is always aligned
|
|
|
|
uint *p = (uint *)scanLine(i);
|
|
|
|
uint *end = (uint*)(((ushort*)p) + width());
|
|
|
|
uint fill;
|
|
|
|
ushort *f = (ushort*)&fill;
|
|
|
|
f[0]=pixel;
|
|
|
|
f[1]=pixel;
|
|
|
|
while ( p < end )
|
|
|
|
*p++ = fill;
|
|
|
|
}
|
|
|
|
#endif // QT_NO_IMAGE_16_BIT
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
} else if ( depth() == 32 ) {
|
|
|
|
if ( hasAlphaBuffer() ) {
|
|
|
|
pixel &= 0x00ffffff;
|
|
|
|
for ( int i=0; i<height(); i++ ) {
|
|
|
|
uint *p = (uint *)scanLine(i);
|
|
|
|
uint *end = p + width();
|
|
|
|
while ( p < end ) {
|
|
|
|
*p = (*p & 0xff000000) | pixel;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for ( int i=0; i<height(); i++ ) {
|
|
|
|
uint *p = (uint *)scanLine(i);
|
|
|
|
uint *end = p + width();
|
|
|
|
while ( p < end )
|
|
|
|
*p++ = pixel;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // QT_NO_IMAGE_TRUECOLOR
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Inverts all pixel values in the image.
|
|
|
|
|
|
|
|
If the depth is 32: if \a invertAlpha is TRUE, the alpha bits are
|
|
|
|
also inverted, otherwise they are left unchanged.
|
|
|
|
|
|
|
|
If the depth is not 32, the argument \a invertAlpha has no
|
|
|
|
meaning.
|
|
|
|
|
|
|
|
Note that inverting an 8-bit image means to replace all pixels
|
|
|
|
using color index \e i with a pixel using color index 255 minus \e
|
|
|
|
i. Similarly for a 1-bit image. The color table is not changed.
|
|
|
|
|
|
|
|
\sa fill() depth() hasAlphaBuffer()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::invertPixels( bool invertAlpha )
|
|
|
|
{
|
|
|
|
TQ_UINT32 n = numBytes();
|
|
|
|
if ( n % 4 ) {
|
|
|
|
TQ_UINT8 *p = (TQ_UINT8*)bits();
|
|
|
|
TQ_UINT8 *end = p + n;
|
|
|
|
while ( p < end )
|
|
|
|
*p++ ^= 0xff;
|
|
|
|
} else {
|
|
|
|
TQ_UINT32 *p = (TQ_UINT32*)bits();
|
|
|
|
TQ_UINT32 *end = p + n/4;
|
|
|
|
uint xorbits = invertAlpha && depth() == 32 ? 0x00ffffff : 0xffffffff;
|
|
|
|
while ( p < end )
|
|
|
|
*p++ ^= xorbits;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Determines the host computer byte order. Returns
|
|
|
|
TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first).
|
|
|
|
|
|
|
|
\sa systemBitOrder()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::Endian TQImage::systemByteOrder()
|
|
|
|
{
|
|
|
|
static Endian sbo = IgnoreEndian;
|
|
|
|
if ( sbo == IgnoreEndian ) { // initialize
|
|
|
|
int ws;
|
|
|
|
bool be;
|
|
|
|
tqSysInfo( &ws, &be );
|
|
|
|
sbo = be ? BigEndian : LittleEndian;
|
|
|
|
}
|
|
|
|
return sbo;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(Q_WS_X11)
|
|
|
|
#include <X11/Xlib.h> // needed for systemBitOrder
|
|
|
|
#include <X11/Xutil.h>
|
|
|
|
#include <X11/Xos.h>
|
|
|
|
#if defined(Q_OS_WIN32)
|
|
|
|
#undef open
|
|
|
|
#undef close
|
|
|
|
#undef read
|
|
|
|
#undef write
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// POSIX Large File Support redefines open -> open64
|
|
|
|
#if defined(open)
|
|
|
|
# undef open
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// POSIX Large File Support redefines truncate -> truncate64
|
|
|
|
#if defined(truncate)
|
|
|
|
# undef truncate
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Determines the bit order of the display hardware. Returns
|
|
|
|
TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first).
|
|
|
|
|
|
|
|
\sa systemByteOrder()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage::Endian TQImage::systemBitOrder()
|
|
|
|
{
|
|
|
|
#if defined(Q_WS_X11)
|
|
|
|
return BitmapBitOrder(tqt_xdisplay()) == MSBFirst ? BigEndian :LittleEndian;
|
|
|
|
#else
|
|
|
|
return BigEndian;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Resizes the color table to \a numColors colors.
|
|
|
|
|
|
|
|
If the color table is expanded all the extra colors will be set to
|
|
|
|
black (RGB 0,0,0).
|
|
|
|
|
|
|
|
\sa numColors() color() setColor() colorTable()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::setNumColors( int numColors )
|
|
|
|
{
|
|
|
|
if ( numColors == data->ncols )
|
|
|
|
return;
|
|
|
|
if ( numColors == 0 ) { // use no color table
|
|
|
|
if ( data->ctbl ) {
|
|
|
|
if ( data->ctbl_mine )
|
|
|
|
free( data->ctbl );
|
|
|
|
else
|
|
|
|
data->ctbl_mine = TRUE;
|
|
|
|
data->ctbl = 0;
|
|
|
|
}
|
|
|
|
data->ncols = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if ( data->ctbl && data->ctbl_mine ) { // already has color table
|
|
|
|
data->ctbl = (TQRgb*)realloc( data->ctbl, numColors*sizeof(TQRgb) );
|
|
|
|
if ( data->ctbl && numColors > data->ncols )
|
|
|
|
memset( (char *)&data->ctbl[data->ncols], 0,
|
|
|
|
(numColors-data->ncols)*sizeof(TQRgb) );
|
|
|
|
} else { // create new color table
|
|
|
|
data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), 1 );
|
|
|
|
TQ_CHECK_PTR(data->ctbl);
|
|
|
|
data->ctbl_mine = TRUE;
|
|
|
|
}
|
|
|
|
data->ncols = data->ctbl == 0 ? 0 : numColors;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool TQImage::hasAlphaBuffer() const
|
|
|
|
|
|
|
|
Returns TRUE if alpha buffer mode is enabled; otherwise returns
|
|
|
|
FALSE.
|
|
|
|
|
|
|
|
\sa setAlphaBuffer()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Enables alpha buffer mode if \a enable is TRUE, otherwise disables
|
|
|
|
it. The default setting is disabled.
|
|
|
|
|
|
|
|
An 8-bpp image has 8-bit pixels. A pixel is an index into the
|
|
|
|
\link color() color table\endlink, which contains 32-bit color
|
|
|
|
values. In a 32-bpp image, the 32-bit pixels are the color values.
|
|
|
|
|
|
|
|
This 32-bit value is encoded as follows: The lower 24 bits are
|
|
|
|
used for the red, green, and blue components. The upper 8 bits
|
|
|
|
contain the alpha component.
|
|
|
|
|
|
|
|
The alpha component specifies the transparency of a pixel. 0 means
|
|
|
|
completely transparent and 255 means opaque. The alpha component
|
|
|
|
is ignored if you do not enable alpha buffer mode.
|
|
|
|
|
|
|
|
The alpha buffer is used to set a mask when a TQImage is translated
|
|
|
|
to a TQPixmap.
|
|
|
|
|
|
|
|
\sa hasAlphaBuffer() createAlphaMask()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::setAlphaBuffer( bool enable )
|
|
|
|
{
|
|
|
|
data->alpha = enable;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image \a width, \a height, \a depth, its number of colors
|
|
|
|
(in \a numColors), and bit order. Returns TRUE if successful, or
|
|
|
|
FALSE if the parameters are incorrect or if memory cannot be
|
|
|
|
allocated.
|
|
|
|
|
|
|
|
The \a width and \a height is limited to 32767. \a depth must be
|
|
|
|
1, 8, or 32. If \a depth is 1, \a bitOrder must be set to
|
|
|
|
either TQImage::LittleEndian or TQImage::BigEndian. For other depths
|
|
|
|
\a bitOrder must be TQImage::IgnoreEndian.
|
|
|
|
|
|
|
|
This function allocates a color table and a buffer for the image
|
|
|
|
data. The image data is not initialized.
|
|
|
|
|
|
|
|
The image buffer is allocated as a single block that consists of a
|
|
|
|
table of \link scanLine() scanline\endlink pointers (jumpTable())
|
|
|
|
and the image data (bits()).
|
|
|
|
|
|
|
|
\sa fill() width() height() depth() numColors() bitOrder()
|
|
|
|
jumpTable() scanLine() bits() bytesPerLine() numBytes()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::create( int width, int height, int depth, int numColors,
|
|
|
|
Endian bitOrder )
|
|
|
|
{
|
|
|
|
reset(); // reset old data
|
|
|
|
if ( width <= 0 || height <= 0 || depth <= 0 || numColors < 0 )
|
|
|
|
return FALSE; // invalid parameter(s)
|
|
|
|
if ( depth == 1 && bitOrder == IgnoreEndian ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::create: Bit order is required for 1 bpp images" );
|
|
|
|
#endif
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
if ( depth != 1 )
|
|
|
|
bitOrder = IgnoreEndian;
|
|
|
|
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
if ( depth == 24 )
|
|
|
|
tqWarning( "TQImage::create: 24-bpp images no longer supported, "
|
|
|
|
"use 32-bpp instead" );
|
|
|
|
#endif
|
|
|
|
switch ( depth ) {
|
|
|
|
case 1:
|
|
|
|
case 8:
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
case 16:
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
case 32:
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
default: // invalid depth
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( depth == 32 )
|
|
|
|
numColors = 0;
|
|
|
|
setNumColors( numColors );
|
|
|
|
if ( data->ncols != numColors ) // could not alloc color table
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
if ( INT_MAX / uint(depth) < uint(width) ) { // sanity check for potential overflow
|
|
|
|
setNumColors( 0 );
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
// TQt/Embedded doesn't waste memory on unnecessary padding.
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
const int bpl = (width*depth+7)/8; // bytes per scanline
|
|
|
|
const int pad = 0;
|
|
|
|
#else
|
|
|
|
const int bpl = ((width*depth+31)/32)*4; // bytes per scanline
|
|
|
|
// #### WWA: shouldn't this be (width*depth+7)/8:
|
|
|
|
const int pad = bpl - (width*depth)/8; // pad with zeros
|
|
|
|
#endif
|
|
|
|
if ( INT_MAX / uint(bpl) < uint(height)
|
|
|
|
|| bpl < 0
|
|
|
|
|| INT_MAX / sizeof(uchar *) < uint(height) ) { // sanity check for potential overflow
|
|
|
|
setNumColors( 0 );
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
int nbytes = bpl*height; // image size
|
|
|
|
int ptbl = height*sizeof(uchar*); // pointer table size
|
|
|
|
int size = nbytes + ptbl; // total size of data block
|
|
|
|
uchar **p = (uchar **)malloc( size ); // alloc image bits
|
|
|
|
TQ_CHECK_PTR(p);
|
|
|
|
if ( !p ) { // no memory
|
|
|
|
setNumColors( 0 );
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
data->w = width;
|
|
|
|
data->h = height;
|
|
|
|
data->d = depth;
|
|
|
|
data->nbytes = nbytes;
|
|
|
|
data->bitordr = bitOrder;
|
|
|
|
data->bits = p; // set image pointer
|
|
|
|
//uchar *d = (uchar*)p + ptbl; // setup scanline pointers
|
|
|
|
uchar *d = (uchar*)(p + height); // setup scanline pointers
|
|
|
|
while ( height-- ) {
|
|
|
|
*p++ = d;
|
|
|
|
if ( pad )
|
|
|
|
memset( d+bpl-pad, 0, pad );
|
|
|
|
d += bpl;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload bool TQImage::create( const TQSize&, int depth, int numColors, Endian bitOrder )
|
|
|
|
*/
|
|
|
|
bool TQImage::create( const TQSize& size, int depth, int numColors,
|
|
|
|
TQImage::Endian bitOrder )
|
|
|
|
{
|
|
|
|
return create(size.width(), size.height(), depth, numColors, bitOrder);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
Initializes the image data structure.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::init()
|
|
|
|
{
|
|
|
|
data = new TQImageData;
|
|
|
|
TQ_CHECK_PTR( data );
|
|
|
|
reinit();
|
|
|
|
}
|
|
|
|
|
|
|
|
void TQImage::reinit()
|
|
|
|
{
|
|
|
|
data->w = data->h = data->d = data->ncols = 0;
|
|
|
|
data->nbytes = 0;
|
|
|
|
data->ctbl = 0;
|
|
|
|
data->bits = 0;
|
|
|
|
data->bitordr = TQImage::IgnoreEndian;
|
|
|
|
data->alpha = FALSE;
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
data->misc = 0;
|
|
|
|
#endif
|
|
|
|
data->dpmx = 0;
|
|
|
|
data->dpmy = 0;
|
|
|
|
data->offset = TQPoint(0,0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
Deallocates the image data and sets the bits pointer to 0.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::freeBits()
|
|
|
|
{
|
|
|
|
if ( data->bits ) { // dealloc image bits
|
|
|
|
free( data->bits );
|
|
|
|
data->bits = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
Internal routines for converting image depth.
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit
|
|
|
|
// image with a colormap. If the 32 bit image has more than 256 colors,
|
|
|
|
// we convert the red,green and blue bytes into a single byte encoded
|
|
|
|
// as 6 shades of each of red, green and blue.
|
|
|
|
//
|
|
|
|
// if dithering is needed, only 1 color at most is available for alpha.
|
|
|
|
//
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
struct TQRgbMap {
|
|
|
|
TQRgbMap() : rgb(0xffffffff) { }
|
|
|
|
bool used() const { return rgb!=0xffffffff; }
|
|
|
|
uchar pix;
|
|
|
|
TQRgb rgb;
|
|
|
|
};
|
|
|
|
|
|
|
|
static bool convert_32_to_8( const TQImage *src, TQImage *dst, int conversion_flags, TQRgb* palette=0, int palette_count=0 )
|
|
|
|
{
|
|
|
|
register TQRgb *p;
|
|
|
|
uchar *b;
|
|
|
|
bool do_quant = FALSE;
|
|
|
|
int y, x;
|
|
|
|
|
|
|
|
if ( !dst->create(src->width(), src->height(), 8, 256) )
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
const int tablesize = 997; // prime
|
|
|
|
TQRgbMap table[tablesize];
|
|
|
|
int pix=0;
|
|
|
|
TQRgb amask = src->hasAlphaBuffer() ? 0xffffffff : 0x00ffffff;
|
|
|
|
if ( src->hasAlphaBuffer() )
|
|
|
|
dst->setAlphaBuffer(TRUE);
|
|
|
|
|
|
|
|
if ( palette ) {
|
|
|
|
// Preload palette into table.
|
|
|
|
|
|
|
|
p = palette;
|
|
|
|
// Almost same code as pixel insertion below
|
|
|
|
while ( palette_count-- > 0 ) {
|
|
|
|
// Find in table...
|
|
|
|
int hash = (*p & amask) % tablesize;
|
|
|
|
for (;;) {
|
|
|
|
if ( table[hash].used() ) {
|
|
|
|
if ( table[hash].rgb == (*p & amask) ) {
|
|
|
|
// Found previous insertion - use it
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
// Keep searching...
|
|
|
|
if (++hash == tablesize) hash = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Cannot be in table
|
|
|
|
Q_ASSERT ( pix != 256 ); // too many colors
|
|
|
|
// Insert into table at this unused position
|
|
|
|
dst->setColor( pix, (*p & amask) );
|
|
|
|
table[hash].pix = pix++;
|
|
|
|
table[hash].rgb = *p & amask;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( (conversion_flags & TQt::DitherMode_Mask) == TQt::PreferDither ) {
|
|
|
|
do_quant = TRUE;
|
|
|
|
} else {
|
|
|
|
for ( y=0; y<src->height(); y++ ) { // check if <= 256 colors
|
|
|
|
p = (TQRgb *)src->scanLine(y);
|
|
|
|
b = dst->scanLine(y);
|
|
|
|
x = src->width();
|
|
|
|
while ( x-- ) {
|
|
|
|
// Find in table...
|
|
|
|
int hash = (*p & amask) % tablesize;
|
|
|
|
for (;;) {
|
|
|
|
if ( table[hash].used() ) {
|
|
|
|
if ( table[hash].rgb == (*p & amask) ) {
|
|
|
|
// Found previous insertion - use it
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
// Keep searching...
|
|
|
|
if (++hash == tablesize) hash = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Cannot be in table
|
|
|
|
if ( pix == 256 ) { // too many colors
|
|
|
|
do_quant = TRUE;
|
|
|
|
// Break right out
|
|
|
|
x = 0;
|
|
|
|
y = src->height();
|
|
|
|
} else {
|
|
|
|
// Insert into table at this unused position
|
|
|
|
dst->setColor( pix, (*p & amask) );
|
|
|
|
table[hash].pix = pix++;
|
|
|
|
table[hash].rgb = (*p & amask);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*b++ = table[hash].pix; // May occur once incorrectly
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int ncols = do_quant ? 256 : pix;
|
|
|
|
|
|
|
|
static uint bm[16][16];
|
|
|
|
static int init=0;
|
|
|
|
if (!init) {
|
|
|
|
// Build a Bayer Matrix for dithering
|
|
|
|
|
|
|
|
init = 1;
|
|
|
|
int n, i, j;
|
|
|
|
|
|
|
|
bm[0][0]=0;
|
|
|
|
|
|
|
|
for (n=1; n<16; n*=2) {
|
|
|
|
for (i=0; i<n; i++) {
|
|
|
|
for (j=0; j<n; j++) {
|
|
|
|
bm[i][j]*=4;
|
|
|
|
bm[i+n][j]=bm[i][j]+2;
|
|
|
|
bm[i][j+n]=bm[i][j]+3;
|
|
|
|
bm[i+n][j+n]=bm[i][j]+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i=0; i<16; i++)
|
|
|
|
for (j=0; j<16; j++)
|
|
|
|
bm[i][j]<<=8;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->setNumColors( ncols );
|
|
|
|
|
|
|
|
if ( do_quant ) { // quantization needed
|
|
|
|
|
|
|
|
#define MAX_R 5
|
|
|
|
#define MAX_G 5
|
|
|
|
#define MAX_B 5
|
|
|
|
#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
|
|
|
|
|
|
|
|
int rc, gc, bc;
|
|
|
|
|
|
|
|
for ( rc=0; rc<=MAX_R; rc++ ) // build 6x6x6 color cube
|
|
|
|
for ( gc=0; gc<=MAX_G; gc++ )
|
|
|
|
for ( bc=0; bc<=MAX_B; bc++ ) {
|
|
|
|
dst->setColor( INDEXOF(rc,gc,bc),
|
|
|
|
(amask&0xff000000)
|
|
|
|
| tqRgb( rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
int sw = src->width();
|
|
|
|
|
|
|
|
int* line1[3];
|
|
|
|
int* line2[3];
|
|
|
|
int* pv[3];
|
|
|
|
if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) {
|
|
|
|
line1[0] = new int[src->width()];
|
|
|
|
line2[0] = new int[src->width()];
|
|
|
|
line1[1] = new int[src->width()];
|
|
|
|
line2[1] = new int[src->width()];
|
|
|
|
line1[2] = new int[src->width()];
|
|
|
|
line2[2] = new int[src->width()];
|
|
|
|
pv[0] = new int[sw];
|
|
|
|
pv[1] = new int[sw];
|
|
|
|
pv[2] = new int[sw];
|
|
|
|
}
|
|
|
|
|
|
|
|
for ( y=0; y < src->height(); y++ ) {
|
|
|
|
p = (TQRgb *)src->scanLine(y);
|
|
|
|
b = dst->scanLine(y);
|
|
|
|
TQRgb *end = p + sw;
|
|
|
|
|
|
|
|
// perform quantization
|
|
|
|
if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) {
|
|
|
|
#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))
|
|
|
|
while ( p < end ) {
|
|
|
|
rc = tqRed( *p );
|
|
|
|
gc = tqGreen( *p );
|
|
|
|
bc = tqBlue( *p );
|
|
|
|
|
|
|
|
*b++ =
|
|
|
|
INDEXOF(
|
|
|
|
DITHER(rc, MAX_R),
|
|
|
|
DITHER(gc, MAX_G),
|
|
|
|
DITHER(bc, MAX_B)
|
|
|
|
);
|
|
|
|
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
#undef DITHER
|
|
|
|
} else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) {
|
|
|
|
#define DITHER(p,d,m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) / 65536 ))
|
|
|
|
|
|
|
|
int x = 0;
|
|
|
|
while ( p < end ) {
|
|
|
|
uint d = bm[y&15][x&15];
|
|
|
|
|
|
|
|
rc = tqRed( *p );
|
|
|
|
gc = tqGreen( *p );
|
|
|
|
bc = tqBlue( *p );
|
|
|
|
|
|
|
|
*b++ =
|
|
|
|
INDEXOF(
|
|
|
|
DITHER(rc, d, MAX_R),
|
|
|
|
DITHER(gc, d, MAX_G),
|
|
|
|
DITHER(bc, d, MAX_B)
|
|
|
|
);
|
|
|
|
|
|
|
|
p++;
|
|
|
|
x++;
|
|
|
|
}
|
|
|
|
#undef DITHER
|
|
|
|
} else { // Diffuse
|
|
|
|
int endian = (TQImage::systemByteOrder() == TQImage::BigEndian);
|
|
|
|
int x;
|
|
|
|
uchar* q = src->scanLine(y);
|
|
|
|
uchar* q2 = src->scanLine(y+1 < src->height() ? y + 1 : 0);
|
|
|
|
for (int chan = 0; chan < 3; chan++) {
|
|
|
|
b = dst->scanLine(y);
|
|
|
|
int *l1 = (y&1) ? line2[chan] : line1[chan];
|
|
|
|
int *l2 = (y&1) ? line1[chan] : line2[chan];
|
|
|
|
if ( y == 0 ) {
|
|
|
|
for (int i=0; i<sw; i++)
|
|
|
|
l1[i] = q[i*4+chan+endian];
|
|
|
|
}
|
|
|
|
if ( y+1 < src->height() ) {
|
|
|
|
for (int i=0; i<sw; i++)
|
|
|
|
l2[i] = q2[i*4+chan+endian];
|
|
|
|
}
|
|
|
|
// Bi-directional error diffusion
|
|
|
|
if ( y&1 ) {
|
|
|
|
for (x=0; x<sw; x++) {
|
|
|
|
int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0);
|
|
|
|
int err = l1[x] - pix * 255 / 5;
|
|
|
|
pv[chan][x] = pix;
|
|
|
|
|
|
|
|
// Spread the error around...
|
|
|
|
if ( x+1<sw ) {
|
|
|
|
l1[x+1] += (err*7)>>4;
|
|
|
|
l2[x+1] += err>>4;
|
|
|
|
}
|
|
|
|
l2[x]+=(err*5)>>4;
|
|
|
|
if (x>1)
|
|
|
|
l2[x-1]+=(err*3)>>4;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (x=sw; x-->0; ) {
|
|
|
|
int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0);
|
|
|
|
int err = l1[x] - pix * 255 / 5;
|
|
|
|
pv[chan][x] = pix;
|
|
|
|
|
|
|
|
// Spread the error around...
|
|
|
|
if ( x > 0 ) {
|
|
|
|
l1[x-1] += (err*7)>>4;
|
|
|
|
l2[x-1] += err>>4;
|
|
|
|
}
|
|
|
|
l2[x]+=(err*5)>>4;
|
|
|
|
if (x+1 < sw)
|
|
|
|
l2[x+1]+=(err*3)>>4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (endian) {
|
|
|
|
for (x=0; x<sw; x++) {
|
|
|
|
*b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (x=0; x<sw; x++) {
|
|
|
|
*b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_DITHER_TO_1
|
|
|
|
if ( src->hasAlphaBuffer() ) {
|
|
|
|
const int trans = 216;
|
|
|
|
dst->setColor(trans, 0x00000000); // transparent
|
|
|
|
TQImage mask = src->createAlphaMask(conversion_flags);
|
|
|
|
uchar* m;
|
|
|
|
for ( y=0; y < src->height(); y++ ) {
|
|
|
|
uchar bit = 0x80;
|
|
|
|
m = mask.scanLine(y);
|
|
|
|
b = dst->scanLine(y);
|
|
|
|
int w = src->width();
|
|
|
|
for ( x = 0; x<w; x++ ) {
|
|
|
|
if ( !(*m&bit) )
|
|
|
|
b[x] = trans;
|
|
|
|
if (!(bit >>= 1)) {
|
|
|
|
bit = 0x80;
|
|
|
|
while ( x<w-1 && *++m == 0xff ) // skip chunks
|
|
|
|
x+=8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) {
|
|
|
|
delete [] line1[0];
|
|
|
|
delete [] line2[0];
|
|
|
|
delete [] line1[1];
|
|
|
|
delete [] line2[1];
|
|
|
|
delete [] line1[2];
|
|
|
|
delete [] line2[2];
|
|
|
|
delete [] pv[0];
|
|
|
|
delete [] pv[1];
|
|
|
|
delete [] pv[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef MAX_R
|
|
|
|
#undef MAX_G
|
|
|
|
#undef MAX_B
|
|
|
|
#undef INDEXOF
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool convert_8_to_32( const TQImage *src, TQImage *dst )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 32) )
|
|
|
|
return FALSE; // create failed
|
|
|
|
dst->setAlphaBuffer( src->hasAlphaBuffer() );
|
|
|
|
for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
|
|
|
|
register uint *p = (uint *)dst->scanLine(y);
|
|
|
|
uchar *b = src->scanLine(y);
|
|
|
|
uint *end = p + dst->width();
|
|
|
|
while ( p < end )
|
|
|
|
*p++ = src->color(*b++);
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool convert_1_to_32( const TQImage *src, TQImage *dst )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 32) )
|
|
|
|
return FALSE; // could not create
|
|
|
|
dst->setAlphaBuffer( src->hasAlphaBuffer() );
|
|
|
|
for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
|
|
|
|
register uint *p = (uint *)dst->scanLine(y);
|
|
|
|
uchar *b = src->scanLine(y);
|
|
|
|
int x;
|
|
|
|
if ( src->bitOrder() == TQImage::BigEndian ) {
|
|
|
|
for ( x=0; x<dst->width(); x++ ) {
|
|
|
|
*p++ = src->color( (*b >> (7 - (x & 7))) & 1 );
|
|
|
|
if ( (x & 7) == 7 )
|
|
|
|
b++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for ( x=0; x<dst->width(); x++ ) {
|
|
|
|
*p++ = src->color( (*b >> (x & 7)) & 1 );
|
|
|
|
if ( (x & 7) == 7 )
|
|
|
|
b++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
#endif // QT_NO_IMAGE_TRUECOLOR
|
|
|
|
|
|
|
|
static bool convert_1_to_8( const TQImage *src, TQImage *dst )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 8, 2) )
|
|
|
|
return FALSE; // something failed
|
|
|
|
dst->setAlphaBuffer( src->hasAlphaBuffer() );
|
|
|
|
if (src->numColors() >= 2) {
|
|
|
|
dst->setColor( 0, src->color(0) ); // copy color table
|
|
|
|
dst->setColor( 1, src->color(1) );
|
|
|
|
} else {
|
|
|
|
// Unlikely, but they do exist
|
|
|
|
if (src->numColors() >= 1)
|
|
|
|
dst->setColor( 0, src->color(0) );
|
|
|
|
else
|
|
|
|
dst->setColor( 0, 0xffffffff );
|
|
|
|
dst->setColor( 1, 0xff000000 );
|
|
|
|
}
|
|
|
|
for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
|
|
|
|
register uchar *p = dst->scanLine(y);
|
|
|
|
uchar *b = src->scanLine(y);
|
|
|
|
int x;
|
|
|
|
if ( src->bitOrder() == TQImage::BigEndian ) {
|
|
|
|
for ( x=0; x<dst->width(); x++ ) {
|
|
|
|
*p++ = (*b >> (7 - (x & 7))) & 1;
|
|
|
|
if ( (x & 7) == 7 )
|
|
|
|
b++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for ( x=0; x<dst->width(); x++ ) {
|
|
|
|
*p++ = (*b >> (x & 7)) & 1;
|
|
|
|
if ( (x & 7) == 7 )
|
|
|
|
b++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_DITHER_TO_1
|
|
|
|
//
|
|
|
|
// dither_to_1: Uses selected dithering algorithm.
|
|
|
|
//
|
|
|
|
|
|
|
|
static bool dither_to_1( const TQImage *src, TQImage *dst,
|
|
|
|
int conversion_flags, bool fromalpha )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 1, 2, TQImage::BigEndian) )
|
|
|
|
return FALSE; // something failed
|
|
|
|
|
|
|
|
enum { Threshold, Ordered, Diffuse } dithermode;
|
|
|
|
|
|
|
|
if ( fromalpha ) {
|
|
|
|
if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::DiffuseAlphaDither )
|
|
|
|
dithermode = Diffuse;
|
|
|
|
else if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::OrderedAlphaDither )
|
|
|
|
dithermode = Ordered;
|
|
|
|
else
|
|
|
|
dithermode = Threshold;
|
|
|
|
} else {
|
|
|
|
if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither )
|
|
|
|
dithermode = Threshold;
|
|
|
|
else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither )
|
|
|
|
dithermode = Ordered;
|
|
|
|
else
|
|
|
|
dithermode = Diffuse;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->setColor( 0, tqRgb(255, 255, 255) );
|
|
|
|
dst->setColor( 1, tqRgb( 0, 0, 0) );
|
|
|
|
int w = src->width();
|
|
|
|
int h = src->height();
|
|
|
|
int d = src->depth();
|
|
|
|
uchar gray[256]; // gray map for 8 bit images
|
|
|
|
bool use_gray = d == 8;
|
|
|
|
if ( use_gray ) { // make gray map
|
|
|
|
if ( fromalpha ) {
|
|
|
|
// Alpha 0x00 -> 0 pixels (white)
|
|
|
|
// Alpha 0xFF -> 1 pixels (black)
|
|
|
|
for ( int i=0; i<src->numColors(); i++ )
|
|
|
|
gray[i] = (255 - (src->color(i) >> 24));
|
|
|
|
} else {
|
|
|
|
// Pixel 0x00 -> 1 pixels (black)
|
|
|
|
// Pixel 0xFF -> 0 pixels (white)
|
|
|
|
for ( int i=0; i<src->numColors(); i++ )
|
|
|
|
gray[i] = tqGray( src->color(i) & 0x00ffffff );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch ( dithermode ) {
|
|
|
|
case Diffuse: {
|
|
|
|
int *line1 = new int[w];
|
|
|
|
int *line2 = new int[w];
|
|
|
|
int bmwidth = (w+7)/8;
|
|
|
|
if ( !(line1 && line2) )
|
|
|
|
return FALSE;
|
|
|
|
register uchar *p;
|
|
|
|
uchar *end;
|
|
|
|
int *b1, *b2;
|
|
|
|
int wbytes = w * (d/8);
|
|
|
|
p = src->bits();
|
|
|
|
end = p + wbytes;
|
|
|
|
b2 = line2;
|
|
|
|
if ( use_gray ) { // 8 bit image
|
|
|
|
while ( p < end )
|
|
|
|
*b2++ = gray[*p++];
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
} else { // 32 bit image
|
|
|
|
if ( fromalpha ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
*b2++ = 255 - (*(uint*)p >> 24);
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
*b2++ = tqGray(*(uint*)p);
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
int x, y;
|
|
|
|
for ( y=0; y<h; y++ ) { // for each scan line...
|
|
|
|
int *tmp = line1; line1 = line2; line2 = tmp;
|
|
|
|
bool not_last_line = y < h - 1;
|
|
|
|
if ( not_last_line ) { // calc. grayvals for next line
|
|
|
|
p = src->scanLine(y+1);
|
|
|
|
end = p + wbytes;
|
|
|
|
b2 = line2;
|
|
|
|
if ( use_gray ) { // 8 bit image
|
|
|
|
while ( p < end )
|
|
|
|
*b2++ = gray[*p++];
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
} else { // 24 bit image
|
|
|
|
if ( fromalpha ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
*b2++ = 255 - (*(uint*)p >> 24);
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
*b2++ = tqGray(*(uint*)p);
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int err;
|
|
|
|
p = dst->scanLine( y );
|
|
|
|
memset( p, 0, bmwidth );
|
|
|
|
b1 = line1;
|
|
|
|
b2 = line2;
|
|
|
|
int bit = 7;
|
|
|
|
for ( x=1; x<=w; x++ ) {
|
|
|
|
if ( *b1 < 128 ) { // black pixel
|
|
|
|
err = *b1++;
|
|
|
|
*p |= 1 << bit;
|
|
|
|
} else { // white pixel
|
|
|
|
err = *b1++ - 255;
|
|
|
|
}
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
p++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
if ( x < w )
|
|
|
|
*b1 += (err*7)>>4; // spread error to right pixel
|
|
|
|
if ( not_last_line ) {
|
|
|
|
b2[0] += (err*5)>>4; // pixel below
|
|
|
|
if ( x > 1 )
|
|
|
|
b2[-1] += (err*3)>>4; // pixel below left
|
|
|
|
if ( x < w )
|
|
|
|
b2[1] += err>>4; // pixel below right
|
|
|
|
}
|
|
|
|
b2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete [] line1;
|
|
|
|
delete [] line2;
|
|
|
|
} break;
|
|
|
|
case Ordered: {
|
|
|
|
static uint bm[16][16];
|
|
|
|
static int init=0;
|
|
|
|
if (!init) {
|
|
|
|
// Build a Bayer Matrix for dithering
|
|
|
|
|
|
|
|
init = 1;
|
|
|
|
int n, i, j;
|
|
|
|
|
|
|
|
bm[0][0]=0;
|
|
|
|
|
|
|
|
for (n=1; n<16; n*=2) {
|
|
|
|
for (i=0; i<n; i++) {
|
|
|
|
for (j=0; j<n; j++) {
|
|
|
|
bm[i][j]*=4;
|
|
|
|
bm[i+n][j]=bm[i][j]+2;
|
|
|
|
bm[i][j+n]=bm[i][j]+3;
|
|
|
|
bm[i+n][j+n]=bm[i][j]+1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Force black to black
|
|
|
|
bm[0][0]=1;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->fill( 0 );
|
|
|
|
uchar** mline = dst->jumpTable();
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
if ( d == 32 ) {
|
|
|
|
uint** line = (uint**)src->jumpTable();
|
|
|
|
for ( int i=0; i<h; i++ ) {
|
|
|
|
uint *p = line[i];
|
|
|
|
uint *end = p + w;
|
|
|
|
uchar *m = mline[i];
|
|
|
|
int bit = 7;
|
|
|
|
int j = 0;
|
|
|
|
if ( fromalpha ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( (*p++ >> 24) >= bm[j++&15][i&15] )
|
|
|
|
*m |= 1 << bit;
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( (uint)tqGray(*p++) < bm[j++&15][i&15] )
|
|
|
|
*m |= 1 << bit;
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
#endif // QT_NO_IMAGE_TRUECOLOR
|
|
|
|
/* ( d == 8 ) */ {
|
|
|
|
uchar** line = src->jumpTable();
|
|
|
|
for ( int i=0; i<h; i++ ) {
|
|
|
|
uchar *p = line[i];
|
|
|
|
uchar *end = p + w;
|
|
|
|
uchar *m = mline[i];
|
|
|
|
int bit = 7;
|
|
|
|
int j = 0;
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( (uint)gray[*p++] < bm[j++&15][i&15] )
|
|
|
|
*m |= 1 << bit;
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} break;
|
|
|
|
default: { // Threshold:
|
|
|
|
dst->fill( 0 );
|
|
|
|
uchar** mline = dst->jumpTable();
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
if ( d == 32 ) {
|
|
|
|
uint** line = (uint**)src->jumpTable();
|
|
|
|
for ( int i=0; i<h; i++ ) {
|
|
|
|
uint *p = line[i];
|
|
|
|
uint *end = p + w;
|
|
|
|
uchar *m = mline[i];
|
|
|
|
int bit = 7;
|
|
|
|
if ( fromalpha ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( (*p++ >> 24) >= 128 )
|
|
|
|
*m |= 1 << bit; // Set mask "on"
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( tqGray(*p++) < 128 )
|
|
|
|
*m |= 1 << bit; // Set pixel "black"
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
#endif //QT_NO_IMAGE_TRUECOLOR
|
|
|
|
if ( d == 8 ) {
|
|
|
|
uchar** line = src->jumpTable();
|
|
|
|
for ( int i=0; i<h; i++ ) {
|
|
|
|
uchar *p = line[i];
|
|
|
|
uchar *end = p + w;
|
|
|
|
uchar *m = mline[i];
|
|
|
|
int bit = 7;
|
|
|
|
while ( p < end ) {
|
|
|
|
if ( gray[*p++] < 128 )
|
|
|
|
*m |= 1 << bit; // Set mask "on"/ pixel "black"
|
|
|
|
if ( bit == 0 ) {
|
|
|
|
m++;
|
|
|
|
bit = 7;
|
|
|
|
} else {
|
|
|
|
bit--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
//###### Endianness issues!
|
|
|
|
static inline bool is16BitGray( ushort c )
|
|
|
|
{
|
|
|
|
int r=(c & 0xf800) >> 11;
|
|
|
|
int g=(c & 0x07e0) >> 6; //green/2
|
|
|
|
int b=(c & 0x001f);
|
|
|
|
return r == g && g == b;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool convert_16_to_32( const TQImage *src, TQImage *dst )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 32) )
|
|
|
|
return FALSE; // create failed
|
|
|
|
dst->setAlphaBuffer( src->hasAlphaBuffer() );
|
|
|
|
for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
|
|
|
|
register uint *p = (uint *)dst->scanLine(y);
|
|
|
|
ushort *s = (ushort*)src->scanLine(y);
|
|
|
|
uint *end = p + dst->width();
|
|
|
|
while ( p < end )
|
|
|
|
*p++ = qt_conv16ToRgb( *s++ );
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool convert_32_to_16( const TQImage *src, TQImage *dst )
|
|
|
|
{
|
|
|
|
if ( !dst->create(src->width(), src->height(), 16) )
|
|
|
|
return FALSE; // create failed
|
|
|
|
dst->setAlphaBuffer( src->hasAlphaBuffer() );
|
|
|
|
for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
|
|
|
|
register ushort *p = (ushort *)dst->scanLine(y);
|
|
|
|
uint *s = (uint*)src->scanLine(y);
|
|
|
|
ushort *end = p + dst->width();
|
|
|
|
while ( p < end )
|
|
|
|
*p++ = qt_convRgbTo16( *s++ );
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Converts the depth (bpp) of the image to \a depth and returns the
|
|
|
|
converted image. The original image is not changed.
|
|
|
|
|
|
|
|
The \a depth argument must be 1, 8, 16 (TQt/Embedded only) or 32.
|
|
|
|
|
|
|
|
Returns \c *this if \a depth is equal to the image depth, or a
|
|
|
|
\link isNull() null\endlink image if this image cannot be
|
|
|
|
converted.
|
|
|
|
|
|
|
|
If the image needs to be modified to fit in a lower-resolution
|
|
|
|
result (e.g. converting from 32-bit to 8-bit), use the \a
|
|
|
|
conversion_flags to specify how you'd prefer this to happen.
|
|
|
|
|
|
|
|
\sa TQt::ImageConversionFlags depth() isNull()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::convertDepth( int depth, int conversion_flags ) const
|
|
|
|
{
|
|
|
|
TQImage image;
|
|
|
|
if ( data->d == depth )
|
|
|
|
image = *this; // no conversion
|
|
|
|
#ifndef QT_NO_IMAGE_DITHER_TO_1
|
|
|
|
else if ( (data->d == 8 || data->d == 32) && depth == 1 ) // dither
|
|
|
|
dither_to_1( this, &image, conversion_flags, FALSE );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
else if ( data->d == 32 && depth == 8 ) // 32 -> 8
|
|
|
|
convert_32_to_8( this, &image, conversion_flags );
|
|
|
|
else if ( data->d == 8 && depth == 32 ) // 8 -> 32
|
|
|
|
convert_8_to_32( this, &image );
|
|
|
|
#endif
|
|
|
|
else if ( data->d == 1 && depth == 8 ) // 1 -> 8
|
|
|
|
convert_1_to_8( this, &image );
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
else if ( data->d == 1 && depth == 32 ) // 1 -> 32
|
|
|
|
convert_1_to_32( this, &image );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
else if ( data->d == 16 && depth != 16 ) {
|
|
|
|
TQImage tmp;
|
|
|
|
convert_16_to_32( this, &tmp );
|
|
|
|
image = tmp.convertDepth( depth, conversion_flags );
|
|
|
|
} else if ( data->d != 16 && depth == 16 ) {
|
|
|
|
TQImage tmp = convertDepth( 32, conversion_flags );
|
|
|
|
convert_32_to_16( &tmp, &image );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
else {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
if ( isNull() )
|
|
|
|
tqWarning( "TQImage::convertDepth: Image is a null image" );
|
|
|
|
else
|
|
|
|
tqWarning( "TQImage::convertDepth: Depth %d not supported", depth );
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::convertDepth( int depth ) const
|
|
|
|
{
|
|
|
|
return convertDepth( depth, 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns TRUE if ( \a x, \a y ) is a valid coordinate in the image;
|
|
|
|
otherwise returns FALSE.
|
|
|
|
|
|
|
|
\sa width() height() pixelIndex()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::valid( int x, int y ) const
|
|
|
|
{
|
|
|
|
return x >= 0 && x < width()
|
|
|
|
&& y >= 0 && y < height();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the pixel index at the given coordinates.
|
|
|
|
|
|
|
|
If (\a x, \a y) is not \link valid() valid\endlink, or if the
|
|
|
|
image is not a paletted image (depth() \> 8), the results are
|
|
|
|
undefined.
|
|
|
|
|
|
|
|
\sa valid() depth()
|
|
|
|
*/
|
|
|
|
|
|
|
|
int TQImage::pixelIndex( int x, int y ) const
|
|
|
|
{
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
if ( x < 0 || x >= width() ) {
|
|
|
|
tqWarning( "TQImage::pixel: x=%d out of range", x );
|
|
|
|
return -12345;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uchar * s = scanLine( y );
|
|
|
|
switch( depth() ) {
|
|
|
|
case 1:
|
|
|
|
if ( bitOrder() == TQImage::LittleEndian )
|
|
|
|
return (*(s + (x >> 3)) >> (x & 7)) & 1;
|
|
|
|
else
|
|
|
|
return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;
|
|
|
|
case 8:
|
|
|
|
return (int)s[x];
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
case 16:
|
|
|
|
#endif
|
|
|
|
case 32:
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::pixelIndex: Not applicable for %d-bpp images "
|
|
|
|
"(no palette)", depth() );
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
#endif //QT_NO_IMAGE_TRUECOLOR
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the color of the pixel at the coordinates (\a x, \a y).
|
|
|
|
|
|
|
|
If (\a x, \a y) is not \link valid() on the image\endlink, the
|
|
|
|
results are undefined.
|
|
|
|
|
|
|
|
\sa setPixel() tqRed() tqGreen() tqBlue() valid()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQRgb TQImage::pixel( int x, int y ) const
|
|
|
|
{
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
if ( x < 0 || x >= width() ) {
|
|
|
|
tqWarning( "TQImage::pixel: x=%d out of range", x );
|
|
|
|
return 12345;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uchar * s = scanLine( y );
|
|
|
|
switch( depth() ) {
|
|
|
|
case 1:
|
|
|
|
if ( bitOrder() == TQImage::LittleEndian )
|
|
|
|
return color( (*(s + (x >> 3)) >> (x & 7)) & 1 );
|
|
|
|
else
|
|
|
|
return color( (*(s + (x >> 3)) >> (7- (x & 7))) & 1 );
|
|
|
|
case 8:
|
|
|
|
return color( (int)s[x] );
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
case 16:
|
|
|
|
return qt_conv16ToRgb(((ushort*)s)[x]);
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
case 32:
|
|
|
|
return ((TQRgb*)s)[x];
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
return 100367;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the pixel index or color at the coordinates (\a x, \a y) to
|
|
|
|
\a index_or_rgb.
|
|
|
|
|
|
|
|
If (\a x, \a y) is not \link valid() valid\endlink, the result is
|
|
|
|
undefined.
|
|
|
|
|
|
|
|
If the image is a paletted image (depth() \<= 8) and \a
|
|
|
|
index_or_rgb \>= numColors(), the result is undefined.
|
|
|
|
|
|
|
|
\sa pixelIndex() pixel() tqRgb() tqRgba() valid()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImage::setPixel( int x, int y, uint index_or_rgb )
|
|
|
|
{
|
|
|
|
if ( x < 0 || x >= width() ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::setPixel: x=%d out of range", x );
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if ( depth() == 1 ) {
|
|
|
|
uchar * s = scanLine( y );
|
|
|
|
if ( index_or_rgb > 1) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::setPixel: index=%d out of range",
|
|
|
|
index_or_rgb );
|
|
|
|
#endif
|
|
|
|
} else if ( bitOrder() == TQImage::LittleEndian ) {
|
|
|
|
if (index_or_rgb==0)
|
|
|
|
*(s + (x >> 3)) &= ~(1 << (x & 7));
|
|
|
|
else
|
|
|
|
*(s + (x >> 3)) |= (1 << (x & 7));
|
|
|
|
} else {
|
|
|
|
if (index_or_rgb==0)
|
|
|
|
*(s + (x >> 3)) &= ~(1 << (7-(x & 7)));
|
|
|
|
else
|
|
|
|
*(s + (x >> 3)) |= (1 << (7-(x & 7)));
|
|
|
|
}
|
|
|
|
} else if ( depth() == 8 ) {
|
|
|
|
if (index_or_rgb > (uint)numColors()) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::setPixel: index=%d out of range",
|
|
|
|
index_or_rgb );
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uchar * s = scanLine( y );
|
|
|
|
s[x] = index_or_rgb;
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
} else if ( depth() == 16 ) {
|
|
|
|
ushort * s = (ushort*)scanLine( y );
|
|
|
|
s[x] = qt_convRgbTo16(index_or_rgb);
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
} else if ( depth() == 32 ) {
|
|
|
|
TQRgb * s = (TQRgb*)scanLine( y );
|
|
|
|
s[x] = index_or_rgb;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Converts the bit order of the image to \a bitOrder and returns the
|
|
|
|
converted image. The original image is not changed.
|
|
|
|
|
|
|
|
Returns \c *this if the \a bitOrder is equal to the image bit
|
|
|
|
order, or a \link isNull() null\endlink image if this image cannot
|
|
|
|
be converted.
|
|
|
|
|
|
|
|
\sa bitOrder() systemBitOrder() isNull()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::convertBitOrder( Endian bitOrder ) const
|
|
|
|
{
|
|
|
|
if ( isNull() || data->d != 1 || // invalid argument(s)
|
|
|
|
!(bitOrder == BigEndian || bitOrder == LittleEndian) ) {
|
|
|
|
TQImage nullImage;
|
|
|
|
return nullImage;
|
|
|
|
}
|
|
|
|
if ( data->bitordr == bitOrder ) // nothing to do
|
|
|
|
return copy();
|
|
|
|
|
|
|
|
TQImage image( data->w, data->h, 1, data->ncols, bitOrder );
|
|
|
|
|
|
|
|
int bpl = (width() + 7) / 8;
|
|
|
|
for ( int y = 0; y < data->h; y++ ) {
|
|
|
|
register uchar *p = jumpTable()[y];
|
|
|
|
uchar *end = p + bpl;
|
|
|
|
uchar *b = image.jumpTable()[y];
|
|
|
|
while ( p < end )
|
|
|
|
*b++ = bitflip[*p++];
|
|
|
|
}
|
|
|
|
memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ### Candidate (renamed) for ntqcolor.h
|
|
|
|
static
|
|
|
|
bool isGray(TQRgb c)
|
|
|
|
{
|
|
|
|
return tqRed(c) == tqGreen(c)
|
|
|
|
&& tqRed(c) == tqBlue(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns TRUE if all the colors in the image are shades of gray
|
|
|
|
(i.e. their red, green and blue components are equal); otherwise
|
|
|
|
returns FALSE.
|
|
|
|
|
|
|
|
This function is slow for large 16-bit (TQt/Embedded only) and 32-bit images.
|
|
|
|
|
|
|
|
\sa isGrayscale()
|
|
|
|
*/
|
|
|
|
bool TQImage::allGray() const
|
|
|
|
{
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
if (depth()==32) {
|
|
|
|
int p = width()*height();
|
|
|
|
TQRgb* b = (TQRgb*)bits();
|
|
|
|
while (p--)
|
|
|
|
if (!isGray(*b++))
|
|
|
|
return FALSE;
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
} else if (depth()==16) {
|
|
|
|
int p = width()*height();
|
|
|
|
ushort* b = (ushort*)bits();
|
|
|
|
while (p--)
|
|
|
|
if (!is16BitGray(*b++))
|
|
|
|
return FALSE;
|
|
|
|
#endif
|
|
|
|
} else
|
|
|
|
#endif //QT_NO_IMAGE_TRUECOLOR
|
|
|
|
{
|
|
|
|
if (!data->ctbl) return TRUE;
|
|
|
|
for (int i=0; i<numColors(); i++)
|
|
|
|
if (!isGray(data->ctbl[i]))
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
For 16-bit (TQt/Embedded only) and 32-bit images, this function is
|
|
|
|
equivalent to allGray().
|
|
|
|
|
|
|
|
For 8-bpp images, this function returns TRUE if color(i) is
|
|
|
|
TQRgb(i,i,i) for all indices of the color table; otherwise returns
|
|
|
|
FALSE.
|
|
|
|
|
|
|
|
\sa allGray() depth()
|
|
|
|
*/
|
|
|
|
bool TQImage::isGrayscale() const
|
|
|
|
{
|
|
|
|
switch (depth()) {
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
case 32:
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
case 16:
|
|
|
|
#endif
|
|
|
|
return allGray();
|
|
|
|
#endif //QT_NO_IMAGE_TRUECOLOR
|
|
|
|
case 8: {
|
|
|
|
for (int i=0; i<numColors(); i++)
|
|
|
|
if (data->ctbl[i] != tqRgb(i,i,i))
|
|
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_SMOOTHSCALE
|
|
|
|
static
|
|
|
|
void pnmscale(const TQImage& src, TQImage& dst)
|
|
|
|
{
|
|
|
|
TQRgb* xelrow = 0;
|
|
|
|
TQRgb* tempxelrow = 0;
|
|
|
|
register TQRgb* xP;
|
|
|
|
register TQRgb* nxP;
|
|
|
|
int rows, cols, rowsread, newrows, newcols;
|
|
|
|
register int row, col, needtoreadrow;
|
|
|
|
const uchar maxval = 255;
|
|
|
|
double xscale, yscale;
|
|
|
|
long sxscale, syscale;
|
|
|
|
register long fracrowtofill, fracrowleft;
|
|
|
|
long* as;
|
|
|
|
long* rs;
|
|
|
|
long* gs;
|
|
|
|
long* bs;
|
|
|
|
int rowswritten = 0;
|
|
|
|
|
|
|
|
cols = src.width();
|
|
|
|
rows = src.height();
|
|
|
|
newcols = dst.width();
|
|
|
|
newrows = dst.height();
|
|
|
|
|
|
|
|
long SCALE;
|
|
|
|
long HALFSCALE;
|
|
|
|
|
|
|
|
if (cols > 4096)
|
|
|
|
{
|
|
|
|
SCALE = 4096;
|
|
|
|
HALFSCALE = 2048;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int fac = 4096;
|
|
|
|
|
|
|
|
while (cols * fac > 4096)
|
|
|
|
{
|
|
|
|
fac /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
SCALE = fac * cols;
|
|
|
|
HALFSCALE = fac * cols / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
xscale = (double) newcols / (double) cols;
|
|
|
|
yscale = (double) newrows / (double) rows;
|
|
|
|
|
|
|
|
sxscale = (long)(xscale * SCALE);
|
|
|
|
syscale = (long)(yscale * SCALE);
|
|
|
|
|
|
|
|
if ( newrows != rows ) /* shortcut Y scaling if possible */
|
|
|
|
tempxelrow = new TQRgb[cols];
|
|
|
|
|
|
|
|
if ( src.hasAlphaBuffer() ) {
|
|
|
|
dst.setAlphaBuffer(TRUE);
|
|
|
|
as = new long[cols];
|
|
|
|
for ( col = 0; col < cols; ++col )
|
|
|
|
as[col] = HALFSCALE;
|
|
|
|
} else {
|
|
|
|
as = 0;
|
|
|
|
}
|
|
|
|
rs = new long[cols];
|
|
|
|
gs = new long[cols];
|
|
|
|
bs = new long[cols];
|
|
|
|
rowsread = 0;
|
|
|
|
fracrowleft = syscale;
|
|
|
|
needtoreadrow = 1;
|
|
|
|
for ( col = 0; col < cols; ++col )
|
|
|
|
rs[col] = gs[col] = bs[col] = HALFSCALE;
|
|
|
|
fracrowtofill = SCALE;
|
|
|
|
|
|
|
|
for ( row = 0; row < newrows; ++row ) {
|
|
|
|
/* First scale Y from xelrow into tempxelrow. */
|
|
|
|
if ( newrows == rows ) {
|
|
|
|
/* shortcut Y scaling if possible */
|
|
|
|
tempxelrow = xelrow = (TQRgb*)src.scanLine(rowsread++);
|
|
|
|
} else {
|
|
|
|
while ( fracrowleft < fracrowtofill ) {
|
|
|
|
if ( needtoreadrow && rowsread < rows )
|
|
|
|
xelrow = (TQRgb*)src.scanLine(rowsread++);
|
|
|
|
for ( col = 0, xP = xelrow; col < cols; ++col, ++xP ) {
|
|
|
|
if (as) {
|
|
|
|
as[col] += fracrowleft * tqAlpha( *xP );
|
|
|
|
rs[col] += fracrowleft * tqRed( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
gs[col] += fracrowleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
bs[col] += fracrowleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
} else {
|
|
|
|
rs[col] += fracrowleft * tqRed( *xP );
|
|
|
|
gs[col] += fracrowleft * tqGreen( *xP );
|
|
|
|
bs[col] += fracrowleft * tqBlue( *xP );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fracrowtofill -= fracrowleft;
|
|
|
|
fracrowleft = syscale;
|
|
|
|
needtoreadrow = 1;
|
|
|
|
}
|
|
|
|
/* Now fracrowleft is >= fracrowtofill, so we can produce a row. */
|
|
|
|
if ( needtoreadrow && rowsread < rows ) {
|
|
|
|
xelrow = (TQRgb*)src.scanLine(rowsread++);
|
|
|
|
needtoreadrow = 0;
|
|
|
|
}
|
|
|
|
register long a=0;
|
|
|
|
for ( col = 0, xP = xelrow, nxP = tempxelrow;
|
|
|
|
col < cols; ++col, ++xP, ++nxP )
|
|
|
|
{
|
|
|
|
register long r, g, b;
|
|
|
|
|
|
|
|
if ( as ) {
|
|
|
|
r = rs[col] + fracrowtofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
g = gs[col] + fracrowtofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
b = bs[col] + fracrowtofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
a = as[col] + fracrowtofill * tqAlpha( *xP );
|
|
|
|
if ( a ) {
|
|
|
|
r = r * 255 / a * SCALE;
|
|
|
|
g = g * 255 / a * SCALE;
|
|
|
|
b = b * 255 / a * SCALE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
r = rs[col] + fracrowtofill * tqRed( *xP );
|
|
|
|
g = gs[col] + fracrowtofill * tqGreen( *xP );
|
|
|
|
b = bs[col] + fracrowtofill * tqBlue( *xP );
|
|
|
|
}
|
|
|
|
r /= SCALE;
|
|
|
|
if ( r > maxval ) r = maxval;
|
|
|
|
g /= SCALE;
|
|
|
|
if ( g > maxval ) g = maxval;
|
|
|
|
b /= SCALE;
|
|
|
|
if ( b > maxval ) b = maxval;
|
|
|
|
if ( as ) {
|
|
|
|
a /= SCALE;
|
|
|
|
if ( a > maxval ) a = maxval;
|
|
|
|
*nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
|
|
|
|
as[col] = HALFSCALE;
|
|
|
|
} else {
|
|
|
|
*nxP = tqRgb( (int)r, (int)g, (int)b );
|
|
|
|
}
|
|
|
|
rs[col] = gs[col] = bs[col] = HALFSCALE;
|
|
|
|
}
|
|
|
|
fracrowleft -= fracrowtofill;
|
|
|
|
if ( fracrowleft == 0 ) {
|
|
|
|
fracrowleft = syscale;
|
|
|
|
needtoreadrow = 1;
|
|
|
|
}
|
|
|
|
fracrowtofill = SCALE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now scale X from tempxelrow into dst and write it out. */
|
|
|
|
if ( newcols == cols ) {
|
|
|
|
/* shortcut X scaling if possible */
|
|
|
|
memcpy(dst.scanLine(rowswritten++), tempxelrow, newcols*4);
|
|
|
|
} else {
|
|
|
|
register long a, r, g, b;
|
|
|
|
register long fraccoltofill, fraccolleft = 0;
|
|
|
|
register int needcol;
|
|
|
|
|
|
|
|
nxP = (TQRgb*)dst.scanLine(rowswritten++);
|
|
|
|
fraccoltofill = SCALE;
|
|
|
|
a = r = g = b = HALFSCALE;
|
|
|
|
needcol = 0;
|
|
|
|
for ( col = 0, xP = tempxelrow; col < cols; ++col, ++xP ) {
|
|
|
|
fraccolleft = sxscale;
|
|
|
|
while ( fraccolleft >= fraccoltofill ) {
|
|
|
|
if ( needcol ) {
|
|
|
|
++nxP;
|
|
|
|
a = r = g = b = HALFSCALE;
|
|
|
|
}
|
|
|
|
if ( as ) {
|
|
|
|
r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
a += fraccoltofill * tqAlpha( *xP );
|
|
|
|
if ( a ) {
|
|
|
|
r = r * 255 / a * SCALE;
|
|
|
|
g = g * 255 / a * SCALE;
|
|
|
|
b = b * 255 / a * SCALE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
r += fraccoltofill * tqRed( *xP );
|
|
|
|
g += fraccoltofill * tqGreen( *xP );
|
|
|
|
b += fraccoltofill * tqBlue( *xP );
|
|
|
|
}
|
|
|
|
r /= SCALE;
|
|
|
|
if ( r > maxval ) r = maxval;
|
|
|
|
g /= SCALE;
|
|
|
|
if ( g > maxval ) g = maxval;
|
|
|
|
b /= SCALE;
|
|
|
|
if ( b > maxval ) b = maxval;
|
|
|
|
if (as) {
|
|
|
|
a /= SCALE;
|
|
|
|
if ( a > maxval ) a = maxval;
|
|
|
|
*nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
|
|
|
|
} else {
|
|
|
|
*nxP = tqRgb( (int)r, (int)g, (int)b );
|
|
|
|
}
|
|
|
|
fraccolleft -= fraccoltofill;
|
|
|
|
fraccoltofill = SCALE;
|
|
|
|
needcol = 1;
|
|
|
|
}
|
|
|
|
if ( fraccolleft > 0 ) {
|
|
|
|
if ( needcol ) {
|
|
|
|
++nxP;
|
|
|
|
a = r = g = b = HALFSCALE;
|
|
|
|
needcol = 0;
|
|
|
|
}
|
|
|
|
if (as) {
|
|
|
|
a += fraccolleft * tqAlpha( *xP );
|
|
|
|
r += fraccolleft * tqRed( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
g += fraccolleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
b += fraccolleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
} else {
|
|
|
|
r += fraccolleft * tqRed( *xP );
|
|
|
|
g += fraccolleft * tqGreen( *xP );
|
|
|
|
b += fraccolleft * tqBlue( *xP );
|
|
|
|
}
|
|
|
|
fraccoltofill -= fraccolleft;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( fraccoltofill > 0 ) {
|
|
|
|
--xP;
|
|
|
|
if (as) {
|
|
|
|
a += fraccolleft * tqAlpha( *xP );
|
|
|
|
r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
|
|
|
|
if ( a ) {
|
|
|
|
r = r * 255 / a * SCALE;
|
|
|
|
g = g * 255 / a * SCALE;
|
|
|
|
b = b * 255 / a * SCALE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
r += fraccoltofill * tqRed( *xP );
|
|
|
|
g += fraccoltofill * tqGreen( *xP );
|
|
|
|
b += fraccoltofill * tqBlue( *xP );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ! needcol ) {
|
|
|
|
r /= SCALE;
|
|
|
|
if ( r > maxval ) r = maxval;
|
|
|
|
g /= SCALE;
|
|
|
|
if ( g > maxval ) g = maxval;
|
|
|
|
b /= SCALE;
|
|
|
|
if ( b > maxval ) b = maxval;
|
|
|
|
if (as) {
|
|
|
|
a /= SCALE;
|
|
|
|
if ( a > maxval ) a = maxval;
|
|
|
|
*nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
|
|
|
|
} else {
|
|
|
|
*nxP = tqRgb( (int)r, (int)g, (int)b );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( newrows != rows && tempxelrow )// Robust, tempxelrow might be 0 1 day
|
|
|
|
delete [] tempxelrow;
|
|
|
|
if ( as ) // Avoid purify complaint
|
|
|
|
delete [] as;
|
|
|
|
if ( rs ) // Robust, rs might be 0 one day
|
|
|
|
delete [] rs;
|
|
|
|
if ( gs ) // Robust, gs might be 0 one day
|
|
|
|
delete [] gs;
|
|
|
|
if ( bs ) // Robust, bs might be 0 one day
|
|
|
|
delete [] bs;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\enum TQImage::ScaleMode
|
|
|
|
|
|
|
|
The functions scale() and smoothScale() use different modes for
|
|
|
|
scaling the image. The purpose of these modes is to retain the
|
|
|
|
ratio of the image if this is required.
|
|
|
|
|
|
|
|
\img scaling.png
|
|
|
|
|
|
|
|
\value ScaleFree The image is scaled freely: the resulting image
|
|
|
|
fits exactly into the specified size; the ratio will not
|
|
|
|
necessarily be preserved.
|
|
|
|
\value ScaleMin The ratio of the image is preserved and the
|
|
|
|
resulting image is guaranteed to fit into the specified size
|
|
|
|
(it is as large as possible within these constraints) - the
|
|
|
|
image might be smaller than the requested size.
|
|
|
|
\value ScaleMax The ratio of the image is preserved and the
|
|
|
|
resulting image fills the whole specified rectangle (it is as
|
|
|
|
small as possible within these constraints) - the image might
|
|
|
|
be larger than the requested size.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_SMOOTHSCALE
|
|
|
|
/*!
|
|
|
|
Returns a smoothly scaled copy of the image. The returned image
|
|
|
|
has a size of width \a w by height \a h pixels if \a mode is \c
|
|
|
|
ScaleFree. The modes \c ScaleMin and \c ScaleMax may be used to
|
|
|
|
preserve the ratio of the image: if \a mode is \c ScaleMin, the
|
|
|
|
returned image is guaranteed to fit into the rectangle specified
|
|
|
|
by \a w and \a h (it is as large as possible within the
|
|
|
|
constraints); if \a mode is \c ScaleMax, the returned image fits
|
|
|
|
at least into the specified rectangle (it is a small as possible
|
|
|
|
within the constraints).
|
|
|
|
|
|
|
|
For 32-bpp images and 1-bpp/8-bpp color images the result will be
|
|
|
|
32-bpp, whereas \link allGray() all-gray \endlink images
|
|
|
|
(including black-and-white 1-bpp) will produce 8-bit \link
|
|
|
|
isGrayscale() grayscale \endlink images with the palette spanning
|
|
|
|
256 grays from black to white.
|
|
|
|
|
|
|
|
This function uses code based on pnmscale.c by Jef Poskanzer.
|
|
|
|
|
|
|
|
pnmscale.c - read a portable anymap and scale it
|
|
|
|
|
|
|
|
\legalese
|
|
|
|
|
|
|
|
Copyright (C) 1989, 1991 by Jef Poskanzer.
|
|
|
|
|
|
|
|
Permission to use, copy, modify, and distribute this software and
|
|
|
|
its documentation for any purpose and without fee is hereby
|
|
|
|
granted, provided that the above copyright notice appear in all
|
|
|
|
copies and that both that copyright notice and this permission
|
|
|
|
notice appear in supporting documentation. This software is
|
|
|
|
provided "as is" without express or implied warranty.
|
|
|
|
|
|
|
|
\sa scale() mirror()
|
|
|
|
*/
|
|
|
|
TQImage TQImage::smoothScale( int w, int h, ScaleMode mode ) const
|
|
|
|
{
|
|
|
|
return smoothScale( TQSize( w, h ), mode );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_SMOOTHSCALE
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
The requested size of the image is \a s.
|
|
|
|
*/
|
|
|
|
TQImage TQImage::smoothScale( const TQSize& s, ScaleMode mode ) const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::smoothScale: Image is a null image" );
|
|
|
|
#endif
|
|
|
|
return copy();
|
|
|
|
}
|
|
|
|
|
|
|
|
TQSize newSize = size();
|
|
|
|
newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0
|
|
|
|
if ( newSize == size() )
|
|
|
|
return copy();
|
|
|
|
|
|
|
|
if ( depth() == 32 ) {
|
|
|
|
TQImage img( newSize, 32 );
|
|
|
|
// 32-bpp to 32-bpp
|
|
|
|
pnmscale( *this, img );
|
|
|
|
return img;
|
|
|
|
} else if ( depth() != 16 && allGray() && !hasAlphaBuffer() ) {
|
|
|
|
// Inefficient
|
|
|
|
return convertDepth(32).smoothScale(newSize, mode).convertDepth(8);
|
|
|
|
} else {
|
|
|
|
// Inefficient
|
|
|
|
return convertDepth(32).smoothScale(newSize, mode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a copy of the image scaled to a rectangle of width \a w
|
|
|
|
and height \a h according to the ScaleMode \a mode.
|
|
|
|
|
|
|
|
\list
|
|
|
|
\i If \a mode is \c ScaleFree, the image is scaled to (\a w,
|
|
|
|
\a h).
|
|
|
|
\i If \a mode is \c ScaleMin, the image is scaled to a rectangle
|
|
|
|
as large as possible inside (\a w, \a h), preserving the aspect
|
|
|
|
ratio.
|
|
|
|
\i If \a mode is \c ScaleMax, the image is scaled to a rectangle
|
|
|
|
as small as possible outside (\a w, \a h), preserving the aspect
|
|
|
|
ratio.
|
|
|
|
\endlist
|
|
|
|
|
|
|
|
If either the width \a w or the height \a h is 0 or negative, this
|
|
|
|
function returns a \link isNull() null\endlink image.
|
|
|
|
|
|
|
|
This function uses a simple, fast algorithm. If you need better
|
|
|
|
quality, use smoothScale() instead.
|
|
|
|
|
|
|
|
\sa scaleWidth() scaleHeight() smoothScale() xForm()
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRANSFORMATION
|
|
|
|
TQImage TQImage::scale( int w, int h, ScaleMode mode ) const
|
|
|
|
{
|
|
|
|
return scale( TQSize( w, h ), mode );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
The requested size of the image is \a s.
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRANSFORMATION
|
|
|
|
TQImage TQImage::scale( const TQSize& s, ScaleMode mode ) const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::scale: Image is a null image" );
|
|
|
|
#endif
|
|
|
|
return copy();
|
|
|
|
}
|
|
|
|
if ( s.isEmpty() )
|
|
|
|
return TQImage();
|
|
|
|
|
|
|
|
TQSize newSize = size();
|
|
|
|
newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0
|
|
|
|
if ( newSize == size() )
|
|
|
|
return copy();
|
|
|
|
|
|
|
|
TQImage img;
|
|
|
|
TQWMatrix wm;
|
|
|
|
wm.scale( (double)newSize.width() / width(), (double)newSize.height() / height() );
|
|
|
|
img = xForm( wm );
|
|
|
|
// ### I should test and resize the image if it has not the right size
|
|
|
|
// if ( img.width() != newSize.width() || img.height() != newSize.height() )
|
|
|
|
// img.resize( newSize.width(), newSize.height() );
|
|
|
|
return img;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a scaled copy of the image. The returned image has a width
|
|
|
|
of \a w pixels. This function automatically calculates the height
|
|
|
|
of the image so that the ratio of the image is preserved.
|
|
|
|
|
|
|
|
If \a w is 0 or negative a \link isNull() null\endlink image is
|
|
|
|
returned.
|
|
|
|
|
|
|
|
\sa scale() scaleHeight() smoothScale() xForm()
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRANSFORMATION
|
|
|
|
TQImage TQImage::scaleWidth( int w ) const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::scaleWidth: Image is a null image" );
|
|
|
|
#endif
|
|
|
|
return copy();
|
|
|
|
}
|
|
|
|
if ( w <= 0 )
|
|
|
|
return TQImage();
|
|
|
|
|
|
|
|
TQWMatrix wm;
|
|
|
|
double factor = (double) w / width();
|
|
|
|
wm.scale( factor, factor );
|
|
|
|
return xForm( wm );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a scaled copy of the image. The returned image has a
|
|
|
|
height of \a h pixels. This function automatically calculates the
|
|
|
|
width of the image so that the ratio of the image is preserved.
|
|
|
|
|
|
|
|
If \a h is 0 or negative a \link isNull() null\endlink image is
|
|
|
|
returned.
|
|
|
|
|
|
|
|
\sa scale() scaleWidth() smoothScale() xForm()
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRANSFORMATION
|
|
|
|
TQImage TQImage::scaleHeight( int h ) const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage::scaleHeight: Image is a null image" );
|
|
|
|
#endif
|
|
|
|
return copy();
|
|
|
|
}
|
|
|
|
if ( h <= 0 )
|
|
|
|
return TQImage();
|
|
|
|
|
|
|
|
TQWMatrix wm;
|
|
|
|
double factor = (double) h / height();
|
|
|
|
wm.scale( factor, factor );
|
|
|
|
return xForm( wm );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a copy of the image that is transformed using the
|
|
|
|
transformation matrix, \a matrix.
|
|
|
|
|
|
|
|
The transformation \a matrix is internally adjusted to compensate
|
|
|
|
for unwanted translation, i.e. xForm() returns the smallest image
|
|
|
|
that contains all the transformed points of the original image.
|
|
|
|
|
|
|
|
\sa scale() TQPixmap::xForm() TQPixmap::trueMatrix() TQWMatrix
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRANSFORMATION
|
|
|
|
TQImage TQImage::xForm( const TQWMatrix &matrix ) const
|
|
|
|
{
|
|
|
|
// This function uses the same algorithm as (and steals quite some
|
|
|
|
// code from) TQPixmap::xForm().
|
|
|
|
|
|
|
|
if ( isNull() )
|
|
|
|
return copy();
|
|
|
|
|
|
|
|
if ( depth() == 16 ) {
|
|
|
|
// inefficient
|
|
|
|
return convertDepth( 32 ).xForm( matrix );
|
|
|
|
}
|
|
|
|
|
|
|
|
// source image data
|
|
|
|
int ws = width();
|
|
|
|
int hs = height();
|
|
|
|
int sbpl = bytesPerLine();
|
|
|
|
uchar *sptr = bits();
|
|
|
|
|
|
|
|
// target image data
|
|
|
|
int wd;
|
|
|
|
int hd;
|
|
|
|
|
|
|
|
int bpp = depth();
|
|
|
|
|
|
|
|
// compute size of target image
|
|
|
|
TQWMatrix mat = TQPixmap::trueMatrix( matrix, ws, hs );
|
|
|
|
if ( mat.m12() == 0.0F && mat.m21() == 0.0F ) {
|
|
|
|
if ( mat.m11() == 1.0F && mat.m22() == 1.0F ) // identity matrix
|
|
|
|
return copy();
|
|
|
|
hd = tqRound( mat.m22() * hs );
|
|
|
|
wd = tqRound( mat.m11() * ws );
|
|
|
|
hd = TQABS( hd );
|
|
|
|
wd = TQABS( wd );
|
|
|
|
} else { // rotation or shearing
|
|
|
|
TQPointArray a( TQRect(0, 0, ws, hs) );
|
|
|
|
a = mat.map( a );
|
|
|
|
TQRect r = a.boundingRect().normalize();
|
|
|
|
wd = r.width();
|
|
|
|
hd = r.height();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool invertible;
|
|
|
|
mat = mat.invert( &invertible ); // invert matrix
|
|
|
|
if ( hd == 0 || wd == 0 || !invertible ) // error, return null image
|
|
|
|
return TQImage();
|
|
|
|
|
|
|
|
// create target image (some of the code is from TQImage::copy())
|
|
|
|
TQImage dImage( wd, hd, depth(), numColors(), bitOrder() );
|
|
|
|
|
|
|
|
// If the image allocation failed, we need to gracefully abort.
|
|
|
|
if (dImage.isNull())
|
|
|
|
return dImage;
|
|
|
|
|
|
|
|
memcpy( dImage.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
|
|
|
|
dImage.setAlphaBuffer( hasAlphaBuffer() );
|
|
|
|
dImage.data->dpmx = dotsPerMeterX();
|
|
|
|
dImage.data->dpmy = dotsPerMeterY();
|
|
|
|
|
|
|
|
switch ( bpp ) {
|
|
|
|
// initizialize the data
|
|
|
|
case 1:
|
|
|
|
memset( dImage.bits(), 0, dImage.numBytes() );
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
if ( dImage.data->ncols < 256 ) {
|
|
|
|
// colors are left in the color table, so pick that one as transparent
|
|
|
|
dImage.setNumColors( dImage.data->ncols+1 );
|
|
|
|
dImage.setColor( dImage.data->ncols-1, 0x00 );
|
|
|
|
memset( dImage.bits(), dImage.data->ncols-1, dImage.numBytes() );
|
|
|
|
} else {
|
|
|
|
memset( dImage.bits(), 0, dImage.numBytes() );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
memset( dImage.bits(), 0xff, dImage.numBytes() );
|
|
|
|
break;
|
|
|
|
case 32:
|
|
|
|
memset( dImage.bits(), 0x00, dImage.numBytes() );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
int type;
|
|
|
|
if ( bitOrder() == BigEndian )
|
|
|
|
type = QT_XFORM_TYPE_MSBFIRST;
|
|
|
|
else
|
|
|
|
type = QT_XFORM_TYPE_LSBFIRST;
|
|
|
|
int dbpl = dImage.bytesPerLine();
|
|
|
|
qt_xForm_helper( mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl,
|
|
|
|
ws, hs );
|
|
|
|
return dImage;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Builds and returns a 1-bpp mask from the alpha buffer in this
|
|
|
|
image. Returns a \link isNull() null\endlink image if \link
|
|
|
|
setAlphaBuffer() alpha buffer mode\endlink is disabled.
|
|
|
|
|
|
|
|
See TQPixmap::convertFromImage() for a description of the \a
|
|
|
|
conversion_flags argument.
|
|
|
|
|
|
|
|
The returned image has little-endian bit order, which you can
|
|
|
|
convert to big-endianness using convertBitOrder().
|
|
|
|
|
|
|
|
\sa createHeuristicMask() hasAlphaBuffer() setAlphaBuffer()
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_DITHER_TO_1
|
|
|
|
TQImage TQImage::createAlphaMask( int conversion_flags ) const
|
|
|
|
{
|
|
|
|
if ( conversion_flags == 1 ) {
|
|
|
|
// Old code is passing "TRUE".
|
|
|
|
conversion_flags = TQt::DiffuseAlphaDither;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( isNull() || !hasAlphaBuffer() )
|
|
|
|
return TQImage();
|
|
|
|
|
|
|
|
if ( depth() == 1 ) {
|
|
|
|
// A monochrome pixmap, with alpha channels on those two colors.
|
|
|
|
// Pretty unlikely, so use less efficient solution.
|
|
|
|
return convertDepth(8, conversion_flags)
|
|
|
|
.createAlphaMask( conversion_flags );
|
|
|
|
}
|
|
|
|
|
|
|
|
TQImage mask1;
|
|
|
|
dither_to_1( this, &mask1, conversion_flags, TRUE );
|
|
|
|
return mask1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_HEURISTIC_MASK
|
|
|
|
/*!
|
|
|
|
Creates and returns a 1-bpp heuristic mask for this image. It
|
|
|
|
works by selecting a color from one of the corners, then chipping
|
|
|
|
away pixels of that color starting at all the edges.
|
|
|
|
|
|
|
|
The four corners vote for which color is to be masked away. In
|
|
|
|
case of a draw (this generally means that this function is not
|
|
|
|
applicable to the image), the result is arbitrary.
|
|
|
|
|
|
|
|
The returned image has little-endian bit order, which you can
|
|
|
|
convert to big-endianness using convertBitOrder().
|
|
|
|
|
|
|
|
If \a clipTight is TRUE the mask is just large enough to cover the
|
|
|
|
pixels; otherwise, the mask is larger than the data pixels.
|
|
|
|
|
|
|
|
This function disregards the \link hasAlphaBuffer() alpha buffer
|
|
|
|
\endlink.
|
|
|
|
|
|
|
|
\sa createAlphaMask()
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::createHeuristicMask( bool clipTight ) const
|
|
|
|
{
|
|
|
|
if ( isNull() ) {
|
|
|
|
TQImage nullImage;
|
|
|
|
return nullImage;
|
|
|
|
}
|
|
|
|
if ( depth() != 32 ) {
|
|
|
|
TQImage img32 = convertDepth(32);
|
|
|
|
return img32.createHeuristicMask(clipTight);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define PIX(x,y) (*((TQRgb*)scanLine(y)+x) & 0x00ffffff)
|
|
|
|
|
|
|
|
int w = width();
|
|
|
|
int h = height();
|
|
|
|
TQImage m(w, h, 1, 2, TQImage::LittleEndian);
|
|
|
|
m.setColor( 0, 0xffffff );
|
|
|
|
m.setColor( 1, 0 );
|
|
|
|
m.fill( 0xff );
|
|
|
|
|
|
|
|
TQRgb background = PIX(0,0);
|
|
|
|
if ( background != PIX(w-1,0) &&
|
|
|
|
background != PIX(0,h-1) &&
|
|
|
|
background != PIX(w-1,h-1) ) {
|
|
|
|
background = PIX(w-1,0);
|
|
|
|
if ( background != PIX(w-1,h-1) &&
|
|
|
|
background != PIX(0,h-1) &&
|
|
|
|
PIX(0,h-1) == PIX(w-1,h-1) ) {
|
|
|
|
background = PIX(w-1,h-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int x,y;
|
|
|
|
bool done = FALSE;
|
|
|
|
uchar *ypp, *ypc, *ypn;
|
|
|
|
while( !done ) {
|
|
|
|
done = TRUE;
|
|
|
|
ypn = m.scanLine(0);
|
|
|
|
ypc = 0;
|
|
|
|
for ( y = 0; y < h; y++ ) {
|
|
|
|
ypp = ypc;
|
|
|
|
ypc = ypn;
|
|
|
|
ypn = (y == h-1) ? 0 : m.scanLine(y+1);
|
|
|
|
TQRgb *p = (TQRgb *)scanLine(y);
|
|
|
|
for ( x = 0; x < w; x++ ) {
|
|
|
|
// slowness here - it's possible to do six of these tests
|
|
|
|
// together in one go. oh well.
|
|
|
|
if ( ( x == 0 || y == 0 || x == w-1 || y == h-1 ||
|
|
|
|
!(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||
|
|
|
|
!(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||
|
|
|
|
!(*(ypp + (x >> 3)) & (1 << (x & 7))) ||
|
|
|
|
!(*(ypn + (x >> 3)) & (1 << (x & 7))) ) &&
|
|
|
|
( (*(ypc + (x >> 3)) & (1 << (x & 7))) ) &&
|
|
|
|
( (*p & 0x00ffffff) == background ) ) {
|
|
|
|
done = FALSE;
|
|
|
|
*(ypc + (x >> 3)) &= ~(1 << (x & 7));
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !clipTight ) {
|
|
|
|
ypn = m.scanLine(0);
|
|
|
|
ypc = 0;
|
|
|
|
for ( y = 0; y < h; y++ ) {
|
|
|
|
ypp = ypc;
|
|
|
|
ypc = ypn;
|
|
|
|
ypn = (y == h-1) ? 0 : m.scanLine(y+1);
|
|
|
|
TQRgb *p = (TQRgb *)scanLine(y);
|
|
|
|
for ( x = 0; x < w; x++ ) {
|
|
|
|
if ( (*p & 0x00ffffff) != background ) {
|
|
|
|
if ( x > 0 )
|
|
|
|
*(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));
|
|
|
|
if ( x < w-1 )
|
|
|
|
*(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));
|
|
|
|
if ( y > 0 )
|
|
|
|
*(ypp + (x >> 3)) |= (1 << (x & 7));
|
|
|
|
if ( y < h-1 )
|
|
|
|
*(ypn + (x >> 3)) |= (1 << (x & 7));
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef PIX
|
|
|
|
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
#endif //QT_NO_IMAGE_HEURISTIC_MASK
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGE_MIRROR
|
|
|
|
/*
|
|
|
|
This code is contributed by Philipp Lang,
|
|
|
|
GeneriCom Software Germany (www.generi.com)
|
|
|
|
under the terms of the TQPL, Version 1.0
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns a mirror of the image, mirrored in the horizontal and/or
|
|
|
|
the vertical direction depending on whether \a horizontal and \a
|
|
|
|
vertical are set to TRUE or FALSE. The original image is not
|
|
|
|
changed.
|
|
|
|
|
|
|
|
\sa smoothScale()
|
|
|
|
*/
|
|
|
|
TQImage TQImage::mirror(bool horizontal, bool vertical) const
|
|
|
|
{
|
|
|
|
int w = width();
|
|
|
|
int h = height();
|
|
|
|
if ( (w <= 1 && h <= 1) || (!horizontal && !vertical) )
|
|
|
|
return copy();
|
|
|
|
|
|
|
|
// Create result image, copy colormap
|
|
|
|
TQImage result(w, h, depth(), numColors(), bitOrder());
|
|
|
|
memcpy(result.colorTable(), colorTable(), numColors()*sizeof(TQRgb));
|
|
|
|
result.setAlphaBuffer(hasAlphaBuffer());
|
|
|
|
|
|
|
|
if (depth() == 1)
|
|
|
|
w = (w+7)/8;
|
|
|
|
int dxi = horizontal ? -1 : 1;
|
|
|
|
int dxs = horizontal ? w-1 : 0;
|
|
|
|
int dyi = vertical ? -1 : 1;
|
|
|
|
int dy = vertical ? h-1: 0;
|
|
|
|
|
|
|
|
// 1 bit, 8 bit
|
|
|
|
if (depth() == 1 || depth() == 8) {
|
|
|
|
for (int sy = 0; sy < h; sy++, dy += dyi) {
|
|
|
|
TQ_UINT8* ssl = (TQ_UINT8*)(data->bits[sy]);
|
|
|
|
TQ_UINT8* dsl = (TQ_UINT8*)(result.data->bits[dy]);
|
|
|
|
int dx = dxs;
|
|
|
|
for (int sx = 0; sx < w; sx++, dx += dxi)
|
|
|
|
dsl[dx] = ssl[sx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
// 16 bit
|
|
|
|
else if (depth() == 16) {
|
|
|
|
for (int sy = 0; sy < h; sy++, dy += dyi) {
|
|
|
|
TQ_UINT16* ssl = (TQ_UINT16*)(data->bits[sy]);
|
|
|
|
TQ_UINT16* dsl = (TQ_UINT16*)(result.data->bits[dy]);
|
|
|
|
int dx = dxs;
|
|
|
|
for (int sx = 0; sx < w; sx++, dx += dxi)
|
|
|
|
dsl[dx] = ssl[sx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// 32 bit
|
|
|
|
else if (depth() == 32) {
|
|
|
|
for (int sy = 0; sy < h; sy++, dy += dyi) {
|
|
|
|
TQ_UINT32* ssl = (TQ_UINT32*)(data->bits[sy]);
|
|
|
|
TQ_UINT32* dsl = (TQ_UINT32*)(result.data->bits[dy]);
|
|
|
|
int dx = dxs;
|
|
|
|
for (int sx = 0; sx < w; sx++, dx += dxi)
|
|
|
|
dsl[dx] = ssl[sx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// special handling of 1 bit images for horizontal mirroring
|
|
|
|
if (horizontal && depth() == 1) {
|
|
|
|
int shift = width() % 8;
|
|
|
|
for (int y = h-1; y >= 0; y--) {
|
|
|
|
TQ_UINT8* a0 = (TQ_UINT8*)(result.data->bits[y]);
|
|
|
|
// Swap bytes
|
|
|
|
TQ_UINT8* a = a0+dxs;
|
|
|
|
while (a >= a0) {
|
|
|
|
*a = bitflip[*a];
|
|
|
|
a--;
|
|
|
|
}
|
|
|
|
// Shift bits if unaligned
|
|
|
|
if (shift != 0) {
|
|
|
|
a = a0+dxs;
|
|
|
|
TQ_UINT8 c = 0;
|
|
|
|
if (bitOrder() == TQImage::LittleEndian) {
|
|
|
|
while (a >= a0) {
|
|
|
|
TQ_UINT8 nc = *a << shift;
|
|
|
|
*a = (*a >> (8-shift)) | c;
|
|
|
|
--a;
|
|
|
|
c = nc;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while (a >= a0) {
|
|
|
|
TQ_UINT8 nc = *a >> shift;
|
|
|
|
*a = (*a << (8-shift)) | c;
|
|
|
|
--a;
|
|
|
|
c = nc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a TQImage which is a vertically mirrored copy of this
|
|
|
|
image. The original TQImage is not changed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::mirror() const
|
|
|
|
{
|
|
|
|
return mirror(FALSE,TRUE);
|
|
|
|
}
|
|
|
|
#endif //QT_NO_IMAGE_MIRROR
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a TQImage in which the values of the red and blue
|
|
|
|
components of all pixels have been swapped, effectively converting
|
|
|
|
an RGB image to a BGR image. The original TQImage is not changed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImage TQImage::swapRGB() const
|
|
|
|
{
|
|
|
|
TQImage res = copy();
|
|
|
|
if ( !isNull() ) {
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
if ( depth() == 32 ) {
|
|
|
|
for ( int i=0; i < height(); i++ ) {
|
|
|
|
uint *p = (uint*)scanLine( i );
|
|
|
|
uint *q = (uint*)res.scanLine( i );
|
|
|
|
uint *end = p + width();
|
|
|
|
while ( p < end ) {
|
|
|
|
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) |
|
|
|
|
(*p & 0xff00ff00);
|
|
|
|
p++;
|
|
|
|
q++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef QT_NO_IMAGE_16_BIT
|
|
|
|
} else if ( depth() == 16 ) {
|
|
|
|
tqWarning( "TQImage::swapRGB not implemented for 16bpp" );
|
|
|
|
#endif
|
|
|
|
} else
|
|
|
|
#endif //QT_NO_IMAGE_TRUECOLOR
|
|
|
|
{
|
|
|
|
uint* p = (uint*)colorTable();
|
|
|
|
uint* q = (uint*)res.colorTable();
|
|
|
|
if ( p && q ) {
|
|
|
|
for ( int i=0; i < numColors(); i++ ) {
|
|
|
|
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) |
|
|
|
|
(*p & 0xff00ff00);
|
|
|
|
p++;
|
|
|
|
q++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO
|
|
|
|
/*!
|
|
|
|
Returns a string that specifies the image format of the file \a
|
|
|
|
fileName, or 0 if the file cannot be read or if the format is not
|
|
|
|
recognized.
|
|
|
|
|
|
|
|
The TQImageIO documentation lists the guaranteed supported image
|
|
|
|
formats, or use TQImage::inputFormats() and TQImage::outputFormats()
|
|
|
|
to get lists that include the installed formats.
|
|
|
|
|
|
|
|
\sa load() save()
|
|
|
|
*/
|
|
|
|
|
|
|
|
const char* TQImage::imageFormat( const TQString &fileName )
|
|
|
|
{
|
|
|
|
return TQImageIO::imageFormat( fileName );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a list of image formats that are supported for image
|
|
|
|
input.
|
|
|
|
|
|
|
|
\sa outputFormats() inputFormatList() TQImageIO
|
|
|
|
*/
|
|
|
|
TQStrList TQImage::inputFormats()
|
|
|
|
{
|
|
|
|
return TQImageIO::inputFormats();
|
|
|
|
}
|
|
|
|
#ifndef QT_NO_STRINGLIST
|
|
|
|
/*!
|
|
|
|
Returns a list of image formats that are supported for image
|
|
|
|
input.
|
|
|
|
|
|
|
|
Note that if you want to iterate over the list, you should iterate
|
|
|
|
over a copy, e.g.
|
|
|
|
\code
|
|
|
|
TQStringList list = myImage.inputFormatList();
|
|
|
|
TQStringList::Iterator it = list.begin();
|
|
|
|
while( it != list.end() ) {
|
|
|
|
myProcessing( *it );
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa outputFormatList() inputFormats() TQImageIO
|
|
|
|
*/
|
|
|
|
TQStringList TQImage::inputFormatList()
|
|
|
|
{
|
|
|
|
return TQStringList::fromStrList(TQImageIO::inputFormats());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a list of image formats that are supported for image
|
|
|
|
output.
|
|
|
|
|
|
|
|
Note that if you want to iterate over the list, you should iterate
|
|
|
|
over a copy, e.g.
|
|
|
|
\code
|
|
|
|
TQStringList list = myImage.outputFormatList();
|
|
|
|
TQStringList::Iterator it = list.begin();
|
|
|
|
while( it != list.end() ) {
|
|
|
|
myProcessing( *it );
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa inputFormatList() outputFormats() TQImageIO
|
|
|
|
*/
|
|
|
|
TQStringList TQImage::outputFormatList()
|
|
|
|
{
|
|
|
|
return TQStringList::fromStrList(TQImageIO::outputFormats());
|
|
|
|
}
|
|
|
|
#endif //QT_NO_STRINGLIST
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a list of image formats that are supported for image
|
|
|
|
output.
|
|
|
|
|
|
|
|
\sa inputFormats() outputFormatList() TQImageIO
|
|
|
|
*/
|
|
|
|
TQStrList TQImage::outputFormats()
|
|
|
|
{
|
|
|
|
return TQImageIO::outputFormats();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Loads an image from the file \a fileName. Returns TRUE if the
|
|
|
|
image was successfully loaded; otherwise returns FALSE.
|
|
|
|
|
|
|
|
If \a format is specified, the loader attempts to read the image
|
|
|
|
using the specified format. If \a format is not specified (which
|
|
|
|
is the default), the loader reads a few bytes from the header to
|
|
|
|
guess the file format.
|
|
|
|
|
|
|
|
The TQImageIO documentation lists the supported image formats and
|
|
|
|
explains how to add extra formats.
|
|
|
|
|
|
|
|
\sa loadFromData() save() imageFormat() TQPixmap::load() TQImageIO
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::load( const TQString &fileName, const char* format )
|
|
|
|
{
|
|
|
|
TQImageIO io( fileName, format );
|
|
|
|
bool result = io.read();
|
|
|
|
if ( result )
|
|
|
|
operator=( io.image() );
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Loads an image from the first \a len bytes of binary data in \a
|
|
|
|
buf. Returns TRUE if the image was successfully loaded; otherwise
|
|
|
|
returns FALSE.
|
|
|
|
|
|
|
|
If \a format is specified, the loader attempts to read the image
|
|
|
|
using the specified format. If \a format is not specified (which
|
|
|
|
is the default), the loader reads a few bytes from the header to
|
|
|
|
guess the file format.
|
|
|
|
|
|
|
|
The TQImageIO documentation lists the supported image formats and
|
|
|
|
explains how to add extra formats.
|
|
|
|
|
|
|
|
\sa load() save() imageFormat() TQPixmap::loadFromData() TQImageIO
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::loadFromData( const uchar *buf, uint len, const char *format )
|
|
|
|
{
|
|
|
|
TQByteArray a;
|
|
|
|
a.setRawData( (char *)buf, len );
|
|
|
|
TQBuffer b( a );
|
|
|
|
b.open( IO_ReadOnly );
|
|
|
|
TQImageIO io( &b, format );
|
|
|
|
bool result = io.read();
|
|
|
|
b.close();
|
|
|
|
a.resetRawData( (char *)buf, len );
|
|
|
|
if ( result )
|
|
|
|
operator=( io.image() );
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Loads an image from the TQByteArray \a buf.
|
|
|
|
*/
|
|
|
|
bool TQImage::loadFromData( TQByteArray buf, const char *format )
|
|
|
|
{
|
|
|
|
return loadFromData( (const uchar *)(buf.data()), buf.size(), format );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Saves the image to the file \a fileName, using the image file
|
|
|
|
format \a format and a quality factor of \a quality. \a quality
|
|
|
|
must be in the range 0..100 or -1. Specify 0 to obtain small
|
|
|
|
compressed files, 100 for large uncompressed files, and -1 (the
|
|
|
|
default) to use the default settings.
|
|
|
|
|
|
|
|
Returns TRUE if the image was successfully saved; otherwise
|
|
|
|
returns FALSE.
|
|
|
|
|
|
|
|
\sa load() loadFromData() imageFormat() TQPixmap::save() TQImageIO
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::save( const TQString &fileName, const char* format, int quality ) const
|
|
|
|
{
|
|
|
|
if ( isNull() )
|
|
|
|
return FALSE; // nothing to save
|
|
|
|
TQImageIO io( fileName, format );
|
|
|
|
return doImageIO( &io, quality );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
This function writes a TQImage to the TQIODevice, \a device. This
|
|
|
|
can be used, for example, to save an image directly into a
|
|
|
|
TQByteArray:
|
|
|
|
\code
|
|
|
|
TQImage image;
|
|
|
|
TQByteArray ba;
|
|
|
|
TQBuffer buffer( ba );
|
|
|
|
buffer.open( IO_WriteOnly );
|
|
|
|
image.save( &buffer, "PNG" ); // writes image into ba in PNG format
|
|
|
|
\endcode
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::save( TQIODevice* device, const char* format, int quality ) const
|
|
|
|
{
|
|
|
|
if ( isNull() )
|
|
|
|
return FALSE; // nothing to save
|
|
|
|
TQImageIO io( device, format );
|
|
|
|
return doImageIO( &io, quality );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* \internal
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::doImageIO( TQImageIO* io, int quality ) const
|
|
|
|
{
|
|
|
|
if ( !io )
|
|
|
|
return FALSE;
|
|
|
|
io->setImage( *this );
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
if ( quality > 100 || quality < -1 )
|
|
|
|
tqWarning( "TQPixmap::save: quality out of range [-1,100]" );
|
|
|
|
#endif
|
|
|
|
if ( quality >= 0 )
|
|
|
|
io->setQuality( TQMIN(quality,100) );
|
|
|
|
return io->write();
|
|
|
|
}
|
|
|
|
#endif //QT_NO_IMAGEIO
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQImage stream functions
|
|
|
|
*****************************************************************************/
|
|
|
|
#if !defined(QT_NO_DATASTREAM) && !defined(QT_NO_IMAGEIO)
|
|
|
|
/*!
|
|
|
|
\relates TQImage
|
|
|
|
|
|
|
|
Writes the image \a image to the stream \a s as a PNG image, or as a
|
|
|
|
BMP image if the stream's version is 1.
|
|
|
|
|
|
|
|
Note that writing the stream to a file will not produce a valid image file.
|
|
|
|
|
|
|
|
\sa TQImage::save()
|
|
|
|
\link datastreamformat.html Format of the TQDataStream operators \endlink
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQDataStream &operator<<( TQDataStream &s, const TQImage &image )
|
|
|
|
{
|
|
|
|
if ( s.version() >= 5 ) {
|
|
|
|
if ( image.isNull() ) {
|
|
|
|
s << (TQ_INT32) 0; // null image marker
|
|
|
|
return s;
|
|
|
|
} else {
|
|
|
|
s << (TQ_INT32) 1;
|
|
|
|
// continue ...
|
|
|
|
}
|
|
|
|
}
|
|
|
|
TQImageIO io;
|
|
|
|
io.setIODevice( s.device() );
|
|
|
|
if ( s.version() == 1 )
|
|
|
|
io.setFormat( "BMP" );
|
|
|
|
else
|
|
|
|
io.setFormat( "PNG" );
|
|
|
|
|
|
|
|
io.setImage( image );
|
|
|
|
io.write();
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\relates TQImage
|
|
|
|
|
|
|
|
Reads an image from the stream \a s and stores it in \a image.
|
|
|
|
|
|
|
|
\sa TQImage::load()
|
|
|
|
\link datastreamformat.html Format of the TQDataStream operators \endlink
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQDataStream &operator>>( TQDataStream &s, TQImage &image )
|
|
|
|
{
|
|
|
|
if ( s.version() >= 5 ) {
|
|
|
|
TQ_INT32 nullMarker;
|
|
|
|
s >> nullMarker;
|
|
|
|
if ( !nullMarker ) {
|
|
|
|
image = TQImage(); // null image
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
TQImageIO io( s.device(), 0 );
|
|
|
|
if ( io.read() )
|
|
|
|
image = io.image();
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
Standard image io handlers (defined below)
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
// standard image io handlers (defined below)
|
|
|
|
#ifndef QT_NO_IMAGEIO_BMP
|
|
|
|
static void read_bmp_image( TQImageIO * );
|
|
|
|
static void write_bmp_image( TQImageIO * );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_PPM
|
|
|
|
static void read_pbm_image( TQImageIO * );
|
|
|
|
static void write_pbm_image( TQImageIO * );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_XBM
|
|
|
|
static void read_xbm_image( TQImageIO * );
|
|
|
|
static void write_xbm_image( TQImageIO * );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_XPM
|
|
|
|
static void read_xpm_image( TQImageIO * );
|
|
|
|
static void write_xpm_image( TQImageIO * );
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_ASYNC_IMAGE_IO
|
|
|
|
static void read_async_image( TQImageIO * ); // Not in table of handlers
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
Misc. utility functions
|
|
|
|
*****************************************************************************/
|
|
|
|
#if !defined(QT_NO_IMAGEIO_XPM) || !defined(QT_NO_IMAGEIO_XBM)
|
|
|
|
static TQString fbname( const TQString &fileName ) // get file basename (sort of)
|
|
|
|
{
|
|
|
|
TQString s = fileName;
|
|
|
|
if ( !s.isEmpty() ) {
|
|
|
|
int i;
|
|
|
|
if ( (i = s.findRev('/')) >= 0 )
|
|
|
|
s = s.mid( i );
|
|
|
|
if ( (i = s.findRev('\\')) >= 0 )
|
|
|
|
s = s.mid( i );
|
|
|
|
TQRegExp r( TQString::fromLatin1("[a-zA-Z][a-zA-Z0-9_]*") );
|
|
|
|
int p = r.search( s );
|
|
|
|
if ( p == -1 )
|
|
|
|
s.truncate( 0 );
|
|
|
|
else
|
|
|
|
s = s.mid( p, r.matchedLength() );
|
|
|
|
}
|
|
|
|
if ( s.isEmpty() )
|
|
|
|
s = TQString::fromLatin1( "dummy" );
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_BMP
|
|
|
|
static void swapPixel01( TQImage *image ) // 1-bpp: swap 0 and 1 pixels
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
if ( image->depth() == 1 && image->numColors() == 2 ) {
|
|
|
|
register uint *p = (uint *)image->bits();
|
|
|
|
int nbytes = image->numBytes();
|
|
|
|
for ( i=0; i<nbytes/4; i++ ) {
|
|
|
|
*p = ~*p;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
uchar *p2 = (uchar *)p;
|
|
|
|
for ( i=0; i<(nbytes&3); i++ ) {
|
|
|
|
*p2 = ~*p2;
|
|
|
|
p2++;
|
|
|
|
}
|
|
|
|
TQRgb t = image->color(0); // swap color 0 and 1
|
|
|
|
image->setColor( 0, image->color(1) );
|
|
|
|
image->setColor( 1, t );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQImageIO member functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\class TQImageIO ntqimage.h
|
|
|
|
|
|
|
|
\brief The TQImageIO class contains parameters for loading and
|
|
|
|
saving images.
|
|
|
|
|
|
|
|
\ingroup images
|
|
|
|
\ingroup graphics
|
|
|
|
\ingroup io
|
|
|
|
|
|
|
|
TQImageIO contains a TQIODevice object that is used for image data
|
|
|
|
I/O. The programmer can install new image file formats in addition
|
|
|
|
to those that TQt provides.
|
|
|
|
|
|
|
|
TQt currently supports the following image file formats: PNG, BMP,
|
|
|
|
XBM, XPM and PNM. It may also support JPEG, MNG and GIF, if
|
|
|
|
specially configured during compilation. The different PNM formats
|
|
|
|
are: PBM (P1 or P4), PGM (P2 or P5), and PPM (P3 or P6).
|
|
|
|
|
|
|
|
You don't normally need to use this class; TQPixmap::load(),
|
|
|
|
TQPixmap::save(), and TQImage contain sufficient functionality.
|
|
|
|
|
|
|
|
For image files that contain sequences of images, only the first
|
|
|
|
is read. See TQMovie for loading multiple images.
|
|
|
|
|
|
|
|
PBM, PGM, and PPM format \e output is always in the more condensed
|
|
|
|
raw format. PPM and PGM files with more than 256 levels of
|
|
|
|
intensity are scaled down when reading.
|
|
|
|
|
|
|
|
\warning If you are in a country which recognizes software patents
|
|
|
|
and in which Unisys holds a patent on LZW compression and/or
|
|
|
|
decompression and you want to use GIF, Unisys may require you to
|
|
|
|
license the technology. Such countries include Canada, Japan, the
|
|
|
|
USA, France, Germany, Italy and the UK.
|
|
|
|
|
|
|
|
GIF support may be removed completely in a future version of TQt.
|
|
|
|
We recommend using the PNG format.
|
|
|
|
|
|
|
|
\sa TQImage TQPixmap TQFile TQMovie
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO
|
|
|
|
struct TQImageIOData
|
|
|
|
{
|
|
|
|
const char *parameters;
|
|
|
|
int quality;
|
|
|
|
float gamma;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a TQImageIO object with all parameters set to zero.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImageIO::TQImageIO()
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a TQImageIO object with the I/O device \a ioDevice and a
|
|
|
|
\a format tag.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImageIO::TQImageIO( TQIODevice *ioDevice, const char *format )
|
|
|
|
: frmt(format)
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
iodev = ioDevice;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a TQImageIO object with the file name \a fileName and a
|
|
|
|
\a format tag.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImageIO::TQImageIO( const TQString &fileName, const char* format )
|
|
|
|
: frmt(format), fname(fileName)
|
|
|
|
{
|
|
|
|
init();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Contains initialization common to all TQImageIO constructors.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::init()
|
|
|
|
{
|
|
|
|
d = new TQImageIOData();
|
|
|
|
d->parameters = 0;
|
|
|
|
d->quality = -1; // default quality of the current format
|
|
|
|
d->gamma=0.0f;
|
|
|
|
iostat = 0;
|
|
|
|
iodev = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Destroys the object and all related data.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQImageIO::~TQImageIO()
|
|
|
|
{
|
|
|
|
if ( d->parameters )
|
|
|
|
delete [] (char*)d->parameters;
|
|
|
|
delete d;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQImageIO image handler functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
class TQImageHandler
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
TQImageHandler( const char *f, const char *h, const TQCString& fl,
|
|
|
|
image_io_handler r, image_io_handler w );
|
|
|
|
TQCString format; // image format
|
|
|
|
TQRegExp header; // image header pattern
|
|
|
|
enum TMode { Untranslated=0, TranslateIn, TranslateInOut } text_mode;
|
|
|
|
image_io_handler read_image; // image read function
|
|
|
|
image_io_handler write_image; // image write function
|
|
|
|
bool obsolete; // support not "published"
|
|
|
|
};
|
|
|
|
|
|
|
|
TQImageHandler::TQImageHandler( const char *f, const char *h, const TQCString& fl,
|
|
|
|
image_io_handler r, image_io_handler w )
|
|
|
|
: format(f), header(TQString::fromLatin1(h))
|
|
|
|
{
|
|
|
|
text_mode = Untranslated;
|
|
|
|
if ( fl.contains('t') )
|
|
|
|
text_mode = TranslateIn;
|
|
|
|
else if ( fl.contains('T') )
|
|
|
|
text_mode = TranslateInOut;
|
|
|
|
obsolete = fl.contains('O');
|
|
|
|
read_image = r;
|
|
|
|
write_image = w;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef TQPtrList<TQImageHandler> TQIHList;// list of image handlers
|
|
|
|
static TQIHList *imageHandlers = 0;
|
|
|
|
#ifndef QT_NO_COMPONENT
|
|
|
|
static TQPluginManager<TQImageFormatInterface> *plugin_manager = 0;
|
|
|
|
#else
|
|
|
|
static void *plugin_manager = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void tqt_init_image_plugins()
|
|
|
|
{
|
|
|
|
#ifndef QT_NO_COMPONENT
|
|
|
|
if ( plugin_manager )
|
|
|
|
return;
|
|
|
|
|
|
|
|
plugin_manager = new TQPluginManager<TQImageFormatInterface>( IID_QImageFormat, TQApplication::libraryPaths(), "/imageformats" );
|
|
|
|
|
|
|
|
TQStringList features = plugin_manager->featureList();
|
|
|
|
TQStringList::Iterator it = features.begin();
|
|
|
|
while ( it != features.end() ) {
|
|
|
|
TQString str = *it;
|
|
|
|
++it;
|
|
|
|
TQInterfacePtr<TQImageFormatInterface> iface;
|
|
|
|
plugin_manager->queryInterface( str, &iface );
|
|
|
|
if ( iface )
|
|
|
|
iface->installIOHandler( str );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cleanup()
|
|
|
|
{
|
|
|
|
// make sure that image handlers are delete before plugin manager
|
|
|
|
delete imageHandlers;
|
|
|
|
imageHandlers = 0;
|
|
|
|
#ifndef QT_NO_COMPONENT
|
|
|
|
delete plugin_manager;
|
|
|
|
plugin_manager = 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void tqt_init_image_handlers() // initialize image handlers
|
|
|
|
{
|
|
|
|
if ( !imageHandlers ) {
|
|
|
|
imageHandlers = new TQIHList;
|
|
|
|
TQ_CHECK_PTR( imageHandlers );
|
|
|
|
imageHandlers->setAutoDelete( TRUE );
|
|
|
|
tqAddPostRoutine( cleanup );
|
|
|
|
#ifndef QT_NO_IMAGEIO_BMP
|
|
|
|
TQImageIO::defineIOHandler( "BMP", "^BM", 0,
|
|
|
|
read_bmp_image, write_bmp_image );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_PPM
|
|
|
|
TQImageIO::defineIOHandler( "PBM", "^P1", "t",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
TQImageIO::defineIOHandler( "PBMRAW", "^P4", "O",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
TQImageIO::defineIOHandler( "PGM", "^P2", "t",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
TQImageIO::defineIOHandler( "PGMRAW", "^P5", "O",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
TQImageIO::defineIOHandler( "PPM", "^P3", "t",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
TQImageIO::defineIOHandler( "PPMRAW", "^P6", "O",
|
|
|
|
read_pbm_image, write_pbm_image );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_XBM
|
|
|
|
TQImageIO::defineIOHandler( "XBM", "^((/\\*(?!.XPM.\\*/))|#define)", "T",
|
|
|
|
read_xbm_image, write_xbm_image );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_XPM
|
|
|
|
TQImageIO::defineIOHandler( "XPM", "/\\*.XPM.\\*/", "T",
|
|
|
|
read_xpm_image, write_xpm_image );
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_MNG
|
|
|
|
qInitMngIO();
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_PNG
|
|
|
|
qInitPngIO();
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_IMAGEIO_JPEG
|
|
|
|
qInitJpegIO();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static TQImageHandler *get_image_handler( const char *format )
|
|
|
|
{ // get pointer to handler
|
|
|
|
tqt_init_image_handlers();
|
|
|
|
tqt_init_image_plugins();
|
|
|
|
register TQImageHandler *p = imageHandlers->first();
|
|
|
|
while ( p ) { // traverse list
|
|
|
|
if ( p->format == format )
|
|
|
|
return p;
|
|
|
|
p = imageHandlers->next();
|
|
|
|
}
|
|
|
|
return 0; // no such handler
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Defines an image I/O handler for the image format called \a
|
|
|
|
format, which is recognized using the \link ntqregexp.html#details
|
|
|
|
regular expression\endlink \a header, read using \a readImage and
|
|
|
|
written using \a writeImage.
|
|
|
|
|
|
|
|
\a flags is a string of single-character flags for this format.
|
|
|
|
The only flag defined currently is T (upper case), so the only
|
|
|
|
legal value for \a flags are "T" and the empty string. The "T"
|
|
|
|
flag means that the image file is a text file, and TQt should treat
|
|
|
|
all newline conventions as equivalent. (XPM files and some PPM
|
|
|
|
files are text files for example.)
|
|
|
|
|
|
|
|
\a format is used to select a handler to write a TQImage; \a header
|
|
|
|
is used to select a handler to read an image file.
|
|
|
|
|
|
|
|
If \a readImage is a null pointer, the TQImageIO will not be able
|
|
|
|
to read images in \a format. If \a writeImage is a null pointer,
|
|
|
|
the TQImageIO will not be able to write images in \a format. If
|
|
|
|
both are null, the TQImageIO object is valid but useless.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
\code
|
|
|
|
void readGIF( TQImageIO *image )
|
|
|
|
{
|
|
|
|
// read the image using the image->ioDevice()
|
|
|
|
}
|
|
|
|
|
|
|
|
void writeGIF( TQImageIO *image )
|
|
|
|
{
|
|
|
|
// write the image using the image->ioDevice()
|
|
|
|
}
|
|
|
|
|
|
|
|
// add the GIF image handler
|
|
|
|
|
|
|
|
TQImageIO::defineIOHandler( "GIF",
|
|
|
|
"^GIF[0-9][0-9][a-z]",
|
|
|
|
0,
|
|
|
|
readGIF,
|
|
|
|
writeGIF );
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
Before the regex test, all the 0 bytes in the file header are
|
|
|
|
converted to 1 bytes. This is done because when TQt was
|
|
|
|
ASCII-based, TQRegExp could not handle 0 bytes in strings.
|
|
|
|
|
|
|
|
The regexp is only applied on the first 14 bytes of the file.
|
|
|
|
|
|
|
|
Note that TQt assumes that there is only one handler per format; if
|
|
|
|
two handlers support the same format, TQt will choose one
|
|
|
|
arbitrarily. It is not possible to have one handler support
|
|
|
|
reading, and another support writing.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::defineIOHandler( const char *format,
|
|
|
|
const char *header,
|
|
|
|
const char *flags,
|
|
|
|
image_io_handler readImage,
|
|
|
|
image_io_handler writeImage )
|
|
|
|
{
|
|
|
|
tqt_init_image_handlers();
|
|
|
|
TQImageHandler *p;
|
|
|
|
p = new TQImageHandler( format, header, flags,
|
|
|
|
readImage, writeImage );
|
|
|
|
TQ_CHECK_PTR( p );
|
|
|
|
imageHandlers->insert( 0, p );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQImageIO normal member functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn const TQImage &TQImageIO::image() const
|
|
|
|
|
|
|
|
Returns the image currently set.
|
|
|
|
|
|
|
|
\sa setImage()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImageIO::status() const
|
|
|
|
|
|
|
|
Returns the image's IO status. A non-zero value indicates an
|
|
|
|
error, whereas 0 means that the IO operation was successful.
|
|
|
|
|
|
|
|
\sa setStatus()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn const char *TQImageIO::format() const
|
|
|
|
|
|
|
|
Returns the image format string or 0 if no format has been
|
|
|
|
explicitly set.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQIODevice *TQImageIO::ioDevice() const
|
|
|
|
|
|
|
|
Returns the IO device currently set.
|
|
|
|
|
|
|
|
\sa setIODevice()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQString TQImageIO::fileName() const
|
|
|
|
|
|
|
|
Returns the file name currently set.
|
|
|
|
|
|
|
|
\sa setFileName()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQString TQImageIO::description() const
|
|
|
|
|
|
|
|
Returns the image description string.
|
|
|
|
|
|
|
|
\sa setDescription()
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image to \a image.
|
|
|
|
|
|
|
|
\sa image()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setImage( const TQImage &image )
|
|
|
|
{
|
|
|
|
im = image;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image IO status to \a status. A non-zero value indicates
|
|
|
|
an error, whereas 0 means that the IO operation was successful.
|
|
|
|
|
|
|
|
\sa status()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setStatus( int status )
|
|
|
|
{
|
|
|
|
iostat = status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image format to \a format for the image to be read or
|
|
|
|
written.
|
|
|
|
|
|
|
|
It is necessary to specify a format before writing an image, but
|
|
|
|
it is not necessary to specify a format before reading an image.
|
|
|
|
|
|
|
|
If no format has been set, TQt guesses the image format before
|
|
|
|
reading it. If a format is set the image will only be read if it
|
|
|
|
has that format.
|
|
|
|
|
|
|
|
\sa read() write() format()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setFormat( const char *format )
|
|
|
|
{
|
|
|
|
frmt = format;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the IO device to be used for reading or writing an image.
|
|
|
|
|
|
|
|
Setting the IO device allows images to be read/written to any
|
|
|
|
block-oriented TQIODevice.
|
|
|
|
|
|
|
|
If \a ioDevice is not null, this IO device will override file name
|
|
|
|
settings.
|
|
|
|
|
|
|
|
\sa setFileName()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setIODevice( TQIODevice *ioDevice )
|
|
|
|
{
|
|
|
|
iodev = ioDevice;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the name of the file to read or write an image from to \a
|
|
|
|
fileName.
|
|
|
|
|
|
|
|
\sa setIODevice()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setFileName( const TQString &fileName )
|
|
|
|
{
|
|
|
|
fname = fileName;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the quality of the written image, related to the
|
|
|
|
compression ratio.
|
|
|
|
|
|
|
|
\sa setQuality() TQImage::save()
|
|
|
|
*/
|
|
|
|
|
|
|
|
int TQImageIO::quality() const
|
|
|
|
{
|
|
|
|
return d->quality;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the quality of the written image to \a q, related to the
|
|
|
|
compression ratio.
|
|
|
|
|
|
|
|
\a q must be in the range -1..100. Specify 0 to obtain small
|
|
|
|
compressed files, 100 for large uncompressed files. (-1 signifies
|
|
|
|
the default compression.)
|
|
|
|
|
|
|
|
\sa quality() TQImage::save()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setQuality( int q )
|
|
|
|
{
|
|
|
|
d->quality = q;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the image's parameters string.
|
|
|
|
|
|
|
|
\sa setParameters()
|
|
|
|
*/
|
|
|
|
|
|
|
|
const char *TQImageIO::parameters() const
|
|
|
|
{
|
|
|
|
return d->parameters;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image's parameter string to \a parameters. This is for
|
|
|
|
image handlers that require special parameters.
|
|
|
|
|
|
|
|
Although the current image formats supported by TQt ignore the
|
|
|
|
parameters string, it may be used in future extensions or by
|
|
|
|
contributions (for example, JPEG).
|
|
|
|
|
|
|
|
\sa parameters()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setParameters( const char *parameters )
|
|
|
|
{
|
|
|
|
if ( d && d->parameters )
|
|
|
|
delete [] (char*)d->parameters;
|
|
|
|
d->parameters = tqstrdup( parameters );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the gamma value at which the image will be viewed to \a
|
|
|
|
gamma. If the image format stores a gamma value for which the
|
|
|
|
image is intended to be used, then this setting will be used to
|
|
|
|
modify the image. Setting to 0.0 will disable gamma correction
|
|
|
|
(i.e. any specification in the file will be ignored).
|
|
|
|
|
|
|
|
The default value is 0.0.
|
|
|
|
|
|
|
|
\sa gamma()
|
|
|
|
*/
|
|
|
|
void TQImageIO::setGamma( float gamma )
|
|
|
|
{
|
|
|
|
d->gamma=gamma;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the gamma value at which the image will be viewed.
|
|
|
|
|
|
|
|
\sa setGamma()
|
|
|
|
*/
|
|
|
|
float TQImageIO::gamma() const
|
|
|
|
{
|
|
|
|
return d->gamma;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the image description string for image handlers that support
|
|
|
|
image descriptions to \a description.
|
|
|
|
|
|
|
|
Currently, no image format supported by TQt uses the description
|
|
|
|
string.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQImageIO::setDescription( const TQString &description )
|
|
|
|
{
|
|
|
|
descr = description;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a string that specifies the image format of the file \a
|
|
|
|
fileName, or null if the file cannot be read or if the format is
|
|
|
|
not recognized.
|
|
|
|
*/
|
|
|
|
|
|
|
|
const char* TQImageIO::imageFormat( const TQString &fileName )
|
|
|
|
{
|
|
|
|
TQFile file( fileName );
|
|
|
|
if ( !file.open(IO_ReadOnly) )
|
|
|
|
return 0;
|
|
|
|
const char* format = imageFormat( &file );
|
|
|
|
file.close();
|
|
|
|
return format;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns a string that specifies the image format of the image read
|
|
|
|
from IO device \a d, or 0 if the device cannot be read or if the
|
|
|
|
format is not recognized.
|
|
|
|
|
|
|
|
Make sure that \a d is at the right position in the device (for
|
|
|
|
example, at the beginning of the file).
|
|
|
|
|
|
|
|
\sa TQIODevice::at()
|
|
|
|
*/
|
|
|
|
|
|
|
|
const char *TQImageIO::imageFormat( TQIODevice *d )
|
|
|
|
{
|
|
|
|
// if you change this change the documentation for defineIOHandler()
|
|
|
|
const int buflen = 14;
|
|
|
|
|
|
|
|
char buf[buflen];
|
|
|
|
char buf2[buflen];
|
|
|
|
tqt_init_image_handlers();
|
|
|
|
tqt_init_image_plugins();
|
|
|
|
int pos = d->at(); // save position
|
|
|
|
int rdlen = d->readBlock( buf, buflen ); // read a few bytes
|
|
|
|
|
|
|
|
if ( rdlen != buflen )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
memcpy( buf2, buf, buflen );
|
|
|
|
|
|
|
|
const char* format = 0;
|
|
|
|
for ( int n = 0; n < rdlen; n++ )
|
|
|
|
if ( buf[n] == '\0' )
|
|
|
|
buf[n] = '\001';
|
|
|
|
if ( d->status() == IO_Ok && rdlen > 0 ) {
|
|
|
|
buf[rdlen - 1] = '\0';
|
|
|
|
TQString bufStr = TQString::fromLatin1(buf);
|
|
|
|
TQImageHandler *p = imageHandlers->first();
|
|
|
|
int bestMatch = -1;
|
|
|
|
while ( p ) {
|
|
|
|
if ( p->read_image && p->header.search(bufStr) != -1 ) {
|
|
|
|
// try match with header if a read function is available
|
|
|
|
if (p->header.matchedLength() > bestMatch) {
|
|
|
|
// keep looking for best match
|
|
|
|
format = p->format;
|
|
|
|
bestMatch = p->header.matchedLength();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p = imageHandlers->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
d->at( pos ); // restore position
|
|
|
|
#ifndef QT_NO_ASYNC_IMAGE_IO
|
|
|
|
if ( !format )
|
|
|
|
format = TQImageDecoder::formatName( (uchar*)buf2, rdlen );
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return format;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a sorted list of image formats that are supported for
|
|
|
|
image input.
|
|
|
|
*/
|
|
|
|
TQStrList TQImageIO::inputFormats()
|
|
|
|
{
|
|
|
|
TQStrList result;
|
|
|
|
|
|
|
|
tqt_init_image_handlers();
|
|
|
|
tqt_init_image_plugins();
|
|
|
|
|
|
|
|
#ifndef QT_NO_ASYNC_IMAGE_IO
|
|
|
|
// Include asynchronous loaders first.
|
|
|
|
result = TQImageDecoder::inputFormats();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TQImageHandler *p = imageHandlers->first();
|
|
|
|
while ( p ) {
|
|
|
|
if ( p->read_image
|
|
|
|
&& !p->obsolete
|
|
|
|
&& !result.contains(p->format) )
|
|
|
|
{
|
|
|
|
result.inSort(p->format);
|
|
|
|
}
|
|
|
|
p = imageHandlers->next();
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a sorted list of image formats that are supported for
|
|
|
|
image output.
|
|
|
|
*/
|
|
|
|
TQStrList TQImageIO::outputFormats()
|
|
|
|
{
|
|
|
|
TQStrList result;
|
|
|
|
|
|
|
|
tqt_init_image_handlers();
|
|
|
|
tqt_init_image_plugins();
|
|
|
|
|
|
|
|
// Include asynchronous writers (!) first.
|
|
|
|
// (None)
|
|
|
|
|
|
|
|
TQImageHandler *p = imageHandlers->first();
|
|
|
|
while ( p ) {
|
|
|
|
if ( p->write_image
|
|
|
|
&& !p->obsolete
|
|
|
|
&& !result.contains(p->format) )
|
|
|
|
{
|
|
|
|
result.inSort(p->format);
|
|
|
|
}
|
|
|
|
p = imageHandlers->next();
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Reads an image into memory and returns TRUE if the image was
|
|
|
|
successfully read; otherwise returns FALSE.
|
|
|
|
|
|
|
|
Before reading an image you must set an IO device or a file name.
|
|
|
|
If both an IO device and a file name have been set, the IO device
|
|
|
|
will be used.
|
|
|
|
|
|
|
|
Setting the image file format string is optional.
|
|
|
|
|
|
|
|
Note that this function does \e not set the \link format()
|
|
|
|
format\endlink used to read the image. If you need that
|
|
|
|
information, use the imageFormat() static functions.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQImageIO iio;
|
|
|
|
TQPixmap pixmap;
|
|
|
|
iio.setFileName( "vegeburger.bmp" );
|
|
|
|
if ( image.read() ) // ok
|
|
|
|
pixmap = iio.image(); // convert to pixmap
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa setIODevice() setFileName() setFormat() write() TQPixmap::load()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImageIO::read()
|
|
|
|
{
|
|
|
|
TQFile file;
|
|
|
|
const char *image_format;
|
|
|
|
TQImageHandler *h;
|
|
|
|
|
|
|
|
if ( iodev ) { // read from io device
|
|
|
|
// ok, already open
|
|
|
|
} else if ( !fname.isEmpty() ) { // read from file
|
|
|
|
file.setName( fname );
|
|
|
|
if ( !file.open(IO_ReadOnly) )
|
|
|
|
return FALSE; // cannot open file
|
|
|
|
iodev = &file;
|
|
|
|
} else { // no file name or io device
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
if (frmt.isEmpty()) {
|
|
|
|
// Try to guess format
|
|
|
|
image_format = imageFormat( iodev ); // get image format
|
|
|
|
if ( !image_format ) {
|
|
|
|
if ( file.isOpen() ) { // unknown format
|
|
|
|
file.close();
|
|
|
|
iodev = 0;
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
image_format = frmt;
|
|
|
|
}
|
|
|
|
|
|
|
|
h = get_image_handler( image_format );
|
|
|
|
if ( file.isOpen() ) {
|
|
|
|
#if !defined(Q_OS_UNIX)
|
|
|
|
if ( h && h->text_mode ) { // reopen in translated mode
|
|
|
|
file.close();
|
|
|
|
file.open( IO_ReadOnly | IO_Translate );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
file.at( 0 ); // position to start
|
|
|
|
}
|
|
|
|
iostat = 1; // assume error
|
|
|
|
|
|
|
|
if ( h && h->read_image ) {
|
|
|
|
(*h->read_image)( this );
|
|
|
|
}
|
|
|
|
#ifndef QT_NO_ASYNC_IMAGE_IO
|
|
|
|
else {
|
|
|
|
// Format name, but no handler - must be an asychronous reader
|
|
|
|
read_async_image( this );
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if ( file.isOpen() ) { // image was read using file
|
|
|
|
file.close();
|
|
|
|
iodev = 0;
|
|
|
|
}
|
|
|
|
return iostat == 0; // image successfully read?
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Writes an image to an IO device and returns TRUE if the image was
|
|
|
|
successfully written; otherwise returns FALSE.
|
|
|
|
|
|
|
|
Before writing an image you must set an IO device or a file name.
|
|
|
|
If both an IO device and a file name have been set, the IO device
|
|
|
|
will be used.
|
|
|
|
|
|
|
|
The image will be written using the specified image format.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
\code
|
|
|
|
TQImageIO iio;
|
|
|
|
TQImage im;
|
|
|
|
im = pixmap; // convert to image
|
|
|
|
iio.setImage( im );
|
|
|
|
iio.setFileName( "vegeburger.bmp" );
|
|
|
|
iio.setFormat( "BMP" );
|
|
|
|
if ( iio.write() )
|
|
|
|
// returned TRUE if written successfully
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa setIODevice() setFileName() setFormat() read() TQPixmap::save()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImageIO::write()
|
|
|
|
{
|
|
|
|
if ( frmt.isEmpty() )
|
|
|
|
return FALSE;
|
|
|
|
TQImageHandler *h = get_image_handler( frmt );
|
|
|
|
if ( !h && !plugin_manager) {
|
|
|
|
tqt_init_image_plugins();
|
|
|
|
h = get_image_handler( frmt );
|
|
|
|
}
|
|
|
|
if ( !h || !h->write_image ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImageIO::write: No such image format handler: %s",
|
|
|
|
format() );
|
|
|
|
#endif
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
TQFile file;
|
|
|
|
if ( !iodev && !fname.isEmpty() ) {
|
|
|
|
file.setName( fname );
|
|
|
|
bool translate = h->text_mode==TQImageHandler::TranslateInOut;
|
|
|
|
int fmode = translate ? IO_WriteOnly|IO_Translate : IO_WriteOnly;
|
|
|
|
if ( !file.open(fmode) ) // couldn't create file
|
|
|
|
return FALSE;
|
|
|
|
iodev = &file;
|
|
|
|
}
|
|
|
|
iostat = 1;
|
|
|
|
(*h->write_image)( this );
|
|
|
|
if ( file.isOpen() ) { // image was written using file
|
|
|
|
file.close();
|
|
|
|
iodev = 0;
|
|
|
|
}
|
|
|
|
return iostat == 0; // image successfully written?
|
|
|
|
}
|
|
|
|
#endif //QT_NO_IMAGEIO
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_BMP
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
BMP (DIB) image read/write functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
const int BMP_FILEHDR_SIZE = 14; // size of BMP_FILEHDR data
|
|
|
|
|
|
|
|
struct BMP_FILEHDR { // BMP file header
|
|
|
|
char bfType[2]; // "BM"
|
|
|
|
TQ_INT32 bfSize; // size of file
|
|
|
|
TQ_INT16 bfReserved1;
|
|
|
|
TQ_INT16 bfReserved2;
|
|
|
|
TQ_INT32 bfOffBits; // pointer to the pixmap bits
|
|
|
|
};
|
|
|
|
|
|
|
|
TQDataStream &operator>>( TQDataStream &s, BMP_FILEHDR &bf )
|
|
|
|
{ // read file header
|
|
|
|
s.readRawBytes( bf.bfType, 2 );
|
|
|
|
s >> bf.bfSize >> bf.bfReserved1 >> bf.bfReserved2 >> bf.bfOffBits;
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQDataStream &operator<<( TQDataStream &s, const BMP_FILEHDR &bf )
|
|
|
|
{ // write file header
|
|
|
|
s.writeRawBytes( bf.bfType, 2 );
|
|
|
|
s << bf.bfSize << bf.bfReserved1 << bf.bfReserved2 << bf.bfOffBits;
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const int BMP_OLD = 12; // old Windows/OS2 BMP size
|
|
|
|
const int BMP_WIN = 40; // new Windows BMP size
|
|
|
|
const int BMP_OS2 = 64; // new OS/2 BMP size
|
|
|
|
|
|
|
|
const int BMP_RGB = 0; // no compression
|
|
|
|
const int BMP_RLE8 = 1; // run-length encoded, 8 bits
|
|
|
|
const int BMP_RLE4 = 2; // run-length encoded, 4 bits
|
|
|
|
const int BMP_BITFIELDS = 3; // RGB values encoded in data as bit-fields
|
|
|
|
|
|
|
|
struct BMP_INFOHDR { // BMP information header
|
|
|
|
TQ_INT32 biSize; // size of this struct
|
|
|
|
TQ_INT32 biWidth; // pixmap width
|
|
|
|
TQ_INT32 biHeight; // pixmap height
|
|
|
|
TQ_INT16 biPlanes; // should be 1
|
|
|
|
TQ_INT16 biBitCount; // number of bits per pixel
|
|
|
|
TQ_INT32 biCompression; // compression method
|
|
|
|
TQ_INT32 biSizeImage; // size of image
|
|
|
|
TQ_INT32 biXPelsPerMeter; // horizontal resolution
|
|
|
|
TQ_INT32 biYPelsPerMeter; // vertical resolution
|
|
|
|
TQ_INT32 biClrUsed; // number of colors used
|
|
|
|
TQ_INT32 biClrImportant; // number of important colors
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
TQDataStream &operator>>( TQDataStream &s, BMP_INFOHDR &bi )
|
|
|
|
{
|
|
|
|
s >> bi.biSize;
|
|
|
|
if ( bi.biSize == BMP_WIN || bi.biSize == BMP_OS2 ) {
|
|
|
|
s >> bi.biWidth >> bi.biHeight >> bi.biPlanes >> bi.biBitCount;
|
|
|
|
s >> bi.biCompression >> bi.biSizeImage;
|
|
|
|
s >> bi.biXPelsPerMeter >> bi.biYPelsPerMeter;
|
|
|
|
s >> bi.biClrUsed >> bi.biClrImportant;
|
|
|
|
}
|
|
|
|
else { // probably old Windows format
|
|
|
|
TQ_INT16 w, h;
|
|
|
|
s >> w >> h >> bi.biPlanes >> bi.biBitCount;
|
|
|
|
bi.biWidth = w;
|
|
|
|
bi.biHeight = h;
|
|
|
|
bi.biCompression = BMP_RGB; // no compression
|
|
|
|
bi.biSizeImage = 0;
|
|
|
|
bi.biXPelsPerMeter = bi.biYPelsPerMeter = 0;
|
|
|
|
bi.biClrUsed = bi.biClrImportant = 0;
|
|
|
|
}
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQDataStream &operator<<( TQDataStream &s, const BMP_INFOHDR &bi )
|
|
|
|
{
|
|
|
|
s << bi.biSize;
|
|
|
|
s << bi.biWidth << bi.biHeight;
|
|
|
|
s << bi.biPlanes;
|
|
|
|
s << bi.biBitCount;
|
|
|
|
s << bi.biCompression;
|
|
|
|
s << bi.biSizeImage;
|
|
|
|
s << bi.biXPelsPerMeter << bi.biYPelsPerMeter;
|
|
|
|
s << bi.biClrUsed << bi.biClrImportant;
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
|
|
|
int calc_shift(int mask)
|
|
|
|
{
|
|
|
|
int result = 0;
|
|
|
|
while (!(mask & 1)) {
|
|
|
|
result++;
|
|
|
|
mask >>= 1;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
|
|
|
bool read_dib( TQDataStream& s, int offset, int startpos, TQImage& image )
|
|
|
|
{
|
|
|
|
BMP_INFOHDR bi;
|
|
|
|
TQIODevice* d = s.device();
|
|
|
|
|
|
|
|
s >> bi; // read BMP info header
|
|
|
|
if ( d->atEnd() ) // end of stream/file
|
|
|
|
return FALSE;
|
|
|
|
#if 0
|
|
|
|
tqDebug( "offset...........%d", offset );
|
|
|
|
tqDebug( "startpos.........%d", startpos );
|
|
|
|
tqDebug( "biSize...........%d", bi.biSize );
|
|
|
|
tqDebug( "biWidth..........%d", bi.biWidth );
|
|
|
|
tqDebug( "biHeight.........%d", bi.biHeight );
|
|
|
|
tqDebug( "biPlanes.........%d", bi.biPlanes );
|
|
|
|
tqDebug( "biBitCount.......%d", bi.biBitCount );
|
|
|
|
tqDebug( "biCompression....%d", bi.biCompression );
|
|
|
|
tqDebug( "biSizeImage......%d", bi.biSizeImage );
|
|
|
|
tqDebug( "biXPelsPerMeter..%d", bi.biXPelsPerMeter );
|
|
|
|
tqDebug( "biYPelsPerMeter..%d", bi.biYPelsPerMeter );
|
|
|
|
tqDebug( "biClrUsed........%d", bi.biClrUsed );
|
|
|
|
tqDebug( "biClrImportant...%d", bi.biClrImportant );
|
|
|
|
#endif
|
|
|
|
int w = bi.biWidth, h = bi.biHeight, nbits = bi.biBitCount;
|
|
|
|
int t = bi.biSize, comp = bi.biCompression;
|
|
|
|
int red_mask, green_mask, blue_mask;
|
|
|
|
int red_shift = 0;
|
|
|
|
int green_shift = 0;
|
|
|
|
int blue_shift = 0;
|
|
|
|
int red_scale = 0;
|
|
|
|
int green_scale = 0;
|
|
|
|
int blue_scale = 0;
|
|
|
|
|
|
|
|
if ( !(nbits == 1 || nbits == 4 || nbits == 8 || nbits == 16 || nbits == 24 || nbits == 32) ||
|
|
|
|
bi.biPlanes != 1 || comp > BMP_BITFIELDS )
|
|
|
|
return FALSE; // weird BMP image
|
|
|
|
if ( !(comp == BMP_RGB || (nbits == 4 && comp == BMP_RLE4) ||
|
|
|
|
(nbits == 8 && comp == BMP_RLE8) || ((nbits == 16 || nbits == 32) && comp == BMP_BITFIELDS)) )
|
|
|
|
return FALSE; // weird compression type
|
|
|
|
|
|
|
|
int ncols;
|
|
|
|
int depth;
|
|
|
|
switch ( nbits ) {
|
|
|
|
case 32:
|
|
|
|
case 24:
|
|
|
|
case 16:
|
|
|
|
depth = 32;
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
case 4:
|
|
|
|
depth = 8;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
depth = 1;
|
|
|
|
}
|
|
|
|
if ( depth == 32 ) // there's no colormap
|
|
|
|
ncols = 0;
|
|
|
|
else // # colors used
|
|
|
|
ncols = bi.biClrUsed ? bi.biClrUsed : 1 << nbits;
|
|
|
|
|
|
|
|
image.create( w, h, depth, ncols, nbits == 1 ?
|
|
|
|
TQImage::BigEndian : TQImage::IgnoreEndian );
|
|
|
|
if ( image.isNull() ) // could not create image
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
image.setDotsPerMeterX( bi.biXPelsPerMeter );
|
|
|
|
image.setDotsPerMeterY( bi.biYPelsPerMeter );
|
|
|
|
|
|
|
|
d->at( startpos + BMP_FILEHDR_SIZE + bi.biSize ); // goto start of colormap
|
|
|
|
|
|
|
|
if ( ncols > 0 ) { // read color table
|
|
|
|
uchar rgb[4];
|
|
|
|
int rgb_len = t == BMP_OLD ? 3 : 4;
|
|
|
|
for ( int i=0; i<ncols; i++ ) {
|
|
|
|
if ( d->readBlock( (char *)rgb, rgb_len ) != rgb_len )
|
|
|
|
return FALSE;
|
|
|
|
image.setColor( i, tqRgb(rgb[2],rgb[1],rgb[0]) );
|
|
|
|
if ( d->atEnd() ) // truncated file
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
} else if (comp == BMP_BITFIELDS && (nbits == 16 || nbits == 32)) {
|
|
|
|
if ( (TQ_ULONG)d->readBlock( (char *)&red_mask, sizeof(red_mask) ) != sizeof(red_mask) )
|
|
|
|
return FALSE;
|
|
|
|
if ( (TQ_ULONG)d->readBlock( (char *)&green_mask, sizeof(green_mask) ) != sizeof(green_mask) )
|
|
|
|
return FALSE;
|
|
|
|
if ( (TQ_ULONG)d->readBlock( (char *)&blue_mask, sizeof(blue_mask) ) != sizeof(blue_mask) )
|
|
|
|
return FALSE;
|
|
|
|
red_shift = calc_shift(red_mask);
|
|
|
|
red_scale = 256 / ((red_mask >> red_shift) + 1);
|
|
|
|
green_shift = calc_shift(green_mask);
|
|
|
|
green_scale = 256 / ((green_mask >> green_shift) + 1);
|
|
|
|
blue_shift = calc_shift(blue_mask);
|
|
|
|
blue_scale = 256 / ((blue_mask >> blue_shift) + 1);
|
|
|
|
} else if (comp == BMP_RGB && (nbits == 24 || nbits == 32)) {
|
|
|
|
blue_mask = 0x000000ff;
|
|
|
|
green_mask = 0x0000ff00;
|
|
|
|
red_mask = 0x00ff0000;
|
|
|
|
blue_shift = 0;
|
|
|
|
green_shift = 8;
|
|
|
|
red_shift = 16;
|
|
|
|
blue_scale = green_scale = red_scale = 1;
|
|
|
|
} else if (comp == BMP_RGB && nbits == 16) // don't support RGB values for 15/16 bpp
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
// offset can be bogus, be careful
|
|
|
|
if (offset>=0 && startpos + offset > (TQ_LONG)d->at() )
|
|
|
|
d->at( startpos + offset ); // start of image data
|
|
|
|
|
|
|
|
int bpl = image.bytesPerLine();
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
//
|
|
|
|
// Guess the number of bytes-per-line if we don't know how much
|
|
|
|
// image data is in the file (bogus image ?).
|
|
|
|
//
|
|
|
|
int bmpbpl = bi.biSizeImage > 0 ?
|
|
|
|
bi.biSizeImage / bi.biHeight :
|
|
|
|
(d->size() - offset) / bi.biHeight;
|
|
|
|
int pad = bmpbpl-bpl;
|
|
|
|
#endif
|
|
|
|
uchar **line = image.jumpTable();
|
|
|
|
|
|
|
|
if ( nbits == 1 ) { // 1 bit BMP image
|
|
|
|
while ( --h >= 0 ) {
|
|
|
|
if ( d->readBlock((char*)line[h],bpl) != bpl )
|
|
|
|
break;
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
if ( pad > 0 )
|
|
|
|
d->at(d->at()+pad);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if ( ncols == 2 && tqGray(image.color(0)) < tqGray(image.color(1)) )
|
|
|
|
swapPixel01( &image ); // pixel 0 is white!
|
|
|
|
}
|
|
|
|
|
|
|
|
else if ( nbits == 4 ) { // 4 bit BMP image
|
|
|
|
int buflen = ((w+7)/8)*4;
|
|
|
|
uchar *buf = new uchar[buflen];
|
|
|
|
TQ_CHECK_PTR( buf );
|
|
|
|
if ( comp == BMP_RLE4 ) { // run length compression
|
|
|
|
int x=0, y=0, b, c, i;
|
|
|
|
register uchar *p = line[h-1];
|
|
|
|
uchar *endp = line[h-1]+w;
|
|
|
|
while ( y < h ) {
|
|
|
|
if ( (b=d->getch()) == EOF )
|
|
|
|
break;
|
|
|
|
if ( b == 0 ) { // escape code
|
|
|
|
switch ( (b=d->getch()) ) {
|
|
|
|
case 0: // end of line
|
|
|
|
x = 0;
|
|
|
|
y++;
|
|
|
|
p = line[h-y-1];
|
|
|
|
break;
|
|
|
|
case 1: // end of image
|
|
|
|
case EOF: // end of file
|
|
|
|
y = h; // exit loop
|
|
|
|
break;
|
|
|
|
case 2: // delta (jump)
|
|
|
|
x += d->getch();
|
|
|
|
y += d->getch();
|
|
|
|
|
|
|
|
// Protection
|
|
|
|
if ( (uint)x >= (uint)w )
|
|
|
|
x = w-1;
|
|
|
|
if ( (uint)y >= (uint)h )
|
|
|
|
y = h-1;
|
|
|
|
|
|
|
|
p = line[h-y-1] + x;
|
|
|
|
break;
|
|
|
|
default: // absolute mode
|
|
|
|
// Protection
|
|
|
|
if ( p + b > endp )
|
|
|
|
b = endp-p;
|
|
|
|
|
|
|
|
i = (c = b)/2;
|
|
|
|
while ( i-- ) {
|
|
|
|
b = d->getch();
|
|
|
|
*p++ = b >> 4;
|
|
|
|
*p++ = b & 0x0f;
|
|
|
|
}
|
|
|
|
if ( c & 1 )
|
|
|
|
*p++ = d->getch() >> 4;
|
|
|
|
if ( (((c & 3) + 1) & 2) == 2 )
|
|
|
|
d->getch(); // align on word boundary
|
|
|
|
x += c;
|
|
|
|
}
|
|
|
|
} else { // encoded mode
|
|
|
|
// Protection
|
|
|
|
if ( p + b > endp )
|
|
|
|
b = endp-p;
|
|
|
|
|
|
|
|
i = (c = b)/2;
|
|
|
|
b = d->getch(); // 2 pixels to be repeated
|
|
|
|
while ( i-- ) {
|
|
|
|
*p++ = b >> 4;
|
|
|
|
*p++ = b & 0x0f;
|
|
|
|
}
|
|
|
|
if ( c & 1 )
|
|
|
|
*p++ = b >> 4;
|
|
|
|
x += c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if ( comp == BMP_RGB ) { // no compression
|
|
|
|
while ( --h >= 0 ) {
|
|
|
|
if ( d->readBlock((char*)buf,buflen) != buflen )
|
|
|
|
break;
|
|
|
|
register uchar *p = line[h];
|
|
|
|
uchar *b = buf;
|
|
|
|
for ( int i=0; i<w/2; i++ ) { // convert nibbles to bytes
|
|
|
|
*p++ = *b >> 4;
|
|
|
|
*p++ = *b++ & 0x0f;
|
|
|
|
}
|
|
|
|
if ( w & 1 ) // the last nibble
|
|
|
|
*p = *b >> 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete [] buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
else if ( nbits == 8 ) { // 8 bit BMP image
|
|
|
|
if ( comp == BMP_RLE8 ) { // run length compression
|
|
|
|
int x=0, y=0, b;
|
|
|
|
register uchar *p = line[h-1];
|
|
|
|
const uchar *endp = line[h-1]+w;
|
|
|
|
while ( y < h ) {
|
|
|
|
if ( (b=d->getch()) == EOF )
|
|
|
|
break;
|
|
|
|
if ( b == 0 ) { // escape code
|
|
|
|
switch ( (b=d->getch()) ) {
|
|
|
|
case 0: // end of line
|
|
|
|
x = 0;
|
|
|
|
y++;
|
|
|
|
p = line[h-y-1];
|
|
|
|
break;
|
|
|
|
case 1: // end of image
|
|
|
|
case EOF: // end of file
|
|
|
|
y = h; // exit loop
|
|
|
|
break;
|
|
|
|
case 2: // delta (jump)
|
|
|
|
x += d->getch();
|
|
|
|
y += d->getch();
|
|
|
|
|
|
|
|
// Protection
|
|
|
|
if ( (uint)x >= (uint)w )
|
|
|
|
x = w-1;
|
|
|
|
if ( (uint)y >= (uint)h )
|
|
|
|
y = h-1;
|
|
|
|
|
|
|
|
p = line[h-y-1] + x;
|
|
|
|
break;
|
|
|
|
default: // absolute mode
|
|
|
|
// Protection
|
|
|
|
if ( p + b > endp )
|
|
|
|
b = endp-p;
|
|
|
|
|
|
|
|
if ( d->readBlock( (char *)p, b ) != b )
|
|
|
|
return FALSE;
|
|
|
|
if ( (b & 1) == 1 )
|
|
|
|
d->getch(); // align on word boundary
|
|
|
|
x += b;
|
|
|
|
p += b;
|
|
|
|
}
|
|
|
|
} else { // encoded mode
|
|
|
|
// Protection
|
|
|
|
if ( p + b > endp )
|
|
|
|
b = endp-p;
|
|
|
|
|
|
|
|
memset( p, d->getch(), b ); // repeat pixel
|
|
|
|
x += b;
|
|
|
|
p += b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if ( comp == BMP_RGB ) { // uncompressed
|
|
|
|
while ( --h >= 0 ) {
|
|
|
|
if ( d->readBlock((char *)line[h],bpl) != bpl )
|
|
|
|
break;
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
if ( pad > 0 )
|
|
|
|
d->at(d->at()+pad);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
else if ( nbits == 16 || nbits == 24 || nbits == 32 ) { // 16,24,32 bit BMP image
|
|
|
|
register TQRgb *p;
|
|
|
|
TQRgb *end;
|
|
|
|
uchar *buf24 = new uchar[bpl];
|
|
|
|
int bpl24 = ((w*nbits+31)/32)*4;
|
|
|
|
uchar *b;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
while ( --h >= 0 ) {
|
|
|
|
p = (TQRgb *)line[h];
|
|
|
|
end = p + w;
|
|
|
|
if ( d->readBlock( (char *)buf24,bpl24) != bpl24 )
|
|
|
|
break;
|
|
|
|
b = buf24;
|
|
|
|
while ( p < end ) {
|
|
|
|
c = *(uchar*)b | (*(uchar*)(b+1)<<8);
|
|
|
|
if (nbits != 16)
|
|
|
|
c |= *(uchar*)(b+2)<<16;
|
|
|
|
*p++ = tqRgb(((c & red_mask) >> red_shift) * red_scale,
|
|
|
|
((c & green_mask) >> green_shift) * green_scale,
|
|
|
|
((c & blue_mask) >> blue_shift) * blue_scale);
|
|
|
|
b += nbits/8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] buf24;
|
|
|
|
}
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool qt_read_dib( TQDataStream& s, TQImage& image )
|
|
|
|
{
|
|
|
|
return read_dib(s,-1,-BMP_FILEHDR_SIZE,image);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void read_bmp_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
TQDataStream s( d );
|
|
|
|
BMP_FILEHDR bf;
|
|
|
|
int startpos = d->at();
|
|
|
|
|
|
|
|
s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order
|
|
|
|
s >> bf; // read BMP file header
|
|
|
|
|
|
|
|
if ( tqstrncmp(bf.bfType,"BM",2) != 0 ) // not a BMP image
|
|
|
|
return;
|
|
|
|
|
|
|
|
TQImage image;
|
|
|
|
if (read_dib( s, bf.bfOffBits, startpos, image )) {
|
|
|
|
iio->setImage( image );
|
|
|
|
iio->setStatus( 0 ); // image ok
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool qt_write_dib( TQDataStream& s, TQImage image )
|
|
|
|
{
|
|
|
|
int nbits;
|
|
|
|
int bpl_bmp;
|
|
|
|
int bpl = image.bytesPerLine();
|
|
|
|
|
|
|
|
TQIODevice* d = s.device();
|
|
|
|
|
|
|
|
if ( image.depth() == 8 && image.numColors() <= 16 ) {
|
|
|
|
bpl_bmp = (((bpl+1)/2+3)/4)*4;
|
|
|
|
nbits = 4;
|
|
|
|
} else if ( image.depth() == 32 ) {
|
|
|
|
bpl_bmp = ((image.width()*24+31)/32)*4;
|
|
|
|
nbits = 24;
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
} else if ( image.depth() == 1 || image.depth() == 8 ) {
|
|
|
|
// TQt/E doesn't word align.
|
|
|
|
bpl_bmp = ((image.width()*image.depth()+31)/32)*4;
|
|
|
|
nbits = image.depth();
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
bpl_bmp = bpl;
|
|
|
|
nbits = image.depth();
|
|
|
|
}
|
|
|
|
|
|
|
|
BMP_INFOHDR bi;
|
|
|
|
bi.biSize = BMP_WIN; // build info header
|
|
|
|
bi.biWidth = image.width();
|
|
|
|
bi.biHeight = image.height();
|
|
|
|
bi.biPlanes = 1;
|
|
|
|
bi.biBitCount = nbits;
|
|
|
|
bi.biCompression = BMP_RGB;
|
|
|
|
bi.biSizeImage = bpl_bmp*image.height();
|
|
|
|
bi.biXPelsPerMeter = image.dotsPerMeterX() ? image.dotsPerMeterX()
|
|
|
|
: 2834; // 72 dpi default
|
|
|
|
bi.biYPelsPerMeter = image.dotsPerMeterY() ? image.dotsPerMeterY() : 2834;
|
|
|
|
bi.biClrUsed = image.numColors();
|
|
|
|
bi.biClrImportant = image.numColors();
|
|
|
|
s << bi; // write info header
|
|
|
|
|
|
|
|
if ( image.depth() != 32 ) { // write color table
|
|
|
|
uchar *color_table = new uchar[4*image.numColors()];
|
|
|
|
uchar *rgb = color_table;
|
|
|
|
TQRgb *c = image.colorTable();
|
|
|
|
for ( int i=0; i<image.numColors(); i++ ) {
|
|
|
|
*rgb++ = tqBlue ( c[i] );
|
|
|
|
*rgb++ = tqGreen( c[i] );
|
|
|
|
*rgb++ = tqRed ( c[i] );
|
|
|
|
*rgb++ = 0;
|
|
|
|
}
|
|
|
|
d->writeBlock( (char *)color_table, 4*image.numColors() );
|
|
|
|
delete [] color_table;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( image.depth() == 1 && image.bitOrder() != TQImage::BigEndian )
|
|
|
|
image = image.convertBitOrder( TQImage::BigEndian );
|
|
|
|
|
|
|
|
int y;
|
|
|
|
|
|
|
|
if ( nbits == 1 || nbits == 8 ) { // direct output
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
// TQt/E doesn't word align.
|
|
|
|
int pad = bpl_bmp - bpl;
|
|
|
|
char padding[4];
|
|
|
|
#endif
|
|
|
|
for ( y=image.height()-1; y>=0; y-- ) {
|
|
|
|
d->writeBlock( (char*)image.scanLine(y), bpl );
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
d->writeBlock( padding, pad );
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
uchar *buf = new uchar[bpl_bmp];
|
|
|
|
uchar *b, *end;
|
|
|
|
register uchar *p;
|
|
|
|
|
|
|
|
memset( buf, 0, bpl_bmp );
|
|
|
|
for ( y=image.height()-1; y>=0; y-- ) { // write the image bits
|
|
|
|
if ( nbits == 4 ) { // convert 8 -> 4 bits
|
|
|
|
p = image.scanLine(y);
|
|
|
|
b = buf;
|
|
|
|
end = b + image.width()/2;
|
|
|
|
while ( b < end ) {
|
|
|
|
*b++ = (*p << 4) | (*(p+1) & 0x0f);
|
|
|
|
p += 2;
|
|
|
|
}
|
|
|
|
if ( image.width() & 1 )
|
|
|
|
*b = *p << 4;
|
|
|
|
} else { // 32 bits
|
|
|
|
TQRgb *p = (TQRgb *)image.scanLine( y );
|
|
|
|
TQRgb *end = p + image.width();
|
|
|
|
b = buf;
|
|
|
|
while ( p < end ) {
|
|
|
|
*b++ = tqBlue(*p);
|
|
|
|
*b++ = tqGreen(*p);
|
|
|
|
*b++ = tqRed(*p);
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( bpl_bmp != d->writeBlock( (char*)buf, bpl_bmp ) ) {
|
|
|
|
delete[] buf;
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] buf;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void write_bmp_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
TQImage image = iio->image();
|
|
|
|
TQDataStream s( d );
|
|
|
|
BMP_FILEHDR bf;
|
|
|
|
int bpl_bmp;
|
|
|
|
int bpl = image.bytesPerLine();
|
|
|
|
|
|
|
|
// Code partially repeated in qt_write_dib
|
|
|
|
if ( image.depth() == 8 && image.numColors() <= 16 ) {
|
|
|
|
bpl_bmp = (((bpl+1)/2+3)/4)*4;
|
|
|
|
} else if ( image.depth() == 32 ) {
|
|
|
|
bpl_bmp = ((image.width()*24+31)/32)*4;
|
|
|
|
} else {
|
|
|
|
bpl_bmp = bpl;
|
|
|
|
}
|
|
|
|
|
|
|
|
iio->setStatus( 0 );
|
|
|
|
s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order
|
|
|
|
strncpy( bf.bfType, "BM", 2 ); // build file header
|
|
|
|
bf.bfReserved1 = bf.bfReserved2 = 0; // reserved, should be zero
|
|
|
|
bf.bfOffBits = BMP_FILEHDR_SIZE + BMP_WIN + image.numColors()*4;
|
|
|
|
bf.bfSize = bf.bfOffBits + bpl_bmp*image.height();
|
|
|
|
s << bf; // write file header
|
|
|
|
|
|
|
|
if ( !qt_write_dib( s, image ) )
|
|
|
|
iio->setStatus( 1 );
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_IMAGEIO_BMP
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_PPM
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
PBM/PGM/PPM (ASCII and RAW) image read/write functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
static int read_pbm_int( TQIODevice *d )
|
|
|
|
{
|
|
|
|
int c;
|
|
|
|
int val = -1;
|
|
|
|
bool digit;
|
|
|
|
const int buflen = 100;
|
|
|
|
char buf[buflen];
|
|
|
|
for ( ;; ) {
|
|
|
|
if ( (c=d->getch()) == EOF ) // end of file
|
|
|
|
break;
|
|
|
|
digit = isdigit( (uchar) c );
|
|
|
|
if ( val != -1 ) {
|
|
|
|
if ( digit ) {
|
|
|
|
val = 10*val + c - '0';
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
if ( c == '#' ) // comment
|
|
|
|
d->readLine( buf, buflen );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( digit ) // first digit
|
|
|
|
val = c - '0';
|
|
|
|
else if ( isspace((uchar) c) )
|
|
|
|
continue;
|
|
|
|
else if ( c == '#' )
|
|
|
|
d->readLine( buf, buflen );
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void read_pbm_image( TQImageIO *iio ) // read PBM image data
|
|
|
|
{
|
|
|
|
const int buflen = 300;
|
|
|
|
char buf[buflen];
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
int w, h, nbits, mcc, y;
|
|
|
|
int pbm_bpl;
|
|
|
|
char type;
|
|
|
|
bool raw;
|
|
|
|
TQImage image;
|
|
|
|
|
|
|
|
if ( d->readBlock( buf, 3 ) != 3 ) // read P[1-6]<white-space>
|
|
|
|
return;
|
|
|
|
if ( !(buf[0] == 'P' && isdigit((uchar) buf[1]) && isspace((uchar) buf[2])) )
|
|
|
|
return;
|
|
|
|
switch ( (type=buf[1]) ) {
|
|
|
|
case '1': // ascii PBM
|
|
|
|
case '4': // raw PBM
|
|
|
|
nbits = 1;
|
|
|
|
break;
|
|
|
|
case '2': // ascii PGM
|
|
|
|
case '5': // raw PGM
|
|
|
|
nbits = 8;
|
|
|
|
break;
|
|
|
|
case '3': // ascii PPM
|
|
|
|
case '6': // raw PPM
|
|
|
|
nbits = 32;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
raw = type >= '4';
|
|
|
|
w = read_pbm_int( d ); // get image width
|
|
|
|
h = read_pbm_int( d ); // get image height
|
|
|
|
if ( nbits == 1 )
|
|
|
|
mcc = 1; // ignore max color component
|
|
|
|
else
|
|
|
|
mcc = read_pbm_int( d ); // get max color component
|
|
|
|
if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 || mcc <= 0 )
|
|
|
|
return; // weird P.M image
|
|
|
|
|
|
|
|
int maxc = mcc;
|
|
|
|
if ( maxc > 255 )
|
|
|
|
maxc = 255;
|
|
|
|
image.create( w, h, nbits, 0,
|
|
|
|
nbits == 1 ? TQImage::BigEndian : TQImage::IgnoreEndian );
|
|
|
|
if ( image.isNull() )
|
|
|
|
return;
|
|
|
|
|
|
|
|
pbm_bpl = (nbits*w+7)/8; // bytes per scanline in PBM
|
|
|
|
|
|
|
|
if ( raw ) { // read raw data
|
|
|
|
if ( nbits == 32 ) { // type 6
|
|
|
|
pbm_bpl = 3*w;
|
|
|
|
uchar *buf24 = new uchar[pbm_bpl], *b;
|
|
|
|
TQRgb *p;
|
|
|
|
TQRgb *end;
|
|
|
|
for ( y=0; y<h; y++ ) {
|
|
|
|
if ( d->readBlock( (char *)buf24, pbm_bpl ) != pbm_bpl ) {
|
|
|
|
delete[] buf24;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p = (TQRgb *)image.scanLine( y );
|
|
|
|
end = p + w;
|
|
|
|
b = buf24;
|
|
|
|
while ( p < end ) {
|
|
|
|
*p++ = tqRgb(b[0],b[1],b[2]);
|
|
|
|
b += 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] buf24;
|
|
|
|
} else { // type 4,5
|
|
|
|
for ( y=0; y<h; y++ ) {
|
|
|
|
if ( d->readBlock( (char *)image.scanLine(y), pbm_bpl )
|
|
|
|
!= pbm_bpl )
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // read ascii data
|
|
|
|
register uchar *p;
|
|
|
|
int n;
|
|
|
|
for ( y=0; y<h; y++ ) {
|
|
|
|
p = image.scanLine( y );
|
|
|
|
n = pbm_bpl;
|
|
|
|
if ( nbits == 1 ) {
|
|
|
|
int b;
|
|
|
|
while ( n-- ) {
|
|
|
|
b = 0;
|
|
|
|
for ( int i=0; i<8; i++ )
|
|
|
|
b = (b << 1) | (read_pbm_int(d) & 1);
|
|
|
|
*p++ = b;
|
|
|
|
}
|
|
|
|
} else if ( nbits == 8 ) {
|
|
|
|
if ( mcc == maxc ) {
|
|
|
|
while ( n-- ) {
|
|
|
|
*p++ = read_pbm_int( d );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( n-- ) {
|
|
|
|
*p++ = read_pbm_int( d ) * maxc / mcc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // 32 bits
|
|
|
|
n /= 4;
|
|
|
|
int r, g, b;
|
|
|
|
if ( mcc == maxc ) {
|
|
|
|
while ( n-- ) {
|
|
|
|
r = read_pbm_int( d );
|
|
|
|
g = read_pbm_int( d );
|
|
|
|
b = read_pbm_int( d );
|
|
|
|
*((TQRgb*)p) = tqRgb( r, g, b );
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( n-- ) {
|
|
|
|
r = read_pbm_int( d ) * maxc / mcc;
|
|
|
|
g = read_pbm_int( d ) * maxc / mcc;
|
|
|
|
b = read_pbm_int( d ) * maxc / mcc;
|
|
|
|
*((TQRgb*)p) = tqRgb( r, g, b );
|
|
|
|
p += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( nbits == 1 ) { // bitmap
|
|
|
|
image.setNumColors( 2 );
|
|
|
|
image.setColor( 0, tqRgb(255,255,255) ); // white
|
|
|
|
image.setColor( 1, tqRgb(0,0,0) ); // black
|
|
|
|
} else if ( nbits == 8 ) { // graymap
|
|
|
|
image.setNumColors( maxc+1 );
|
|
|
|
for ( int i=0; i<=maxc; i++ )
|
|
|
|
image.setColor( i, tqRgb(i*255/maxc,i*255/maxc,i*255/maxc) );
|
|
|
|
}
|
|
|
|
|
|
|
|
iio->setImage( image );
|
|
|
|
iio->setStatus( 0 ); // image ok
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void write_pbm_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
TQIODevice* out = iio->ioDevice();
|
|
|
|
TQCString str;
|
|
|
|
|
|
|
|
TQImage image = iio->image();
|
|
|
|
TQCString format = iio->format();
|
|
|
|
format = format.left(3); // ignore RAW part
|
|
|
|
bool gray = format == "PGM";
|
|
|
|
|
|
|
|
if ( format == "PBM" ) {
|
|
|
|
image = image.convertDepth(1);
|
|
|
|
} else if ( image.depth() == 1 ) {
|
|
|
|
image = image.convertDepth(8);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( image.depth() == 1 && image.numColors() == 2 ) {
|
|
|
|
if ( tqGray(image.color(0)) < tqGray(image.color(1)) ) {
|
|
|
|
// 0=dark/black, 1=light/white - invert
|
|
|
|
image.detach();
|
|
|
|
for ( int y=0; y<image.height(); y++ ) {
|
|
|
|
uchar *p = image.scanLine(y);
|
|
|
|
uchar *end = p + image.bytesPerLine();
|
|
|
|
while ( p < end )
|
|
|
|
*p++ ^= 0xff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint w = image.width();
|
|
|
|
uint h = image.height();
|
|
|
|
|
|
|
|
str.sprintf("P\n%d %d\n", w, h);
|
|
|
|
|
|
|
|
switch (image.depth()) {
|
|
|
|
case 1: {
|
|
|
|
str.insert(1, '4');
|
|
|
|
if ((uint)out->writeBlock(str, str.length()) != str.length()) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
w = (w+7)/8;
|
|
|
|
for (uint y=0; y<h; y++) {
|
|
|
|
uchar* line = image.scanLine(y);
|
|
|
|
if ( w != (uint)out->writeBlock((char*)line, w) ) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 8: {
|
|
|
|
str.insert(1, gray ? '5' : '6');
|
|
|
|
str.append("255\n");
|
|
|
|
if ((uint)out->writeBlock(str, str.length()) != str.length()) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
TQRgb *color = image.colorTable();
|
|
|
|
uint bpl = w*(gray ? 1 : 3);
|
|
|
|
uchar *buf = new uchar[bpl];
|
|
|
|
for (uint y=0; y<h; y++) {
|
|
|
|
uchar *b = image.scanLine(y);
|
|
|
|
uchar *p = buf;
|
|
|
|
uchar *end = buf+bpl;
|
|
|
|
if ( gray ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
uchar g = (uchar)tqGray(color[*b++]);
|
|
|
|
*p++ = g;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
TQRgb rgb = color[*b++];
|
|
|
|
*p++ = tqRed(rgb);
|
|
|
|
*p++ = tqGreen(rgb);
|
|
|
|
*p++ = tqBlue(rgb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete [] buf;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 32: {
|
|
|
|
str.insert(1, gray ? '5' : '6');
|
|
|
|
str.append("255\n");
|
|
|
|
if ((uint)out->writeBlock(str, str.length()) != str.length()) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint bpl = w*(gray ? 1 : 3);
|
|
|
|
uchar *buf = new uchar[bpl];
|
|
|
|
for (uint y=0; y<h; y++) {
|
|
|
|
TQRgb *b = (TQRgb*)image.scanLine(y);
|
|
|
|
uchar *p = buf;
|
|
|
|
uchar *end = buf+bpl;
|
|
|
|
if ( gray ) {
|
|
|
|
while ( p < end ) {
|
|
|
|
uchar g = (uchar)tqGray(*b++);
|
|
|
|
*p++ = g;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( p < end ) {
|
|
|
|
TQRgb rgb = *b++;
|
|
|
|
*p++ = tqRed(rgb);
|
|
|
|
*p++ = tqGreen(rgb);
|
|
|
|
*p++ = tqBlue(rgb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) {
|
|
|
|
iio->setStatus(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete [] buf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
iio->setStatus(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_IMAGEIO_PPM
|
|
|
|
|
|
|
|
#ifndef QT_NO_ASYNC_IMAGE_IO
|
|
|
|
|
|
|
|
class TQImageIOFrameGrabber : public TQImageConsumer {
|
|
|
|
public:
|
|
|
|
TQImageIOFrameGrabber() : framecount(0) { }
|
|
|
|
|
|
|
|
TQImageDecoder *decoder;
|
|
|
|
int framecount;
|
|
|
|
|
|
|
|
void changed(const TQRect&) { }
|
|
|
|
void end() { }
|
|
|
|
void frameDone(const TQPoint&, const TQRect&) { framecount++; }
|
|
|
|
void frameDone() { framecount++; }
|
|
|
|
void setLooping(int) { }
|
|
|
|
void setFramePeriod(int) { }
|
|
|
|
void setSize(int, int) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
static void read_async_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
const int buf_len = 2048;
|
|
|
|
uchar buffer[buf_len];
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
TQImageIOFrameGrabber* consumer = new TQImageIOFrameGrabber();
|
|
|
|
TQImageDecoder *decoder = new TQImageDecoder(consumer);
|
|
|
|
consumer->decoder = decoder;
|
|
|
|
int startAt = d->at();
|
|
|
|
int totLen = 0;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
int length = d->readBlock((char*)buffer, buf_len);
|
|
|
|
if ( length <= 0 ) {
|
|
|
|
iio->setStatus(length);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
uchar* b = buffer;
|
|
|
|
int r = -1;
|
|
|
|
while (length > 0 && consumer->framecount==0) {
|
|
|
|
r = decoder->decode(b, length);
|
|
|
|
if ( r <= 0 ) break;
|
|
|
|
b += r;
|
|
|
|
totLen += r;
|
|
|
|
length -= r;
|
|
|
|
}
|
|
|
|
if ( consumer->framecount ) {
|
|
|
|
// Stopped after first frame
|
|
|
|
if ( d->isDirectAccess() )
|
|
|
|
d->at( startAt + totLen );
|
|
|
|
else {
|
|
|
|
// ### We have (probably) read too much from the stream into
|
|
|
|
// the buffer, and there is no way to put it back!
|
|
|
|
}
|
|
|
|
iio->setImage(decoder->image());
|
|
|
|
iio->setStatus(0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if ( r <= 0 ) {
|
|
|
|
iio->setStatus(r);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
consumer->decoder = 0;
|
|
|
|
delete decoder;
|
|
|
|
delete consumer;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_ASYNC_IMAGE_IO
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_XBM
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
X bitmap image read/write functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
static inline int hex2byte( register char *p )
|
|
|
|
{
|
|
|
|
return ( (isdigit((uchar) *p) ? *p - '0' : toupper((uchar) *p) - 'A' + 10) << 4 ) |
|
|
|
|
( isdigit((uchar) *(p+1)) ? *(p+1) - '0' : toupper((uchar) *(p+1)) - 'A' + 10 );
|
|
|
|
}
|
|
|
|
|
|
|
|
static void read_xbm_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
const int buflen = 300;
|
|
|
|
char buf[buflen];
|
|
|
|
TQRegExp r1, r2;
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
int w=-1, h=-1;
|
|
|
|
TQImage image;
|
|
|
|
|
|
|
|
r1 = TQString::fromLatin1("^#define[ \t]+[a-zA-Z0-9._]+[ \t]+");
|
|
|
|
r2 = TQString::fromLatin1("[0-9]+");
|
|
|
|
d->readLine( buf, buflen ); // "#define .._width <num>"
|
|
|
|
|
|
|
|
while (!d->atEnd() && buf[0] != '#') //skip leading comment, if any
|
|
|
|
d->readLine( buf, buflen );
|
|
|
|
|
|
|
|
TQString sbuf;
|
|
|
|
sbuf = TQString::fromLatin1(buf);
|
|
|
|
|
|
|
|
if ( r1.search(sbuf) == 0 &&
|
|
|
|
r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() )
|
|
|
|
w = atoi( &buf[r1.matchedLength()] );
|
|
|
|
|
|
|
|
d->readLine( buf, buflen ); // "#define .._height <num>"
|
|
|
|
sbuf = TQString::fromLatin1(buf);
|
|
|
|
|
|
|
|
if ( r1.search(sbuf) == 0 &&
|
|
|
|
r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() )
|
|
|
|
h = atoi( &buf[r1.matchedLength()] );
|
|
|
|
|
|
|
|
if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 )
|
|
|
|
return; // format error
|
|
|
|
|
|
|
|
for ( ;; ) { // scan for data
|
|
|
|
if ( d->readLine(buf, buflen) <= 0 ) // end of file
|
|
|
|
return;
|
|
|
|
if ( strstr(buf,"0x") != 0 ) // does line contain data?
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
image.create( w, h, 1, 2, TQImage::LittleEndian );
|
|
|
|
if ( image.isNull() )
|
|
|
|
return;
|
|
|
|
|
|
|
|
image.setColor( 0, tqRgb(255,255,255) ); // white
|
|
|
|
image.setColor( 1, tqRgb(0,0,0) ); // black
|
|
|
|
|
|
|
|
int x = 0, y = 0;
|
|
|
|
uchar *b = image.scanLine(0);
|
|
|
|
char *p = strstr( buf, "0x" );
|
|
|
|
w = (w+7)/8; // byte width
|
|
|
|
|
|
|
|
while ( y < h ) { // for all encoded bytes...
|
|
|
|
if ( p ) { // p = "0x.."
|
|
|
|
*b++ = hex2byte(p+2);
|
|
|
|
p += 2;
|
|
|
|
if ( ++x == w && ++y < h ) {
|
|
|
|
b = image.scanLine(y);
|
|
|
|
x = 0;
|
|
|
|
}
|
|
|
|
p = strstr( p, "0x" );
|
|
|
|
} else { // read another line
|
|
|
|
if ( d->readLine(buf,buflen) <= 0 ) // EOF ==> truncated image
|
|
|
|
break;
|
|
|
|
p = strstr( buf, "0x" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
iio->setImage( image );
|
|
|
|
iio->setStatus( 0 ); // image ok
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void write_xbm_image( TQImageIO *iio )
|
|
|
|
{
|
|
|
|
TQIODevice *d = iio->ioDevice();
|
|
|
|
TQImage image = iio->image();
|
|
|
|
int w = image.width();
|
|
|
|
int h = image.height();
|
|
|
|
int i;
|
|
|
|
TQString s = fbname(iio->fileName()); // get file base name
|
|
|
|
char *buf = new char[s.length() + 100];
|
|
|
|
|
|
|
|
sprintf( buf, "#define %s_width %d\n", s.ascii(), w );
|
|
|
|
d->writeBlock( buf, tqstrlen(buf) );
|
|
|
|
sprintf( buf, "#define %s_height %d\n", s.ascii(), h );
|
|
|
|
d->writeBlock( buf, tqstrlen(buf) );
|
|
|
|
sprintf( buf, "static char %s_bits[] = {\n ", s.ascii() );
|
|
|
|
d->writeBlock( buf, tqstrlen(buf) );
|
|
|
|
|
|
|
|
iio->setStatus( 0 );
|
|
|
|
|
|
|
|
if ( image.depth() != 1 )
|
|
|
|
image = image.convertDepth( 1 ); // dither
|
|
|
|
if ( image.bitOrder() != TQImage::LittleEndian )
|
|
|
|
image = image.convertBitOrder( TQImage::LittleEndian );
|
|
|
|
|
|
|
|
bool invert = tqGray(image.color(0)) < tqGray(image.color(1));
|
|
|
|
char hexrep[16];
|
|
|
|
for ( i=0; i<10; i++ )
|
|
|
|
hexrep[i] = '0' + i;
|
|
|
|
for ( i=10; i<16; i++ )
|
|
|
|
hexrep[i] = 'a' -10 + i;
|
|
|
|
if ( invert ) {
|
|
|
|
char t;
|
|
|
|
for ( i=0; i<8; i++ ) {
|
|
|
|
t = hexrep[15-i];
|
|
|
|
hexrep[15-i] = hexrep[i];
|
|
|
|
hexrep[i] = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int bcnt = 0;
|
|
|
|
register char *p = buf;
|
|
|
|
int bpl = (w+7)/8;
|
|
|
|
for (int y = 0; y < h; ++y) {
|
|
|
|
uchar *b = image.scanLine(y);
|
|
|
|
for (i = 0; i < bpl; ++i) {
|
|
|
|
*p++ = '0'; *p++ = 'x';
|
|
|
|
*p++ = hexrep[*b >> 4];
|
|
|
|
*p++ = hexrep[*b++ & 0xf];
|
|
|
|
|
|
|
|
if ( i < bpl - 1 || y < h - 1 ) {
|
|
|
|
*p++ = ',';
|
|
|
|
if ( ++bcnt > 14 ) {
|
|
|
|
*p++ = '\n';
|
|
|
|
*p++ = ' ';
|
|
|
|
*p = '\0';
|
|
|
|
if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) {
|
|
|
|
iio->setStatus( 1 );
|
|
|
|
delete [] buf;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p = buf;
|
|
|
|
bcnt = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
strcpy( p, " };\n" );
|
|
|
|
if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) )
|
|
|
|
iio->setStatus( 1 );
|
|
|
|
delete [] buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_IMAGEIO_XBM
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef QT_NO_IMAGEIO_XPM
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
XPM image read/write functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
// Skip until ", read until the next ", return the rest in *buf
|
|
|
|
// Returns FALSE on error, TRUE on success
|
|
|
|
|
|
|
|
static bool read_xpm_string( TQCString &buf, TQIODevice *d,
|
|
|
|
const char * const *source, int &index )
|
|
|
|
{
|
|
|
|
if ( source ) {
|
|
|
|
buf = source[index++];
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( buf.size() < 69 ) //# just an approximation
|
|
|
|
buf.resize( 123 );
|
|
|
|
|
|
|
|
buf[0] = '\0';
|
|
|
|
int c;
|
|
|
|
int i;
|
|
|
|
while ( (c=d->getch()) != EOF && c != '"' ) { }
|
|
|
|
if ( c == EOF ) {
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
i = 0;
|
|
|
|
while ( (c=d->getch()) != EOF && c != '"' ) {
|
|
|
|
if ( i == (int)buf.size() )
|
|
|
|
buf.resize( i*2+42 );
|
|
|
|
buf[i++] = c;
|
|
|
|
}
|
|
|
|
if ( c == EOF ) {
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( i == (int)buf.size() ) // always use a 0 terminator
|
|
|
|
buf.resize( i+1 );
|
|
|
|
buf[i] = '\0';
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int nextColorSpec(const TQCString & buf)
|
|
|
|
{
|
|
|
|
int i = buf.find(" c ");
|
|
|
|
if (i < 0)
|
|
|
|
i = buf.find(" g ");
|
|
|
|
if (i < 0)
|
|
|
|
i = buf.find(" g4 ");
|
|
|
|
if (i < 0)
|
|
|
|
i = buf.find(" m ");
|
|
|
|
if (i < 0)
|
|
|
|
i = buf.find(" s ");
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// INTERNAL
|
|
|
|
//
|
|
|
|
// Reads an .xpm from either the TQImageIO or from the TQString *.
|
|
|
|
// One of the two HAS to be 0, the other one is used.
|
|
|
|
//
|
|
|
|
|
|
|
|
static void read_xpm_image_or_array( TQImageIO * iio, const char * const * source,
|
|
|
|
TQImage & image)
|
|
|
|
{
|
|
|
|
TQCString buf;
|
|
|
|
TQIODevice *d = 0;
|
|
|
|
buf.resize( 200 );
|
|
|
|
|
|
|
|
int i, cpp, ncols, w, h, index = 0;
|
|
|
|
|
|
|
|
if ( iio ) {
|
|
|
|
iio->setStatus( 1 );
|
|
|
|
d = iio ? iio->ioDevice() : 0;
|
|
|
|
d->readLine( buf.data(), buf.size() ); // "/* XPM */"
|
|
|
|
TQRegExp r( TQString::fromLatin1("/\\*.XPM.\\*/") );
|
|
|
|
if ( buf.find(r) == -1 )
|
|
|
|
return; // bad magic
|
|
|
|
} else if ( !source ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !read_xpm_string( buf, d, source, index ) )
|
|
|
|
return;
|
|
|
|
|
|
|
|
if ( sscanf( buf, "%d %d %d %d", &w, &h, &ncols, &cpp ) < 4 )
|
|
|
|
return; // < 4 numbers parsed
|
|
|
|
|
|
|
|
if ( cpp > 15 )
|
|
|
|
return;
|
|
|
|
|
|
|
|
if ( ncols > 256 ) {
|
|
|
|
image.create( w, h, 32 );
|
|
|
|
} else {
|
|
|
|
image.create( w, h, 8, ncols );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (image.isNull())
|
|
|
|
return;
|
|
|
|
|
|
|
|
TQMap<TQString, int> colorMap;
|
|
|
|
int currentColor;
|
|
|
|
|
|
|
|
for( currentColor=0; currentColor < ncols; ++currentColor ) {
|
|
|
|
if ( !read_xpm_string( buf, d, source, index ) ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage: XPM color specification missing");
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
TQString index;
|
|
|
|
index = buf.left( cpp );
|
|
|
|
buf = buf.mid( cpp ).simplifyWhiteSpace().lower();
|
|
|
|
buf.prepend( " " );
|
|
|
|
i = nextColorSpec(buf);
|
|
|
|
if ( i < 0 ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage: XPM color specification is missing: %s", buf.data());
|
|
|
|
#endif
|
|
|
|
return; // no c/g/g4/m/s specification at all
|
|
|
|
}
|
|
|
|
buf = buf.mid( i+3 );
|
|
|
|
// Strip any other colorspec
|
|
|
|
int end = nextColorSpec(buf);
|
|
|
|
if (end != -1)
|
|
|
|
buf.truncate(end);
|
|
|
|
buf = buf.stripWhiteSpace();
|
|
|
|
if ( buf == "none" ) {
|
|
|
|
image.setAlphaBuffer( TRUE );
|
|
|
|
int transparentColor = currentColor;
|
|
|
|
if ( image.depth() == 8 ) {
|
|
|
|
image.setColor( transparentColor,
|
|
|
|
TQT_RGB_MASK & tqRgb(198,198,198) );
|
|
|
|
colorMap.insert( index, transparentColor );
|
|
|
|
} else {
|
|
|
|
TQRgb rgb = TQT_RGB_MASK & tqRgb(198,198,198);
|
|
|
|
colorMap.insert( index, rgb );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ( ((buf.length()-1) % 3) && (buf[0] == '#') ) {
|
|
|
|
buf.truncate (((buf.length()-1) / 4 * 3) + 1); // remove alpha channel left by imagemagick
|
|
|
|
}
|
|
|
|
TQColor c( buf.data() );
|
|
|
|
if ( image.depth() == 8 ) {
|
|
|
|
image.setColor( currentColor, 0xff000000 | c.rgb() );
|
|
|
|
colorMap.insert( index, currentColor );
|
|
|
|
} else {
|
|
|
|
TQRgb rgb = 0xff000000 | c.rgb();
|
|
|
|
colorMap.insert( index, rgb );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read pixels
|
|
|
|
for( int y=0; y<h; y++ ) {
|
|
|
|
if ( !read_xpm_string( buf, d, source, index ) ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQImage: XPM pixels missing on image line %d", y);
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if ( image.depth() == 8 ) {
|
|
|
|
uchar *p = image.scanLine(y);
|
|
|
|
uchar *d = (uchar *)buf.data();
|
|
|
|
uchar *end = d + buf.length();
|
|
|
|
int x;
|
|
|
|
if ( cpp == 1 ) {
|
|
|
|
char b[2];
|
|
|
|
b[1] = '\0';
|
|
|
|
for ( x=0; x<w && d<end; x++ ) {
|
|
|
|
b[0] = *d++;
|
|
|
|
*p++ = (uchar)colorMap[b];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
char b[16];
|
|
|
|
b[cpp] = '\0';
|
|
|
|
for ( x=0; x<w && d<end; x++ ) {
|
|
|
|
strncpy( b, (char *)d, cpp );
|
|
|
|
*p++ = (uchar)colorMap[b];
|
|
|
|
d += cpp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
TQRgb *p = (TQRgb*)image.scanLine(y);
|
|
|
|
uchar *d = (uchar *)buf.data();
|
|
|
|
uchar *end = d + buf.length();
|
|
|
|
int x;
|
|
|
|
char b[16];
|
|
|
|
b[cpp] = '\0';
|
|
|
|
for ( x=0; x<w && d<end; x++ ) {
|
|
|
|
strncpy( b, (char *)d, cpp );
|
|
|
|
*p++ = (TQRgb)colorMap[b];
|
|
|
|
d += cpp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( iio ) {
|
|
|
|
iio->setImage( image );
|
|
|
|
iio->setStatus( 0 ); // image ok
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void read_xpm_image( TQImageIO * iio )
|
|
|
|
{
|
|
|
|
TQImage i;
|
|
|
|
(void)read_xpm_image_or_array( iio, 0, i );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const char* xpm_color_name( int cpp, int index )
|
|
|
|
{
|
|
|
|
static char returnable[5];
|
|
|
|
static const char code[] = ".#abcdefghijklmnopqrstuvwxyzABCD"
|
|
|
|
"EFGHIJKLMNOPQRSTUVWXYZ0123456789";
|
|
|
|
// cpp is limited to 4 and index is limited to 64^cpp
|
|
|
|
if ( cpp > 1 ) {
|
|
|
|
if ( cpp > 2 ) {
|
|
|
|
if ( cpp > 3 ) {
|
|
|
|
returnable[3] = code[index % 64];
|
|
|
|
index /= 64;
|
|
|
|
} else
|
|
|
|
returnable[3] = '\0';
|
|
|
|
returnable[2] = code[index % 64];
|
|
|
|
index /= 64;
|
|
|
|
} else
|
|
|
|
returnable[2] = '\0';
|
|
|
|
// the following 4 lines are a joke!
|
|
|
|
if ( index == 0 )
|
|
|
|
index = 64*44+21;
|
|
|
|
else if ( index == 64*44+21 )
|
|
|
|
index = 0;
|
|
|
|
returnable[1] = code[index % 64];
|
|
|
|
index /= 64;
|
|
|
|
} else
|
|
|
|
returnable[1] = '\0';
|
|
|
|
returnable[0] = code[index];
|
|
|
|
|
|
|
|
return returnable;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// write XPM image data
|
|
|
|
static void write_xpm_image( TQImageIO * iio )
|
|
|
|
{
|
|
|
|
if ( iio )
|
|
|
|
iio->setStatus( 1 );
|
|
|
|
else
|
|
|
|
return;
|
|
|
|
|
|
|
|
// ### 8-bit case could be made faster
|
|
|
|
TQImage image;
|
|
|
|
if ( iio->image().depth() != 32 )
|
|
|
|
image = iio->image().convertDepth( 32 );
|
|
|
|
else
|
|
|
|
image = iio->image();
|
|
|
|
|
|
|
|
TQMap<TQRgb, int> colorMap;
|
|
|
|
|
|
|
|
int w = image.width(), h = image.height(), ncolors = 0;
|
|
|
|
int x, y;
|
|
|
|
|
|
|
|
// build color table
|
|
|
|
for( y=0; y<h; y++ ) {
|
|
|
|
TQRgb * yp = (TQRgb *)image.scanLine( y );
|
|
|
|
for( x=0; x<w; x++ ) {
|
|
|
|
TQRgb color = *(yp + x);
|
|
|
|
if ( !colorMap.contains(color) )
|
|
|
|
colorMap.insert( color, ncolors++ );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// number of 64-bit characters per pixel needed to encode all colors
|
|
|
|
int cpp = 1;
|
|
|
|
for ( int k = 64; ncolors > k; k *= 64 ) {
|
|
|
|
++cpp;
|
|
|
|
// limit to 4 characters per pixel
|
|
|
|
// 64^4 colors is enough for a 4096x4096 image
|
|
|
|
if ( cpp > 4)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString line;
|
|
|
|
|
|
|
|
// write header
|
|
|
|
TQTextStream s( iio->ioDevice() );
|
|
|
|
s << "/* XPM */" << endl
|
|
|
|
<< "static char *" << fbname(iio->fileName()) << "[]={" << endl
|
|
|
|
<< "\"" << w << " " << h << " " << ncolors << " " << cpp << "\"";
|
|
|
|
|
|
|
|
// write palette
|
|
|
|
TQMap<TQRgb, int>::Iterator c = colorMap.begin();
|
|
|
|
while ( c != colorMap.end() ) {
|
|
|
|
TQRgb color = c.key();
|
|
|
|
if ( image.hasAlphaBuffer() && color == (color & TQT_RGB_MASK) )
|
|
|
|
line.sprintf( "\"%s c None\"",
|
|
|
|
xpm_color_name(cpp, *c) );
|
|
|
|
else
|
|
|
|
line.sprintf( "\"%s c #%02x%02x%02x\"",
|
|
|
|
xpm_color_name(cpp, *c),
|
|
|
|
tqRed(color),
|
|
|
|
tqGreen(color),
|
|
|
|
tqBlue(color) );
|
|
|
|
++c;
|
|
|
|
s << "," << endl << line;
|
|
|
|
}
|
|
|
|
|
|
|
|
// write pixels, limit to 4 characters per pixel
|
|
|
|
line.truncate( cpp*w );
|
|
|
|
for( y=0; y<h; y++ ) {
|
|
|
|
TQRgb * yp = (TQRgb *) image.scanLine( y );
|
|
|
|
int cc = 0;
|
|
|
|
for( x=0; x<w; x++ ) {
|
|
|
|
int color = (int)(*(yp + x));
|
|
|
|
TQCString chars = xpm_color_name( cpp, colorMap[color] );
|
|
|
|
line[cc++] = chars[0];
|
|
|
|
if ( cpp > 1 ) {
|
|
|
|
line[cc++] = chars[1];
|
|
|
|
if ( cpp > 2 ) {
|
|
|
|
line[cc++] = chars[2];
|
|
|
|
if ( cpp > 3 ) {
|
|
|
|
line[cc++] = chars[3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s << "," << endl << "\"" << line << "\"";
|
|
|
|
}
|
|
|
|
s << "};" << endl;
|
|
|
|
|
|
|
|
iio->setStatus( 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_IMAGEIO_XPM
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns an image with depth \a d, using the \a palette_count
|
|
|
|
colors pointed to by \a palette. If \a d is 1 or 8, the returned
|
|
|
|
image will have its color table ordered the same as \a palette.
|
|
|
|
|
|
|
|
If the image needs to be modified to fit in a lower-resolution
|
|
|
|
result (e.g. converting from 32-bit to 8-bit), use the \a
|
|
|
|
conversion_flags to specify how you'd prefer this to happen.
|
|
|
|
|
|
|
|
Note: currently no closest-color search is made. If colors are
|
|
|
|
found that are not in the palette, the palette may not be used at
|
|
|
|
all. This result should not be considered valid because it may
|
|
|
|
change in future implementations.
|
|
|
|
|
|
|
|
Currently inefficient for non-32-bit images.
|
|
|
|
|
|
|
|
\sa TQt::ImageConversionFlags
|
|
|
|
*/
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
TQImage TQImage::convertDepthWithPalette( int d, TQRgb* palette, int palette_count, int conversion_flags ) const
|
|
|
|
{
|
|
|
|
if ( depth() == 1 ) {
|
|
|
|
return convertDepth( 8, conversion_flags )
|
|
|
|
.convertDepthWithPalette( d, palette, palette_count, conversion_flags );
|
|
|
|
} else if ( depth() == 8 ) {
|
|
|
|
// ### this could be easily made more efficient
|
|
|
|
return convertDepth( 32, conversion_flags )
|
|
|
|
.convertDepthWithPalette( d, palette, palette_count, conversion_flags );
|
|
|
|
} else {
|
|
|
|
TQImage result;
|
|
|
|
convert_32_to_8( this, &result,
|
|
|
|
(conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither,
|
|
|
|
palette, palette_count );
|
|
|
|
return result.convertDepth( d );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
static
|
|
|
|
bool
|
|
|
|
haveSamePalette(const TQImage& a, const TQImage& b)
|
|
|
|
{
|
|
|
|
if (a.depth() != b.depth()) return FALSE;
|
|
|
|
if (a.numColors() != b.numColors()) return FALSE;
|
|
|
|
TQRgb* ca = a.colorTable();
|
|
|
|
TQRgb* cb = b.colorTable();
|
|
|
|
for (int i=a.numColors(); i--; ) {
|
|
|
|
if (*ca++ != *cb++) return FALSE;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\relates TQImage
|
|
|
|
|
|
|
|
Copies a block of pixels from \a src to \a dst. The pixels
|
|
|
|
copied from source (src) are converted according to
|
|
|
|
\a conversion_flags if it is incompatible with the destination
|
|
|
|
(\a dst).
|
|
|
|
|
|
|
|
\a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy
|
|
|
|
is the top-left position in \a dst and \a sw, \a sh is the
|
|
|
|
size of the copied block.
|
|
|
|
|
|
|
|
The copying is clipped if areas outside \a src or \a dst are
|
|
|
|
specified.
|
|
|
|
|
|
|
|
If \a sw is -1, it is adjusted to src->width(). Similarly, if \a
|
|
|
|
sh is -1, it is adjusted to src->height().
|
|
|
|
|
|
|
|
Currently inefficient for non 32-bit images.
|
|
|
|
*/
|
|
|
|
void bitBlt( TQImage* dst, int dx, int dy, const TQImage* src,
|
|
|
|
int sx, int sy, int sw, int sh, int conversion_flags )
|
|
|
|
{
|
|
|
|
// Parameter correction
|
|
|
|
if ( sw < 0 ) sw = src->width();
|
|
|
|
if ( sh < 0 ) sh = src->height();
|
|
|
|
if ( sx < 0 ) { dx -= sx; sw += sx; sx = 0; }
|
|
|
|
if ( sy < 0 ) { dy -= sy; sh += sy; sy = 0; }
|
|
|
|
if ( dx < 0 ) { sx -= dx; sw += dx; dx = 0; }
|
|
|
|
if ( dy < 0 ) { sy -= dy; sh += dy; dy = 0; }
|
|
|
|
if ( sx + sw > src->width() ) sw = src->width() - sx;
|
|
|
|
if ( sy + sh > src->height() ) sh = src->height() - sy;
|
|
|
|
if ( dx + sw > dst->width() ) sw = dst->width() - dx;
|
|
|
|
if ( dy + sh > dst->height() ) sh = dst->height() - dy;
|
|
|
|
if ( sw <= 0 || sh <= 0 ) return; // Nothing left to copy
|
|
|
|
if ( (dst->data == src->data) && dx==sx && dy==sy ) return; // Same pixels
|
|
|
|
|
|
|
|
// "Easy" to copy if both same depth and one of:
|
|
|
|
// - 32 bit
|
|
|
|
// - 8 bit, identical palette
|
|
|
|
// - 1 bit, identical palette and byte-aligned area
|
|
|
|
//
|
|
|
|
if ( haveSamePalette(*dst,*src)
|
|
|
|
&& ( (dst->depth() != 1) ||
|
|
|
|
(!( (dx&7) || (sx&7) ||
|
|
|
|
(((sw&7) && (sx+sw < src->width())) ||
|
|
|
|
(dx+sw < dst->width()) ) )) ) )
|
|
|
|
{
|
|
|
|
// easy to copy
|
|
|
|
} else if ( dst->depth() != 32 ) {
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
|
|
|
|
TQImage dstconv = dst->convertDepth( 32 );
|
|
|
|
bitBlt( &dstconv, dx, dy, src, sx, sy, sw, sh,
|
|
|
|
(conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither );
|
|
|
|
*dst = dstconv.convertDepthWithPalette( dst->depth(),
|
|
|
|
dst->colorTable(), dst->numColors() );
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now assume palette can be ignored
|
|
|
|
|
|
|
|
if ( dst->depth() != src->depth() ) {
|
|
|
|
if ( ((sw == src->width()) && (sh == src->height())) || (dst->depth()==32) ) {
|
|
|
|
TQImage srcconv = src->convertDepth( dst->depth(), conversion_flags );
|
|
|
|
bitBlt( dst, dx, dy, &srcconv, sx, sy, sw, sh, conversion_flags );
|
|
|
|
} else {
|
|
|
|
TQImage srcconv = src->copy( sx, sy, sw, sh ); // ie. bitBlt
|
|
|
|
bitBlt( dst, dx, dy, &srcconv, 0, 0, sw, sh, conversion_flags );
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now assume both are the same depth.
|
|
|
|
|
|
|
|
// Now assume both are 32-bit or 8-bit with compatible palettes.
|
|
|
|
|
|
|
|
// "Easy"
|
|
|
|
|
|
|
|
switch ( dst->depth() ) {
|
|
|
|
case 1:
|
|
|
|
{
|
|
|
|
uchar* d = dst->scanLine(dy) + dx/8;
|
|
|
|
uchar* s = src->scanLine(sy) + sx/8;
|
|
|
|
const int bw = (sw+7)/8;
|
|
|
|
if ( bw < 64 ) {
|
|
|
|
// Trust ourselves
|
|
|
|
const int dd = dst->bytesPerLine() - bw;
|
|
|
|
const int ds = src->bytesPerLine() - bw;
|
|
|
|
while ( sh-- ) {
|
|
|
|
for ( int t=bw; t--; )
|
|
|
|
*d++ = *s++;
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Trust libc
|
|
|
|
const int dd = dst->bytesPerLine();
|
|
|
|
const int ds = src->bytesPerLine();
|
|
|
|
while ( sh-- ) {
|
|
|
|
memcpy( d, s, bw );
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
{
|
|
|
|
uchar* d = dst->scanLine(dy) + dx;
|
|
|
|
uchar* s = src->scanLine(sy) + sx;
|
|
|
|
if ( sw < 64 ) {
|
|
|
|
// Trust ourselves
|
|
|
|
const int dd = dst->bytesPerLine() - sw;
|
|
|
|
const int ds = src->bytesPerLine() - sw;
|
|
|
|
while ( sh-- ) {
|
|
|
|
for ( int t=sw; t--; )
|
|
|
|
*d++ = *s++;
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Trust libc
|
|
|
|
const int dd = dst->bytesPerLine();
|
|
|
|
const int ds = src->bytesPerLine();
|
|
|
|
while ( sh-- ) {
|
|
|
|
memcpy( d, s, sw );
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#ifndef QT_NO_IMAGE_TRUECOLOR
|
|
|
|
case 32:
|
|
|
|
if ( src->hasAlphaBuffer() ) {
|
|
|
|
TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx;
|
|
|
|
TQRgb* s = (TQRgb*)src->scanLine(sy) + sx;
|
|
|
|
const int dd = dst->width() - sw;
|
|
|
|
const int ds = src->width() - sw;
|
|
|
|
while ( sh-- ) {
|
|
|
|
for ( int t=sw; t--; ) {
|
|
|
|
unsigned char a = tqAlpha(*s);
|
|
|
|
if ( a == 255 )
|
|
|
|
*d++ = *s++;
|
|
|
|
else if ( a == 0 )
|
|
|
|
++d,++s; // nothing
|
|
|
|
else {
|
|
|
|
unsigned char r = ((tqRed(*s)-tqRed(*d)) * a) / 256 + tqRed(*d);
|
|
|
|
unsigned char g = ((tqGreen(*s)-tqGreen(*d)) * a) / 256 + tqGreen(*d);
|
|
|
|
unsigned char b = ((tqBlue(*s)-tqBlue(*d)) * a) / 256 + tqBlue(*d);
|
|
|
|
a = TQMAX(tqAlpha(*d),a); // alternatives...
|
|
|
|
*d++ = tqRgba(r,g,b,a);
|
|
|
|
++s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx;
|
|
|
|
TQRgb* s = (TQRgb*)src->scanLine(sy) + sx;
|
|
|
|
if ( sw < 64 ) {
|
|
|
|
// Trust ourselves
|
|
|
|
const int dd = dst->width() - sw;
|
|
|
|
const int ds = src->width() - sw;
|
|
|
|
while ( sh-- ) {
|
|
|
|
for ( int t=sw; t--; )
|
|
|
|
*d++ = *s++;
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Trust libc
|
|
|
|
const int dd = dst->width();
|
|
|
|
const int ds = src->width();
|
|
|
|
const int b = sw*sizeof(TQRgb);
|
|
|
|
while ( sh-- ) {
|
|
|
|
memcpy( d, s, b );
|
|
|
|
d += dd;
|
|
|
|
s += ds;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif // QT_NO_IMAGE_TRUECOLOR
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns TRUE if this image and image \a i have the same contents;
|
|
|
|
otherwise returns FALSE. The comparison can be slow, unless there
|
|
|
|
is some obvious difference, such as different widths, in which
|
|
|
|
case the function will return tquickly.
|
|
|
|
|
|
|
|
\sa operator=()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::operator==( const TQImage & i ) const
|
|
|
|
{
|
|
|
|
// same object, or shared?
|
|
|
|
if ( i.data == data )
|
|
|
|
return TRUE;
|
|
|
|
// obviously different stuff?
|
|
|
|
if ( i.data->h != data->h ||
|
|
|
|
i.data->w != data->w )
|
|
|
|
return FALSE;
|
|
|
|
// not equal if one has alphabuffer and the other does not
|
|
|
|
if ( i.hasAlphaBuffer() != hasAlphaBuffer() )
|
|
|
|
return FALSE;
|
|
|
|
// that was the fast bit...
|
|
|
|
TQImage i1 = convertDepth( 32 );
|
|
|
|
TQImage i2 = i.convertDepth( 32 );
|
|
|
|
int l;
|
|
|
|
// if no alpha buffer used, there might still be junk in the
|
|
|
|
// alpha bits; thus, we can't do memcmp-style comparison of scanlines
|
|
|
|
if ( !hasAlphaBuffer() ) {
|
|
|
|
int m;
|
|
|
|
TQRgb *i1line;
|
|
|
|
TQRgb *i2line;
|
|
|
|
for( l=0; l < data->h; l++ ) {
|
|
|
|
i1line = (uint *)i1.scanLine( l );
|
|
|
|
i2line = (uint *)i2.scanLine( l );
|
|
|
|
// compare pixels of scanline individually
|
|
|
|
for ( m=0; m < data->w; m++ )
|
|
|
|
if ( (i1line[m] ^ i2line[m]) & 0x00FFFFFF )
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// yay, we can do fast binary comparison on entire scanlines
|
|
|
|
for( l=0; l < data->h; l++ )
|
|
|
|
if ( memcmp( i1.scanLine( l ), i2.scanLine( l ), 4*data->w ) )
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns TRUE if this image and image \a i have different contents;
|
|
|
|
otherwise returns FALSE. The comparison can be slow, unless there
|
|
|
|
is some obvious difference, such as different widths, in which
|
|
|
|
case the function will return tquickly.
|
|
|
|
|
|
|
|
\sa operator=()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQImage::operator!=( const TQImage & i ) const
|
|
|
|
{
|
|
|
|
return !(*this == i);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::dotsPerMeterX() const
|
|
|
|
|
|
|
|
Returns the number of pixels that fit horizontally in a physical
|
|
|
|
meter. This and dotsPerMeterY() define the intended scale and
|
|
|
|
aspect ratio of the image.
|
|
|
|
|
|
|
|
\sa setDotsPerMeterX()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn int TQImage::dotsPerMeterY() const
|
|
|
|
|
|
|
|
Returns the number of pixels that fit vertically in a physical
|
|
|
|
meter. This and dotsPerMeterX() define the intended scale and
|
|
|
|
aspect ratio of the image.
|
|
|
|
|
|
|
|
\sa setDotsPerMeterY()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the value returned by dotsPerMeterX() to \a x.
|
|
|
|
*/
|
|
|
|
void TQImage::setDotsPerMeterX(int x)
|
|
|
|
{
|
|
|
|
data->dpmx = x;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the value returned by dotsPerMeterY() to \a y.
|
|
|
|
*/
|
|
|
|
void TQImage::setDotsPerMeterY(int y)
|
|
|
|
{
|
|
|
|
data->dpmy = y;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPoint TQImage::offset() const
|
|
|
|
|
|
|
|
Returns the number of pixels by which the image is intended to be
|
|
|
|
offset by when positioning relative to other images.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the value returned by offset() to \a p.
|
|
|
|
*/
|
|
|
|
void TQImage::setOffset(const TQPoint& p)
|
|
|
|
{
|
|
|
|
data->offset = p;
|
|
|
|
}
|
|
|
|
#ifndef QT_NO_IMAGE_TEXT
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
|
|
|
|
Returns the internal TQImageDataMisc object. This object will be
|
|
|
|
created if it doesn't already exist.
|
|
|
|
*/
|
|
|
|
TQImageDataMisc& TQImage::misc() const
|
|
|
|
{
|
|
|
|
if ( !data->misc )
|
|
|
|
data->misc = new TQImageDataMisc;
|
|
|
|
return *data->misc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the string recorded for the keyword \a key in language \a
|
|
|
|
lang, or in a default language if \a lang is 0.
|
|
|
|
*/
|
|
|
|
TQString TQImage::text(const char* key, const char* lang) const
|
|
|
|
{
|
|
|
|
TQImageTextKeyLang x(key,lang);
|
|
|
|
return misc().text_lang[x];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the string recorded for the keyword and language \a kl.
|
|
|
|
*/
|
|
|
|
TQString TQImage::text(const TQImageTextKeyLang& kl) const
|
|
|
|
{
|
|
|
|
return misc().text_lang[kl];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the language identifiers for which some texts are
|
|
|
|
recorded.
|
|
|
|
|
|
|
|
Note that if you want to iterate over the list, you should iterate
|
|
|
|
over a copy, e.g.
|
|
|
|
\code
|
|
|
|
TQStringList list = myImage.textLanguages();
|
|
|
|
TQStringList::Iterator it = list.begin();
|
|
|
|
while( it != list.end() ) {
|
|
|
|
myProcessing( *it );
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa textList() text() setText() textKeys()
|
|
|
|
*/
|
|
|
|
TQStringList TQImage::textLanguages() const
|
|
|
|
{
|
|
|
|
if ( !data->misc )
|
|
|
|
return TQStringList();
|
|
|
|
return misc().languages();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the keywords for which some texts are recorded.
|
|
|
|
|
|
|
|
Note that if you want to iterate over the list, you should iterate
|
|
|
|
over a copy, e.g.
|
|
|
|
\code
|
|
|
|
TQStringList list = myImage.textKeys();
|
|
|
|
TQStringList::Iterator it = list.begin();
|
|
|
|
while( it != list.end() ) {
|
|
|
|
myProcessing( *it );
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa textList() text() setText() textLanguages()
|
|
|
|
*/
|
|
|
|
TQStringList TQImage::textKeys() const
|
|
|
|
{
|
|
|
|
if ( !data->misc )
|
|
|
|
return TQStringList();
|
|
|
|
return misc().keys();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns a list of TQImageTextKeyLang objects that enumerate all the
|
|
|
|
texts key/language pairs set by setText() for this image.
|
|
|
|
|
|
|
|
Note that if you want to iterate over the list, you should iterate
|
|
|
|
over a copy, e.g.
|
|
|
|
\code
|
|
|
|
TQValueList<TQImageTextKeyLang> list = myImage.textList();
|
|
|
|
TQValueList<TQImageTextKeyLang>::Iterator it = list.begin();
|
|
|
|
while( it != list.end() ) {
|
|
|
|
myProcessing( *it );
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
*/
|
|
|
|
TQValueList<TQImageTextKeyLang> TQImage::textList() const
|
|
|
|
{
|
|
|
|
if ( !data->misc )
|
|
|
|
return TQValueList<TQImageTextKeyLang>();
|
|
|
|
return misc().list();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Records string \a s for the keyword \a key. The \a key should be a
|
|
|
|
portable keyword recognizable by other software - some suggested
|
|
|
|
values can be found in \link
|
|
|
|
http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text
|
|
|
|
the PNG specification \endlink. \a s can be any text. \a lang
|
|
|
|
should specify the language code (see
|
|
|
|
\link http://www.rfc-editor.org/rfc/rfc1766.txt RFC 1766 \endlink) or 0.
|
|
|
|
*/
|
|
|
|
void TQImage::setText(const char* key, const char* lang, const TQString& s)
|
|
|
|
{
|
|
|
|
TQImageTextKeyLang x(key,lang);
|
|
|
|
misc().text_lang.replace(x,s);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_IMAGE_TEXT
|
|
|
|
|
|
|
|
#ifdef Q_WS_QWS
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
*/
|
|
|
|
TQGfx * TQImage::graphicsContext()
|
|
|
|
{
|
|
|
|
TQGfx * ret=0;
|
|
|
|
if(depth()) {
|
|
|
|
int w = qt_screen->mapToDevice( TQSize(width(),height()) ).width();
|
|
|
|
int h = qt_screen->mapToDevice( TQSize(width(),height()) ).height();
|
|
|
|
ret=TQGfx::createGfx(depth(),bits(),w,h,bytesPerLine());
|
|
|
|
} else {
|
|
|
|
tqDebug("Trying to create image for null depth");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if(depth()<=8) {
|
|
|
|
TQRgb * tmp=colorTable();
|
|
|
|
int nc=numColors();
|
|
|
|
if(tmp==0) {
|
|
|
|
static TQRgb table[2] = { tqRgb(255,255,255), tqRgb(0,0,0) };
|
|
|
|
tmp=table;
|
|
|
|
nc=2;
|
|
|
|
}
|
|
|
|
ret->setClut(tmp,nc);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|