You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/kernel/qpixmap_x11.cpp

2477 lines
69 KiB

/****************************************************************************
**
** Implementation of TQPixmap class for X11
**
** Created : 940501
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
// NOT REVISED
#include "qplatformdefs.h"
#if defined(Q_OS_WIN32) && defined(QT_MITSHM)
#undef QT_MITSHM
#endif
#ifdef QT_MITSHM
// Use the MIT Shared Memory extension for pixmap<->image conversions
#define QT_MITSHM_CONVERSIONS
// Uncomment the next line to enable the MIT Shared Memory extension
// for TQPixmap::xForm()
//
// WARNING: This has some problems:
//
// 1. Consumes a 800x600 pixmap
// 2. TQt does not handle the ShmCompletion message, so you will
// get strange effects if you xForm() repeatedly.
//
// #define QT_MITSHM_XFORM
#else
#undef QT_MITSHM_CONVERSIONS
#undef QT_MITSHM_XFORM
#endif
#include "ntqbitmap.h"
#include "ntqpaintdevicemetrics.h"
#include "ntqimage.h"
#include "ntqwmatrix.h"
#include "ntqapplication.h"
#include "qt_x11_p.h"
#include <stdlib.h>
#if defined(Q_CC_MIPS)
# define for if(0){}else for
#endif
/*!
\class TQPixmap::TQPixmapData
\brief The TQPixmap::TQPixmapData class is an internal class.
\internal
*/
// For thread-safety:
// image->data does not belong to X11, so we must free it ourselves.
inline static void qSafeXDestroyImage( XImage *x )
{
if ( x->data ) {
free( x->data );
x->data = 0;
}
XDestroyImage( x );
}
/*****************************************************************************
MIT Shared Memory Extension support: makes xForm noticeably (~20%) faster.
*****************************************************************************/
#if defined(QT_MITSHM_XFORM)
static bool xshminit = FALSE;
static XShmSegmentInfo xshminfo;
static XImage *xshmimg = 0;
static Pixmap xshmpm = 0;
static void tqt_cleanup_mitshm()
{
if ( xshmimg == 0 )
return;
Display *dpy = TQPaintDevice::x11AppDisplay();
if ( xshmpm ) {
XFreePixmap( dpy, xshmpm );
xshmpm = 0;
}
XShmDetach( dpy, &xshminfo ); xshmimg->data = 0;
qSafeXDestroyImage( xshmimg ); xshmimg = 0;
shmdt( xshminfo.shmaddr );
shmctl( xshminfo.shmid, IPC_RMID, 0 );
}
static bool qt_create_mitshm_buffer( const TQPaintDevice* dev, int w, int h )
{
static int major, minor;
static Bool pixmaps_ok;
Display *dpy = dev->x11Display();
int dd = dev->x11Depth();
Visual *vis = (Visual*)dev->x11Visual();
if ( xshminit ) {
tqt_cleanup_mitshm();
} else {
if ( !XShmQueryVersion(dpy, &major, &minor, &pixmaps_ok) )
return FALSE; // MIT Shm not supported
tqAddPostRoutine( tqt_cleanup_mitshm );
xshminit = TRUE;
}
xshmimg = XShmCreateImage( dpy, vis, dd, ZPixmap, 0, &xshminfo, w, h );
if ( !xshmimg )
return FALSE;
bool ok;
xshminfo.shmid = shmget( IPC_PRIVATE,
xshmimg->bytes_per_line * xshmimg->height,
IPC_CREAT | 0777 );
ok = xshminfo.shmid != -1;
if ( ok ) {
xshmimg->data = (char*)shmat( xshminfo.shmid, 0, 0 );
xshminfo.shmaddr = xshmimg->data;
ok = ( xshminfo.shmaddr != (char*)-1 );
}
xshminfo.readOnly = FALSE;
if ( ok )
ok = XShmAttach( dpy, &xshminfo );
if ( !ok ) {
qSafeXDestroyImage( xshmimg );
xshmimg = 0;
if ( xshminfo.shmaddr )
shmdt( xshminfo.shmaddr );
if ( xshminfo.shmid != -1 )
shmctl( xshminfo.shmid, IPC_RMID, 0 );
return FALSE;
}
if ( pixmaps_ok )
xshmpm = XShmCreatePixmap( dpy, DefaultRootWindow(dpy), xshmimg->data,
&xshminfo, w, h, dd );
return TRUE;
}
#else
// If extern, need a dummy.
//
// static bool qt_create_mitshm_buffer( TQPaintDevice*, int, int )
// {
// return FALSE;
// }
#endif // QT_MITSHM_XFORM
#ifdef QT_MITSHM_CONVERSIONS
static bool qt_mitshm_error = false;
static int qt_mitshm_errorhandler( Display*, XErrorEvent* )
{
qt_mitshm_error = true;
return 0;
}
static XImage* qt_XShmCreateImage( Display* dpy, Visual* visual, unsigned int depth,
int format, int /*offset*/, char* /*data*/, unsigned int width, unsigned int height,
int /*bitmap_pad*/, int /*bytes_per_line*/, XShmSegmentInfo* shminfo )
{
if( width * height * depth < 100*100*32 )
return NULL;
static int shm_inited = -1;
if( shm_inited == -1 ) {
if( XShmQueryExtension( dpy ))
shm_inited = 1;
else
shm_inited = 0;
}
if( shm_inited == 0 )
return NULL;
XImage* xi = XShmCreateImage( dpy, visual, depth, format, NULL, shminfo, width,
height );
if( xi == NULL )
return NULL;
shminfo->shmid = shmget( IPC_PRIVATE, xi->bytes_per_line * xi->height,
IPC_CREAT|0600);
if( shminfo->shmid < 0 ) {
XDestroyImage( xi );
return NULL;
}
shminfo->readOnly = False;
shminfo->shmaddr = (char*)shmat( shminfo->shmid, 0, 0 );
if( shminfo->shmaddr == (char*)-1 ) {
XDestroyImage( xi );
shmctl( shminfo->shmid, IPC_RMID, 0 );
return NULL;
}
xi->data = shminfo->shmaddr;
#ifndef QT_MITSHM_RMID_IGNORES_REFCOUNT
// mark as deleted to automatically free the memory in case
// of a crash (but this doesn't work e.g. on Solaris)
shmctl( shminfo->shmid, IPC_RMID, 0 );
#endif
if( shm_inited == 1 ) { // first time
XErrorHandler old_h = XSetErrorHandler( qt_mitshm_errorhandler );
XShmAttach( dpy, shminfo );
shm_inited = 2;
XSync( dpy, False );
XSetErrorHandler( old_h );
if( qt_mitshm_error ) { // oops ... perhaps we are remote?
shm_inited = 0;
XDestroyImage( xi );
shmdt( shminfo->shmaddr );
#ifdef QT_MITSHM_RMID_IGNORES_REFCOUNT
shmctl( shminfo->shmid, IPC_RMID, 0 );
#endif
return NULL;
}
} else
XShmAttach( dpy, shminfo );
return xi;
}
static void qt_XShmDestroyImage( XImage* xi, XShmSegmentInfo* shminfo )
{
XShmDetach( TQPaintDevice::x11AppDisplay(), shminfo );
XDestroyImage( xi );
shmdt( shminfo->shmaddr );
#ifdef QT_MITSHM_RMID_IGNORES_REFCOUNT
shmctl( shminfo->shmid, IPC_RMID, 0 );
#endif
}
static XImage* qt_XShmGetImage( const TQPixmap* pix, int format,
XShmSegmentInfo* shminfo )
{
XImage* xi = qt_XShmCreateImage( pix->x11Display(), (Visual*)pix->x11Visual(),
pix->depth(), format, 0, 0, pix->width(), pix->height(), 32, 0, shminfo );
if( xi == NULL )
return NULL;
if( XShmGetImage( pix->x11Display(), pix->handle(), xi, 0, 0, AllPlanes ) == False ) {
qt_XShmDestroyImage( xi, shminfo );
return NULL;
}
return xi;
}
#endif // QT_MITSHM_CONVERSIONS
/*****************************************************************************
Internal functions
*****************************************************************************/
extern const uchar *qt_get_bitflip_array(); // defined in qimage.cpp
static uchar *flip_bits( const uchar *bits, int len )
{
register const uchar *p = bits;
const uchar *end = p + len;
uchar *newdata = new uchar[len];
uchar *b = newdata;
const uchar *f = qt_get_bitflip_array();
while ( p < end )
*b++ = f[*p++];
return newdata;
}
// Returns position of highest bit set or -1 if none
static int highest_bit( uint v )
{
int i;
uint b = (uint)1 << 31;
for ( i=31; ((b & v) == 0) && i>=0; i-- )
b >>= 1;
return i;
}
// Returns position of lowest set bit in 'v' as an integer (0-31), or -1
static int lowest_bit( uint v )
{
int i;
ulong lb;
lb = 1;
for (i=0; ((v & lb) == 0) && i<32; i++, lb<<=1);
return i==32 ? -1 : i;
}
// Counts the number of bits set in 'v'
static uint n_bits( uint v )
{
int i = 0;
while ( v ) {
v = v & (v - 1);
i++;
}
return i;
}
static uint *red_scale_table = 0;
static uint *green_scale_table = 0;
static uint *blue_scale_table = 0;
static void cleanup_scale_tables()
{
delete[] red_scale_table;
delete[] green_scale_table;
delete[] blue_scale_table;
}
/*
Could do smart bitshifting, but the "obvious" algorithm only works for
nBits >= 4. This is more robust.
*/
static void build_scale_table( uint **table, uint nBits )
{
if ( nBits > 7 ) {
#if defined(QT_CHECK_RANGE)
tqWarning( "build_scale_table: internal error, nBits = %i", nBits );
#endif
return;
}
if (!*table) {
static bool firstTable = TRUE;
if ( firstTable ) {
tqAddPostRoutine( cleanup_scale_tables );
firstTable = FALSE;
}
*table = new uint[256];
}
int maxVal = (1 << nBits) - 1;
int valShift = 8 - nBits;
int i;
for( i = 0 ; i < maxVal + 1 ; i++ )
(*table)[i << valShift] = i*255/maxVal;
}
static int defaultScreen = -1;
extern bool tqt_use_xrender; // defined in qapplication_x11.cpp
extern bool tqt_has_xft; // defined in qfont_x11.cpp
#ifndef QT_NO_XFTFREETYPE
#ifndef QT_XFT2
// Xft1 doesn't have XftDrawCreateAlpha, so we fake it in qtaddons_x11.cpp
extern "C" XftDraw *XftDrawCreateAlpha( Display *, TQt::HANDLE, int );
#endif // QT_XFT2
#endif // QT_NO_XFTFREETYPE
/*****************************************************************************
TQPixmap member functions
*****************************************************************************/
/*!
\internal
Initializes the pixmap data.
*/
void TQPixmap::init( int w, int h, int d, bool bitmap, Optimization optim )
{
#if defined(QT_CHECK_STATE)
if ( tqApp->type() == TQApplication::Tty ) {
tqWarning( "TQPixmap: Cannot create a TQPixmap when no GUI "
"is being used" );
}
#endif
static int serial = 0;
if ( defaultScreen >= 0 && defaultScreen != x11Screen() ) {
TQPaintDeviceX11Data* xd = getX11Data( TRUE );
xd->x_screen = defaultScreen;
xd->x_depth = TQPaintDevice::x11AppDepth( xd->x_screen );
xd->x_cells = TQPaintDevice::x11AppCells( xd->x_screen );
xd->x_colormap = TQPaintDevice::x11AppColormap( xd->x_screen );
xd->x_defcolormap = TQPaintDevice::x11AppDefaultColormap( xd->x_screen );
xd->x_visual = TQPaintDevice::x11AppVisual( xd->x_screen );
xd->x_defvisual = TQPaintDevice::x11AppDefaultVisual( xd->x_screen );
setX11Data( xd );
}
int dd = x11Depth();
if ( d != -1 )
dd = d;
if ( optim == DefaultOptim ) // use default optimization
optim = defOptim;
data = new TQPixmapData;
TQ_CHECK_PTR( data );
memset( data, 0, sizeof(TQPixmapData) );
data->count = 1;
data->uninit = TRUE;
data->bitmap = bitmap;
data->ser_no = ++serial;
data->optim = optim;
bool make_null = w == 0 || h == 0; // create null pixmap
if ( d == 1 ) // monocrome pixmap
data->d = 1;
else if ( d < 0 || d == dd ) // def depth pixmap
data->d = dd;
if ( make_null || w < 0 || h < 0 || data->d == 0 ) {
hd = 0;
rendhd = 0;
#if defined(QT_CHECK_RANGE)
if ( !make_null )
tqWarning( "TQPixmap: Invalid pixmap parameters" );
#endif
return;
}
data->w = w;
data->h = h;
hd = (HANDLE)XCreatePixmap( x11Display(), RootWindow(x11Display(), x11Screen() ),
w, h, data->d );
#ifndef QT_NO_XFTFREETYPE
if ( tqt_has_xft ) {
if ( data->d == 1 ) {
rendhd = (HANDLE) XftDrawCreateBitmap( x11Display(), hd );
} else {
rendhd = (HANDLE) XftDrawCreate( x11Display(), hd,
(Visual *) x11Visual(),
x11Colormap() );
}
}
#endif // QT_NO_XFTFREETYPE
}
void TQPixmap::deref()
{
if ( data && data->deref() ) { // last reference lost
delete data->mask;
delete data->alphapm;
if ( data->ximage )
qSafeXDestroyImage( (XImage*)data->ximage );
if ( data->maskgc )
XFreeGC( x11Display(), (GC)data->maskgc );
if ( tqApp && hd) {
#ifndef QT_NO_XFTFREETYPE
if (rendhd) {
XftDrawDestroy( (XftDraw *) rendhd );
rendhd = 0;
}
#endif // QT_NO_XFTFREETYPE
XFreePixmap( x11Display(), hd );
hd = 0;
}
delete data;
}
}
/*!
Constructs a monochrome pixmap, with width \a w and height \a h,
that is initialized with the data in \a bits. The \a isXbitmap
indicates whether the data is an X bitmap and defaults to FALSE.
This constructor is protected and used by the TQBitmap class.
*/
TQPixmap::TQPixmap( int w, int h, const uchar *bits, bool isXbitmap)
: TQPaintDevice( TQInternal::Pixmap )
{ // for bitmaps only
init( 0, 0, 0, FALSE, defOptim );
if ( w <= 0 || h <= 0 ) // create null pixmap
return;
data->uninit = FALSE;
data->w = w;
data->h = h;
data->d = 1;
uchar *flipped_bits;
if ( isXbitmap ) {
flipped_bits = 0;
} else { // not X bitmap -> flip bits
flipped_bits = flip_bits( bits, ((w+7)/8)*h );
bits = flipped_bits;
}
hd = (HANDLE)XCreateBitmapFromData( x11Display(),
RootWindow(x11Display(), x11Screen() ),
(char *)bits, w, h );
#ifndef QT_NO_XFTFREETYPE
if ( tqt_has_xft )
rendhd = (HANDLE) XftDrawCreateBitmap (x11Display (), hd);
#endif // QT_NO_XFTFREETYPE
if ( flipped_bits ) // Avoid purify complaint
delete [] flipped_bits;
}
/*!
This is a special-purpose function that detaches the pixmap from
shared pixmap data.
A pixmap is automatically detached by TQt whenever its contents is
about to change. This is done in all TQPixmap member functions
that modify the pixmap (fill(), resize(), convertFromImage(),
load(), etc.), in bitBlt() for the destination pixmap and in
TQPainter::begin() on a pixmap.
It is possible to modify a pixmap without letting TQt know. You can
first obtain the system-dependent handle() and then call
system-specific functions (for instance, BitBlt under Windows)
that modify the pixmap contents. In such cases, you can call
detach() to cut the pixmap loose from other pixmaps that share
data with this one.
detach() returns immediately if there is just a single reference
or if the pixmap has not been initialized yet.
*/
void TQPixmap::detach()
{
if ( data->count != 1 )
*this = copy();
data->uninit = FALSE;
// reset cached data
if ( data->ximage ) {
qSafeXDestroyImage( (XImage*)data->ximage );
data->ximage = 0;
}
if ( data->maskgc ) {
XFreeGC( x11Display(), (GC)data->maskgc );
data->maskgc = 0;
}
}
/*!
Returns the default pixmap depth, i.e. the depth a pixmap gets if
-1 is specified.
\sa depth()
*/
int TQPixmap::defaultDepth()
{
return x11AppDepth();
}
/*!
\fn TQPixmap::Optimization TQPixmap::optimization() const
Returns the optimization setting for this pixmap.
The default optimization setting is \c TQPixmap::NormalOptim. You
can change this setting in two ways:
\list
\i Call setDefaultOptimization() to set the default optimization
for all new pixmaps.
\i Call setOptimization() to set the optimization for individual
pixmaps.
\endlist
\sa setOptimization(), setDefaultOptimization(), defaultOptimization()
*/
/*!
Sets pixmap drawing optimization for this pixmap.
The \a optimization setting affects pixmap operations, in
particular drawing of transparent pixmaps (bitBlt() a pixmap with
a mask set) and pixmap transformations (the xForm() function).
Pixmap optimization involves keeping intermediate results in a
cache buffer and using the cache to speed up bitBlt() and xForm().
The cost is more memory consumption, up to twice as much as an
unoptimized pixmap.
Use the setDefaultOptimization() to change the default
optimization for all new pixmaps.
\sa optimization(), setDefaultOptimization(), defaultOptimization()
*/
void TQPixmap::setOptimization( Optimization optimization )
{
if ( optimization == data->optim )
return;
detach();
data->optim = optimization == DefaultOptim ?
defOptim : optimization;
if ( data->optim == MemoryOptim && data->ximage ) {
qSafeXDestroyImage( (XImage*)data->ximage );
data->ximage = 0;
}
}
/*!
Fills the pixmap with the color \a fillColor.
*/
void TQPixmap::fill( const TQColor &fillColor )
{
if ( isNull() )
return;
detach(); // detach other references
GC gc = tqt_xget_temp_gc( x11Screen(), depth()==1 );
XSetForeground( x11Display(), gc, fillColor.pixel(x11Screen()) );
XFillRectangle( x11Display(), hd, gc, 0, 0, width(), height() );
}
/*!
Internal implementation of the virtual TQPaintDevice::metric() function.
Use the TQPaintDeviceMetrics class instead.
\a m is the metric to get.
*/
int TQPixmap::metric( int m ) const
{
int val;
if ( m == TQPaintDeviceMetrics::PdmWidth )
val = width();
else if ( m == TQPaintDeviceMetrics::PdmHeight ) {
val = height();
} else {
Display *dpy = x11Display();
int scr = x11Screen();
switch ( m ) {
case TQPaintDeviceMetrics::PdmDpiX:
case TQPaintDeviceMetrics::PdmPhysicalDpiX:
val = TQPaintDevice::x11AppDpiX( scr );
break;
case TQPaintDeviceMetrics::PdmDpiY:
case TQPaintDeviceMetrics::PdmPhysicalDpiY:
val = TQPaintDevice::x11AppDpiY( scr );
break;
case TQPaintDeviceMetrics::PdmWidthMM:
val = (DisplayWidthMM(dpy,scr)*width())/
DisplayWidth(dpy,scr);
break;
case TQPaintDeviceMetrics::PdmHeightMM:
val = (DisplayHeightMM(dpy,scr)*height())/
DisplayHeight(dpy,scr);
break;
case TQPaintDeviceMetrics::PdmNumColors:
val = 1 << depth();
break;
case TQPaintDeviceMetrics::PdmDepth:
val = depth();
break;
default:
val = 0;
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPixmap::metric: Invalid metric command" );
#endif
}
}
return val;
}
/*!
Converts the pixmap to a TQImage. Returns a null image if it fails.
If the pixmap has 1-bit depth, the returned image will also be 1
bit deep. If the pixmap has 2- to 8-bit depth, the returned image
has 8-bit depth. If the pixmap has greater than 8-bit depth, the
returned image has 32-bit depth.
Note that for the moment, alpha masks on monochrome images are
ignored.
\sa convertFromImage()
*/
TQImage TQPixmap::convertToImage() const
{
TQImage image;
if ( isNull() )
return image; // null image
int w = width();
int h = height();
int d = depth();
bool mono = d == 1;
Visual *visual = (Visual *)x11Visual();
bool trucol = (visual->c_class == TrueColor || visual->c_class == DirectColor) && !mono && d > 8;
if ( d > 1 && d <= 8 ) // set to nearest valid depth
d = 8; // 2..8 ==> 8
// we could run into the situation where d == 8 AND trucol is true, which can
// cause problems when converting to and from images. in this case, always treat
// the depth as 32... from Klaus Schmidinger and qt-bugs/arc-15/31333.
if ( d > 8 || trucol )
d = 32; // > 8 ==> 32
XImage *xi = (XImage *)data->ximage; // any cached ximage?
#ifdef QT_MITSHM_CONVERSIONS
bool mitshm_ximage = false;
XShmSegmentInfo shminfo;
#endif
if ( !xi ) { // fetch data from X server
#ifdef QT_MITSHM_CONVERSIONS
xi = qt_XShmGetImage( this, mono ? XYPixmap : ZPixmap, &shminfo );
if( xi ) {
mitshm_ximage = true;
} else
#endif
xi = XGetImage( x11Display(), hd, 0, 0, w, h, AllPlanes,
mono ? XYPixmap : ZPixmap );
}
TQ_CHECK_PTR( xi );
if (!xi)
return image; // null image
TQImage::Endian bitOrder = TQImage::IgnoreEndian;
if ( mono ) {
bitOrder = xi->bitmap_bit_order == LSBFirst ?
TQImage::LittleEndian : TQImage::BigEndian;
}
image.create( w, h, d, 0, bitOrder );
if ( image.isNull() ) { // could not create image
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage )
qt_XShmDestroyImage( xi, &shminfo );
else
#endif
qSafeXDestroyImage( xi );
return image;
}
const TQPixmap* msk = mask();
const TQPixmap *alf = data->alphapm;
TQImage alpha;
if (alf) {
XImage* axi;
#ifdef QT_MITSHM_CONVERSIONS
bool mitshm_aximage = false;
XShmSegmentInfo ashminfo;
axi = qt_XShmGetImage( alf, ZPixmap, &ashminfo );
if( axi ) {
mitshm_aximage = true;
} else
#endif
axi = XGetImage(x11Display(), alf->hd, 0, 0, w, h, AllPlanes, ZPixmap);
if (axi) {
image.setAlphaBuffer( TRUE );
alpha.create(w, h, 8);
// copy each scanline
char *src = axi->data;
int bpl = TQMIN(alpha.bytesPerLine(), axi->bytes_per_line);
for (int y = 0; y < h; y++ ) {
memcpy( alpha.scanLine(y), src, bpl );
src += axi->bytes_per_line;
}
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_aximage )
qt_XShmDestroyImage( axi, &ashminfo );
else
#endif
qSafeXDestroyImage( axi );
}
} else if (msk) {
image.setAlphaBuffer( TRUE );
alpha = msk->convertToImage();
}
bool ale = alpha.bitOrder() == TQImage::LittleEndian;
if ( trucol ) { // truecolor
const uint red_mask = (uint)visual->red_mask;
const uint green_mask = (uint)visual->green_mask;
const uint blue_mask = (uint)visual->blue_mask;
const int red_shift = highest_bit( red_mask ) - 7;
const int green_shift = highest_bit( green_mask ) - 7;
const int blue_shift = highest_bit( blue_mask ) - 7;
const uint red_bits = n_bits( red_mask );
const uint green_bits = n_bits( green_mask );
const uint blue_bits = n_bits( blue_mask );
static uint red_table_bits = 0;
static uint green_table_bits = 0;
static uint blue_table_bits = 0;
if ( red_bits < 8 && red_table_bits != red_bits) {
build_scale_table( &red_scale_table, red_bits );
red_table_bits = red_bits;
}
if ( blue_bits < 8 && blue_table_bits != blue_bits) {
build_scale_table( &blue_scale_table, blue_bits );
blue_table_bits = blue_bits;
}
if ( green_bits < 8 && green_table_bits != green_bits) {
build_scale_table( &green_scale_table, green_bits );
green_table_bits = green_bits;
}
int r, g, b;
TQRgb *dst;
uchar *src;
uint pixel;
int bppc = xi->bits_per_pixel;
if ( bppc > 8 && xi->byte_order == LSBFirst )
bppc++;
for ( int y=0; y<h; y++ ) {
uchar* asrc = alf || msk ? alpha.scanLine( y ) : 0;
dst = (TQRgb *)image.scanLine( y );
src = (uchar *)xi->data + xi->bytes_per_line*y;
for ( int x=0; x<w; x++ ) {
switch ( bppc ) {
case 8:
pixel = *src++;
break;
case 16: // 16 bit MSB
pixel = src[1] | (ushort)src[0] << 8;
src += 2;
break;
case 17: // 16 bit LSB
pixel = src[0] | (ushort)src[1] << 8;
src += 2;
break;
case 24: // 24 bit MSB
pixel = src[2] | (ushort)src[1] << 8 |
(uint)src[0] << 16;
src += 3;
break;
case 25: // 24 bit LSB
pixel = src[0] | (ushort)src[1] << 8 |
(uint)src[2] << 16;
src += 3;
break;
case 32: // 32 bit MSB
pixel = src[3] | (ushort)src[2] << 8 |
(uint)src[1] << 16 | (uint)src[0] << 24;
src += 4;
break;
case 33: // 32 bit LSB
pixel = src[0] | (ushort)src[1] << 8 |
(uint)src[2] << 16 | (uint)src[3] << 24;
src += 4;
break;
default: // should not really happen
x = w; // leave loop
y = h;
pixel = 0; // eliminate compiler warning
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPixmap::convertToImage: Invalid depth %d",
bppc );
#endif
}
if ( red_shift > 0 )
r = (pixel & red_mask) >> red_shift;
else
r = (pixel & red_mask) << -red_shift;
if ( green_shift > 0 )
g = (pixel & green_mask) >> green_shift;
else
g = (pixel & green_mask) << -green_shift;
if ( blue_shift > 0 )
b = (pixel & blue_mask) >> blue_shift;
else
b = (pixel & blue_mask) << -blue_shift;
if ( red_bits < 8 )
r = red_scale_table[r];
if ( green_bits < 8 )
g = green_scale_table[g];
if ( blue_bits < 8 )
b = blue_scale_table[b];
if (alf) {
*dst++ = tqRgba(r, g, b, asrc[x]);
} else if (msk) {
if ( ale ) {
*dst++ = (asrc[x >> 3] & (1 << (x & 7)))
? tqRgba(r, g, b, 0xff) : tqRgba(r, g, b, 0x00);
} else {
*dst++ = (asrc[x >> 3] & (1 << (7 -(x & 7))))
? tqRgba(r, g, b, 0xff) : tqRgba(r, g, b, 0x00);
}
} else {
*dst++ = tqRgb(r, g, b);
}
}
}
} else if ( xi->bits_per_pixel == d ) { // compatible depth
char *xidata = xi->data; // copy each scanline
int bpl = TQMIN(image.bytesPerLine(),xi->bytes_per_line);
for ( int y=0; y<h; y++ ) {
memcpy( image.scanLine(y), xidata, bpl );
xidata += xi->bytes_per_line;
}
} else {
/* Typically 2 or 4 bits display depth */
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPixmap::convertToImage: Display not supported (bpp=%d)",
xi->bits_per_pixel );
#endif
image.reset();
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage )
qt_XShmDestroyImage( xi, &shminfo );
else
#endif
qSafeXDestroyImage( xi );
return image;
}
if ( mono ) { // bitmap
image.setNumColors( 2 );
image.setColor( 0, tqRgb(255,255,255) );
image.setColor( 1, tqRgb(0,0,0) );
} else if ( !trucol ) { // pixmap with colormap
register uchar *p;
uchar *end;
uchar use[256]; // pixel-in-use table
uchar pix[256]; // pixel translation table
int ncols, i, bpl;
memset( use, 0, 256 );
memset( pix, 0, 256 );
bpl = image.bytesPerLine();
if (msk) { // which pixels are used?
for ( i=0; i<h; i++ ) {
uchar* asrc = alpha.scanLine( i );
p = image.scanLine( i );
for ( int x = 0; x < w; x++ ) {
if ( ale ) {
if (asrc[x >> 3] & (1 << (x & 7)))
use[*p] = 1;
} else {
if (asrc[x >> 3] & (1 << (7 -(x & 7))))
use[*p] = 1;
}
++p;
}
}
} else {
for ( i=0; i<h; i++ ) {
p = image.scanLine( i );
end = p + bpl;
while ( p < end )
use[*p++] = 1;
}
}
ncols = 0;
for ( i=0; i<256; i++ ) { // build translation table
if ( use[i] )
pix[i] = ncols++;
}
for ( i=0; i<h; i++ ) { // translate pixels
p = image.scanLine( i );
end = p + bpl;
while ( p < end ) {
*p = pix[*p];
p++;
}
}
Colormap cmap = x11Colormap();
int ncells = x11Cells();
XColor *carr = new XColor[ncells];
for ( i=0; i<ncells; i++ )
carr[i].pixel = i;
// Get default colormap
XQueryColors( x11Display(), cmap, carr, ncells );
if (msk) {
int trans;
if (ncols < 256) {
trans = ncols++;
image.setNumColors( ncols ); // create color table
image.setColor( trans, 0x00000000 );
} else {
image.setNumColors( ncols ); // create color table
// oh dear... no spare "transparent" pixel.
// use first pixel in image (as good as any).
trans = image.scanLine( i )[0];
}
for ( i=0; i<h; i++ ) {
uchar* asrc = alpha.scanLine( i );
p = image.scanLine( i );
for ( int x = 0; x < w; x++ ) {
if ( ale ) {
if (!(asrc[x >> 3] & (1 << (x & 7))))
*p = trans;
} else {
if (!(asrc[x >> 3] & (1 << (7 -(x & 7)))))
*p = trans;
}
++p;
}
}
} else {
image.setNumColors( ncols ); // create color table
}
int j = 0;
for ( i=0; i<256; i++ ) { // translate pixels
if ( use[i] ) {
image.setColor( j++,
( msk ? 0xff000000 : 0 )
| tqRgb( (carr[i].red >> 8) & 255,
(carr[i].green >> 8) & 255,
(carr[i].blue >> 8) & 255 ) );
}
}
delete [] carr;
}
if ( data->optim != BestOptim ) { // throw away image data
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage )
qt_XShmDestroyImage( xi, &shminfo );
else
#endif
qSafeXDestroyImage( xi );
((TQPixmap*)this)->data->ximage = 0;
} else { // keep ximage data
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage ) { // copy the XImage?
qt_XShmDestroyImage( xi, &shminfo );
xi = 0;
}
#endif
((TQPixmap*)this)->data->ximage = xi;
}
return image;
}
/*!
Converts image \a img and sets this pixmap. Returns TRUE if
successful; otherwise returns FALSE.
The \a conversion_flags argument is a bitwise-OR of the
\l{TQt::ImageConversionFlags}. Passing 0 for \a conversion_flags
sets all the default options.
Note that even though a TQPixmap with depth 1 behaves much like a
TQBitmap, isTQBitmap() returns FALSE.
If a pixmap with depth 1 is painted with color0 and color1 and
converted to an image, the pixels painted with color0 will produce
pixel index 0 in the image and those painted with color1 will
produce pixel index 1.
\sa convertToImage(), isTQBitmap(), TQImage::convertDepth(),
defaultDepth(), TQImage::hasAlphaBuffer()
*/
bool TQPixmap::convertFromImage( const TQImage &img, int conversion_flags )
{
if ( img.isNull() ) {
#if defined(QT_CHECK_NULL)
tqWarning( "TQPixmap::convertFromImage: Cannot convert a null image" );
#endif
return FALSE;
}
detach(); // detach other references
TQImage image = img;
const uint w = image.width();
const uint h = image.height();
int d = image.depth();
const int dd = x11Depth();
bool force_mono = (dd == 1 || isTQBitmap() ||
(conversion_flags & ColorMode_Mask)==MonoOnly );
if ( w >= 32768 || h >= 32768 )
return FALSE;
// get rid of the mask
delete data->mask;
data->mask = 0;
// get rid of alpha pixmap
delete data->alphapm;
data->alphapm = 0;
// must be monochrome
if ( force_mono ) {
if ( d != 1 ) {
// dither
image = image.convertDepth( 1, conversion_flags );
d = 1;
}
} else { // can be both
bool conv8 = FALSE;
if ( d > 8 && dd <= 8 ) { // convert to 8 bit
if ( (conversion_flags & DitherMode_Mask) == AutoDither )
conversion_flags = (conversion_flags & ~DitherMode_Mask)
| PreferDither;
conv8 = TRUE;
} else if ( (conversion_flags & ColorMode_Mask) == ColorOnly ) {
conv8 = d == 1; // native depth wanted
} else if ( d == 1 ) {
if ( image.numColors() == 2 ) {
TQRgb c0 = image.color(0); // Auto: convert to best
TQRgb c1 = image.color(1);
conv8 = TQMIN(c0,c1) != tqRgb(0,0,0) || TQMAX(c0,c1) != tqRgb(255,255,255);
} else {
// eg. 1-color monochrome images (they do exist).
conv8 = TRUE;
}
}
if ( conv8 ) {
image = image.convertDepth( 8, conversion_flags );
d = 8;
}
}
if ( d == 1 ) { // 1 bit pixmap (bitmap)
if ( hd ) { // delete old X pixmap
#ifndef QT_NO_XFTFREETYPE
if (rendhd) {
XftDrawDestroy( (XftDraw *) rendhd );
rendhd = 0;
}
#endif // QT_NO_XFTFREETYPE
XFreePixmap( x11Display(), hd );
}
// make sure image.color(0) == color0 (white) and image.color(1) == color1 (black)
if (image.color(0) == TQt::black.rgb() && image.color(1) == TQt::white.rgb()) {
image.invertPixels();
image.setColor(0, TQt::white.rgb());
image.setColor(1, TQt::black.rgb());
}
char *bits;
uchar *tmp_bits;
int bpl = (w+7)/8;
int ibpl = image.bytesPerLine();
if ( image.bitOrder() == TQImage::BigEndian || bpl != ibpl ) {
tmp_bits = new uchar[bpl*h];
TQ_CHECK_PTR( tmp_bits );
bits = (char *)tmp_bits;
uchar *p, *b, *end;
uint y, count;
if ( image.bitOrder() == TQImage::BigEndian ) {
const uchar *f = qt_get_bitflip_array();
b = tmp_bits;
for ( y=0; y<h; y++ ) {
p = image.scanLine( y );
end = p + bpl;
count = bpl;
while ( count > 4 ) {
*b++ = f[*p++];
*b++ = f[*p++];
*b++ = f[*p++];
*b++ = f[*p++];
count -= 4;
}
while ( p < end )
*b++ = f[*p++];
}
} else { // just copy
b = tmp_bits;
p = image.scanLine( 0 );
for ( y=0; y<h; y++ ) {
memcpy( b, p, bpl );
b += bpl;
p += ibpl;
}
}
} else {
bits = (char *)image.bits();
tmp_bits = 0;
}
hd = (HANDLE)XCreateBitmapFromData( x11Display(),
RootWindow(x11Display(), x11Screen() ),
bits, w, h );
#ifndef QT_NO_XFTFREETYPE
if ( tqt_has_xft )
rendhd = (HANDLE) XftDrawCreateBitmap( x11Display(), hd );
#endif // QT_NO_XFTFREETYPE
if ( tmp_bits ) // Avoid purify complaint
delete [] tmp_bits;
data->w = w; data->h = h; data->d = 1;
if ( image.hasAlphaBuffer() ) {
TQBitmap m;
m = image.createAlphaMask( conversion_flags );
setMask( m );
}
return TRUE;
}
Display *dpy = x11Display();
Visual *visual = (Visual *)x11Visual();
XImage *xi = 0;
bool trucol = (visual->c_class == TrueColor || visual->c_class == DirectColor);
int nbytes = image.numBytes();
uchar *newbits= 0;
int newbits_size = 0;
#ifdef QT_MITSHM_CONVERSIONS
bool mitshm_ximage = false;
XShmSegmentInfo shminfo;
#endif
if ( trucol ) { // truecolor display
TQRgb pix[256]; // pixel translation table
const bool d8 = d == 8;
const uint red_mask = (uint)visual->red_mask;
const uint green_mask = (uint)visual->green_mask;
const uint blue_mask = (uint)visual->blue_mask;
const int red_shift = highest_bit( red_mask ) - 7;
const int green_shift = highest_bit( green_mask ) - 7;
const int blue_shift = highest_bit( blue_mask ) - 7;
const uint rbits = highest_bit(red_mask) - lowest_bit(red_mask) + 1;
const uint gbits = highest_bit(green_mask) - lowest_bit(green_mask) + 1;
const uint bbits = highest_bit(blue_mask) - lowest_bit(blue_mask) + 1;
if ( d8 ) { // setup pixel translation
TQRgb *ctable = image.colorTable();
for ( int i=0; i<image.numColors(); i++ ) {
int r = tqRed (ctable[i]);
int g = tqGreen(ctable[i]);
int b = tqBlue (ctable[i]);
r = red_shift > 0 ? r << red_shift : r >> -red_shift;
g = green_shift > 0 ? g << green_shift : g >> -green_shift;
b = blue_shift > 0 ? b << blue_shift : b >> -blue_shift;
pix[i] = (b & blue_mask) | (g & green_mask) | (r & red_mask)
| ~(blue_mask | green_mask | red_mask);
}
}
#ifdef QT_MITSHM_CONVERSIONS
xi = qt_XShmCreateImage( dpy, visual, dd, ZPixmap, 0, 0, w, h, 32, 0, &shminfo );
if( xi != NULL ) {
mitshm_ximage = true;
newbits = (uchar*)xi->data;
}
else
#endif
xi = XCreateImage( dpy, visual, dd, ZPixmap, 0, 0, w, h, 32, 0 );
if (!xi)
return false;
if( newbits == NULL )
newbits = (uchar *)malloc( xi->bytes_per_line*h );
TQ_CHECK_PTR( newbits );
if ( !newbits ) // no memory
return FALSE;
int bppc = xi->bits_per_pixel;
bool contig_bits = n_bits(red_mask) == rbits &&
n_bits(green_mask) == gbits &&
n_bits(blue_mask) == bbits;
bool dither_tc =
// Want it?
(conversion_flags & Dither_Mask) != ThresholdDither &&
(conversion_flags & DitherMode_Mask) != AvoidDither &&
// Need it?
bppc < 24 && !d8 &&
// Can do it? (Contiguous bits?)
contig_bits;
static bool init=FALSE;
static int D[16][16];
if ( dither_tc && !init ) {
// I also contributed this code to XV - WWA.
/*
The dither matrix, D, is obtained with this formula:
D2 = [ 0 2 ]
[ 3 1 ]
D2*n = [ 4*Dn 4*Dn+2*Un ]
[ 4*Dn+3*Un 4*Dn+1*Un ]
*/
int n,i,j;
init=1;
/* Set D2 */
D[0][0]=0;
D[1][0]=2;
D[0][1]=3;
D[1][1]=1;
/* Expand using recursive definition given above */
for (n=2; n<16; n*=2) {
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
D[i][j]*=4;
D[i+n][j]=D[i][j]+2;
D[i][j+n]=D[i][j]+3;
D[i+n][j+n]=D[i][j]+1;
}
}
}
init=TRUE;
}
enum { BPP8,
BPP16_8_3_M3, BPP16_7_2_M3, BPP16_MSB, BPP16_LSB,
BPP24_MSB, BPP24_LSB,
BPP32_16_8_0, BPP32_MSB, BPP32_LSB
} mode = BPP8;
if ( bppc > 8 && xi->byte_order == LSBFirst )
bppc++;
int wordsize;
bool bigendian;
tqSysInfo( &wordsize, &bigendian );
bool same_msb_lsb = ( xi->byte_order == MSBFirst ) == ( bigendian );
if( bppc == 8 ) // 8 bit
mode = BPP8;
else if( bppc == 16 || bppc == 17 ) { // 16 bit MSB/LSB
if( red_shift == 8 && green_shift == 3 && blue_shift == -3
&& !d8 && same_msb_lsb )
mode = BPP16_8_3_M3;
else if( red_shift == 7 && green_shift == 2 && blue_shift == -3
&& !d8 && same_msb_lsb )
mode = BPP16_7_2_M3;
else
mode = bppc == 17 ? BPP16_LSB : BPP16_MSB;
} else if( bppc == 24 || bppc == 25 ) { // 24 bit MSB/LSB
mode = bppc == 25 ? BPP24_LSB : BPP24_MSB;
} else if( bppc == 32 || bppc == 33 ) { // 32 bit MSB/LSB
if( red_shift == 16 && green_shift == 8 && blue_shift == 0
&& !d8 && same_msb_lsb )
mode = BPP32_16_8_0;
else
mode = bppc == 33 ? BPP32_LSB : BPP32_MSB;
} else
tqFatal("Logic error 3");
#define GET_PIXEL \
int pixel; \
if ( d8 ) pixel = pix[*src++]; \
else { \
int r = tqRed ( *p ); \
int g = tqGreen( *p ); \
int b = tqBlue ( *p++ ); \
r = red_shift > 0 \
? r << red_shift : r >> -red_shift; \
g = green_shift > 0 \
? g << green_shift : g >> -green_shift; \
b = blue_shift > 0 \
? b << blue_shift : b >> -blue_shift; \
pixel = (r & red_mask)|(g & green_mask) | (b & blue_mask) \
| ~(blue_mask | green_mask | red_mask); \
}
// optimized case - no d8 case, shift only once instead of twice, mask only once instead of twice,
// use direct values instead of variables, and use only one statement
// (*p >> 16), (*p >> 8 ) and (*p) are tqRed(),tqGreen() and tqBlue() without masking
// shifts have to be passed including the shift operator (e.g. '>>3'), because of the direction
#define GET_PIXEL_OPT(red_shift,green_shift,blue_shift,red_mask,green_mask,blue_mask) \
int pixel = ((( *p >> 16 ) red_shift ) & red_mask ) \
| ((( *p >> 8 ) green_shift ) & green_mask ) \
| ((( *p ) blue_shift ) & blue_mask ); \
++p;
#define GET_PIXEL_DITHER_TC \
int r = tqRed ( *p ); \
int g = tqGreen( *p ); \
int b = tqBlue ( *p++ ); \
const int thres = D[x%16][y%16]; \
if ( r <= (255-(1<<(8-rbits))) && ((r<<rbits) & 255) \
> thres) \
r += (1<<(8-rbits)); \
if ( g <= (255-(1<<(8-gbits))) && ((g<<gbits) & 255) \
> thres) \
g += (1<<(8-gbits)); \
if ( b <= (255-(1<<(8-bbits))) && ((b<<bbits) & 255) \
> thres) \
b += (1<<(8-bbits)); \
r = red_shift > 0 \
? r << red_shift : r >> -red_shift; \
g = green_shift > 0 \
? g << green_shift : g >> -green_shift; \
b = blue_shift > 0 \
? b << blue_shift : b >> -blue_shift; \
int pixel = (r & red_mask)|(g & green_mask) | (b & blue_mask);
// again, optimized case
// can't be optimized that much :(
#define GET_PIXEL_DITHER_TC_OPT(red_shift,green_shift,blue_shift,red_mask,green_mask,blue_mask, \
rbits,gbits,bbits) \
const int thres = D[x%16][y%16]; \
int r = tqRed ( *p ); \
if ( r <= (255-(1<<(8-rbits))) && ((r<<rbits) & 255) \
> thres) \
r += (1<<(8-rbits)); \
int g = tqGreen( *p ); \
if ( g <= (255-(1<<(8-gbits))) && ((g<<gbits) & 255) \
> thres) \
g += (1<<(8-gbits)); \
int b = tqBlue ( *p++ ); \
if ( b <= (255-(1<<(8-bbits))) && ((b<<bbits) & 255) \
> thres) \
b += (1<<(8-bbits)); \
int pixel = (( r red_shift ) & red_mask ) \
| (( g green_shift ) & green_mask ) \
| (( b blue_shift ) & blue_mask );
#define CYCLE(body) \
for ( uint y=0; y<h; y++ ) { \
uchar* src = image.scanLine( y ); \
uchar* dst = newbits + xi->bytes_per_line*y; \
TQRgb* p = (TQRgb *)src; \
body \
}
if ( dither_tc ) {
switch ( mode ) {
case BPP16_8_3_M3:
CYCLE(
TQ_INT16* dst16 = (TQ_INT16*)dst;
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_DITHER_TC_OPT(<<8,<<3,>>3,0xf800,0x7e0,0x1f,5,6,5)
*dst16++ = pixel;
}
)
break;
case BPP16_7_2_M3:
CYCLE(
TQ_INT16* dst16 = (TQ_INT16*)dst;
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_DITHER_TC_OPT(<<7,<<2,>>3,0x7c00,0x3e0,0x1f,5,5,5)
*dst16++ = pixel;
}
)
break;
case BPP16_MSB: // 16 bit MSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_DITHER_TC
*dst++ = (pixel >> 8);
*dst++ = pixel;
}
)
break;
case BPP16_LSB: // 16 bit LSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_DITHER_TC
*dst++ = pixel;
*dst++ = pixel >> 8;
}
)
break;
default:
tqFatal("Logic error");
}
} else {
switch ( mode ) {
case BPP8: // 8 bit
CYCLE(
Q_UNUSED(p);
for ( uint x=0; x<w; x++ ) {
int pixel = pix[*src++];
*dst++ = pixel;
}
)
break;
case BPP16_8_3_M3:
CYCLE(
TQ_INT16* dst16 = (TQ_INT16*)dst;
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_OPT(<<8,<<3,>>3,0xf800,0x7e0,0x1f)
*dst16++ = pixel;
}
)
break;
case BPP16_7_2_M3:
CYCLE(
TQ_INT16* dst16 = (TQ_INT16*)dst;
for ( uint x=0; x<w; x++ ) {
GET_PIXEL_OPT(<<7,<<2,>>3,0x7c00,0x3e0,0x1f)
*dst16++ = pixel;
}
)
break;
case BPP16_MSB: // 16 bit MSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = (pixel >> 8);
*dst++ = pixel;
}
)
break;
case BPP16_LSB: // 16 bit LSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = pixel;
*dst++ = pixel >> 8;
}
)
break;
case BPP24_MSB: // 24 bit MSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = pixel >> 16;
*dst++ = pixel >> 8;
*dst++ = pixel;
}
)
break;
case BPP24_LSB: // 24 bit LSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = pixel;
*dst++ = pixel >> 8;
*dst++ = pixel >> 16;
}
)
break;
case BPP32_16_8_0:
CYCLE(
memcpy( dst, p, w * 4 );
)
break;
case BPP32_MSB: // 32 bit MSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = pixel >> 24;
*dst++ = pixel >> 16;
*dst++ = pixel >> 8;
*dst++ = pixel;
}
)
break;
case BPP32_LSB: // 32 bit LSB
CYCLE(
for ( uint x=0; x<w; x++ ) {
GET_PIXEL
*dst++ = pixel;
*dst++ = pixel >> 8;
*dst++ = pixel >> 16;
*dst++ = pixel >> 24;
}
)
break;
default:
tqFatal("Logic error 2");
}
}
xi->data = (char *)newbits;
}
if ( d == 8 && !trucol ) { // 8 bit pixmap
int pop[256]; // pixel popularity
if ( image.numColors() == 0 )
image.setNumColors( 1 );
memset( pop, 0, sizeof(int)*256 ); // reset popularity array
uint i;
for ( i=0; i<h; i++ ) { // for each scanline...
uchar* p = image.scanLine( i );
uchar *end = p + w;
while ( p < end ) // compute popularity
pop[*p++]++;
}
newbits = (uchar *)malloc( nbytes ); // copy image into newbits
newbits_size = nbytes;
TQ_CHECK_PTR( newbits );
if ( !newbits ) // no memory
return FALSE;
uchar* p = newbits;
memcpy( p, image.bits(), nbytes ); // copy image data into newbits
/*
* The code below picks the most important colors. It is based on the
* diversity algorithm, implemented in XV 3.10. XV is (C) by John Bradley.
*/
struct PIX { // pixel sort element
uchar r,g,b,n; // color + pad
int use; // popularity
int index; // index in colormap
int mindist;
};
int ncols = 0;
for ( i=0; i< (uint) image.numColors(); i++ ) { // compute number of colors
if ( pop[i] > 0 )
ncols++;
}
for ( i=image.numColors(); i<256; i++ ) // ignore out-of-range pixels
pop[i] = 0;
// works since we make sure above to have at least
// one color in the image
if ( ncols == 0 )
ncols = 1;
PIX pixarr[256]; // pixel array
PIX pixarr_sorted[256]; // pixel array (sorted)
memset( pixarr, 0, ncols*sizeof(PIX) );
PIX *px = &pixarr[0];
int maxpop = 0;
int maxpix = 0;
TQ_CHECK_PTR( pixarr );
uint j = 0;
TQRgb* ctable = image.colorTable();
for ( i=0; i<256; i++ ) { // init pixel array
if ( pop[i] > 0 ) {
px->r = tqRed ( ctable[i] );
px->g = tqGreen( ctable[i] );
px->b = tqBlue ( ctable[i] );
px->n = 0;
px->use = pop[i];
if ( pop[i] > maxpop ) { // select most popular entry
maxpop = pop[i];
maxpix = j;
}
px->index = i;
px->mindist = 1000000;
px++;
j++;
}
}
pixarr_sorted[0] = pixarr[maxpix];
pixarr[maxpix].use = 0;
for ( i=1; i< (uint) ncols; i++ ) { // sort pixels
int minpix = -1, mindist = -1;
px = &pixarr_sorted[i-1];
int r = px->r;
int g = px->g;
int b = px->b;
int dist;
if ( (i & 1) || i<10 ) { // sort on max distance
for ( int j=0; j<ncols; j++ ) {
px = &pixarr[j];
if ( px->use ) {
dist = (px->r - r)*(px->r - r) +
(px->g - g)*(px->g - g) +
(px->b - b)*(px->b - b);
if ( px->mindist > dist )
px->mindist = dist;
if ( px->mindist > mindist ) {
mindist = px->mindist;
minpix = j;
}
}
}
} else { // sort on max popularity
for ( int j=0; j<ncols; j++ ) {
px = &pixarr[j];
if ( px->use ) {
dist = (px->r - r)*(px->r - r) +
(px->g - g)*(px->g - g) +
(px->b - b)*(px->b - b);
if ( px->mindist > dist )
px->mindist = dist;
if ( px->use > mindist ) {
mindist = px->use;
minpix = j;
}
}
}
}
pixarr_sorted[i] = pixarr[minpix];
pixarr[minpix].use = 0;
}
uint pix[256]; // pixel translation table
px = &pixarr_sorted[0];
for ( i=0; i< (uint) ncols; i++ ) { // allocate colors
TQColor c( px->r, px->g, px->b );
pix[px->index] = c.pixel(x11Screen());
px++;
}
p = newbits;
for ( i=0; i< (uint) nbytes; i++ ) { // translate pixels
*p = pix[*p];
p++;
}
}
if ( !xi ) { // X image not created
#ifdef QT_MITSHM_CONVERSIONS
xi = qt_XShmCreateImage( dpy, visual, dd, ZPixmap, 0, 0, w, h, 32, 0, &shminfo );
if( xi != NULL )
mitshm_ximage = true;
else
#endif
xi = XCreateImage( dpy, visual, dd, ZPixmap, 0, 0, w, h, 32, 0 );
if ( xi->bits_per_pixel == 16 ) { // convert 8 bpp ==> 16 bpp
ushort *p2;
int p2inc = xi->bytes_per_line/sizeof(ushort);
ushort *newerbits = (ushort *)malloc( xi->bytes_per_line * h );
newbits_size = xi->bytes_per_line * h;
TQ_CHECK_PTR( newerbits );
if ( !newerbits ) // no memory
return FALSE;
uchar* p = newbits;
for ( uint y=0; y<h; y++ ) { // OOPS: Do right byte order!!
p2 = newerbits + p2inc*y;
for ( uint x=0; x<w; x++ )
*p2++ = *p++;
}
free( newbits );
newbits = (uchar *)newerbits;
} else if ( xi->bits_per_pixel != 8 ) {
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPixmap::convertFromImage: Display not supported "
"(bpp=%d)", xi->bits_per_pixel );
#endif
}
#ifdef QT_MITSHM_CONVERSIONS
if( newbits_size > 0 && mitshm_ximage ) { // need to copy to shared memory
memcpy( xi->data, newbits, newbits_size );
free( newbits );
newbits = (uchar*)xi->data;
}
else
#endif
xi->data = (char *)newbits;
}
if ( hd && (width() != (int)w || height() != (int)h || this->depth() != dd) ) {
#ifndef QT_NO_XFTFREETYPE
if (rendhd) {
XftDrawDestroy( (XftDraw *) rendhd );
rendhd = 0;
}
#endif // QT_NO_XFTFREETYPE
XFreePixmap( dpy, hd ); // don't reuse old pixmap
hd = 0;
}
if ( !hd ) { // create new pixmap
hd = (HANDLE)XCreatePixmap( x11Display(),
RootWindow(x11Display(), x11Screen() ),
w, h, dd );
#ifndef QT_NO_XFTFREETYPE
if ( tqt_has_xft ) {
if ( data->d == 1 ) {
rendhd = (HANDLE) XftDrawCreateBitmap( x11Display (), hd );
} else {
rendhd = (HANDLE) XftDrawCreate( x11Display (), hd,
(Visual *) x11Visual(), x11Colormap() );
}
}
#endif // QT_NO_XFTFREETYPE
}
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage )
XShmPutImage( dpy, hd, tqt_xget_readonly_gc( x11Screen(), FALSE ),
xi, 0, 0, 0, 0, w, h, False );
else
#endif
XPutImage( dpy, hd, tqt_xget_readonly_gc( x11Screen(), FALSE ),
xi, 0, 0, 0, 0, w, h );
data->w = w;
data->h = h;
data->d = dd;
XImage* axi = NULL;
#ifdef QT_MITSHM_CONVERSIONS
bool mitshm_aximage = false;
XShmSegmentInfo ashminfo;
#endif
if ( image.hasAlphaBuffer() ) {
TQBitmap m;
m = image.createAlphaMask( conversion_flags );
setMask( m );
#ifndef QT_NO_XFTFREETYPE
// does this image have an alphamap (and not just a 1bpp mask)?
bool alphamap = image.depth() == 32;
if (image.depth() == 8) {
const TQRgb * const rgb = image.colorTable();
for (int i = 0, count = image.numColors(); i < count; ++i) {
const int alpha = tqAlpha(rgb[i]);
if (alpha != 0 && alpha != 0xff) {
alphamap = TRUE;
break;
}
}
}
if (tqt_use_xrender && tqt_has_xft && alphamap) {
data->alphapm = new TQPixmap; // create a null pixmap
// setup pixmap data
data->alphapm->data->w = w;
data->alphapm->data->h = h;
data->alphapm->data->d = 8;
// create 8bpp pixmap and render picture
data->alphapm->hd =
XCreatePixmap(x11Display(), RootWindow(x11Display(), x11Screen()),
w, h, 8);
data->alphapm->rendhd =
(HANDLE) XftDrawCreateAlpha( x11Display(), data->alphapm->hd, 8 );
#ifdef QT_MITSHM_CONVERSIONS
axi = qt_XShmCreateImage( x11Display(), (Visual*)x11Visual(),
8, ZPixmap, 0, 0, w, h, 8, 0, &ashminfo );
if( axi != NULL )
mitshm_aximage = true;
else
#endif
axi = XCreateImage(x11Display(), (Visual *) x11Visual(),
8, ZPixmap, 0, 0, w, h, 8, 0);
if (axi) {
if( axi->data==NULL ) {
// the data is deleted by qSafeXDestroyImage
axi->data = (char *) malloc(h * axi->bytes_per_line);
TQ_CHECK_PTR( axi->data );
}
char *aptr = axi->data;
if (image.depth() == 32) {
const int *iptr = (const int *) image.bits();
if( axi->bytes_per_line == (int)w ) {
int max = w * h;
while (max--)
*aptr++ = *iptr++ >> 24; // stquirt
} else {
for (uint i = 0; i < h; ++i ) {
for (uint j = 0; j < w; ++j )
*aptr++ = *iptr++ >> 24; // stquirt
aptr += ( axi->bytes_per_line - w );
}
}
} else if (image.depth() == 8) {
const TQRgb * const rgb = image.colorTable();
for (uint y = 0; y < h; ++y) {
const uchar *iptr = image.scanLine(y);
for (uint x = 0; x < w; ++x)
*aptr++ = tqAlpha(rgb[*iptr++]);
aptr += ( axi->bytes_per_line - w );
}
}
GC gc = XCreateGC(x11Display(), data->alphapm->hd, 0, 0);
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_aximage )
XShmPutImage( dpy, data->alphapm->hd, gc, axi, 0, 0, 0, 0, w, h, False );
else
#endif
XPutImage(dpy, data->alphapm->hd, gc, axi, 0, 0, 0, 0, w, h);
XFreeGC(x11Display(), gc);
}
}
#endif // QT_NO_XFTFREETYPE
}
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage || mitshm_aximage )
XSync( x11Display(), False ); // wait until processed
#endif
if ( data->optim != BestOptim ) { // throw away image
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage )
qt_XShmDestroyImage( xi, &shminfo );
else
#endif
qSafeXDestroyImage( xi );
data->ximage = 0;
} else { // keep ximage that we created
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_ximage ) { // copy the XImage?
qt_XShmDestroyImage( xi, &shminfo );
xi = 0;
}
#endif
data->ximage = xi;
}
if( axi ) {
#ifdef QT_MITSHM_CONVERSIONS
if( mitshm_aximage )
qt_XShmDestroyImage( axi, &ashminfo );
else
#endif
qSafeXDestroyImage(axi);
}
return TRUE;
}
/*!
Grabs the contents of the window \a window and makes a pixmap out
of it. Returns the pixmap.
The arguments \a (x, y) specify the offset in the window, whereas
\a (w, h) specify the width and height of the area to be copied.
If \a w is negative, the function copies everything to the right
border of the window. If \a h is negative, the function copies
everything to the bottom of the window.
Note that grabWindow() grabs pixels from the screen, not from the
window. If there is another window partially or entirely over the
one you grab, you get pixels from the overlying window, too.
Note also that the mouse cursor is generally not grabbed.
The reason we use a window identifier and not a TQWidget is to
enable grabbing of windows that are not part of the application,
window system frames, and so on.
\warning Grabbing an area outside the screen is not safe in
general. This depends on the underlying window system.
\warning X11 only: If \a window is not the same depth as the root
window and another window partially or entirely obscures the one
you grab, you will \e not get pixels from the overlying window.
The contests of the obscured areas in the pixmap are undefined and
uninitialized.
\sa grabWidget()
*/
TQPixmap TQPixmap::grabWindow( WId window, int x, int y, int w, int h )
{
if ( w == 0 || h == 0 )
return TQPixmap();
Display *dpy = x11AppDisplay();
XWindowAttributes window_attr;
if ( ! XGetWindowAttributes( dpy, window, &window_attr ) )
return TQPixmap();
if ( w < 0 )
w = window_attr.width - x;
if ( h < 0 )
h = window_attr.height - y;
// determine the screen
int scr;
for ( scr = 0; scr < ScreenCount( dpy ); ++scr ) {
if ( window_attr.root == RootWindow( dpy, scr ) ) // found it
break;
}
if ( scr >= ScreenCount( dpy ) ) // sanity check
return TQPixmap();
// get the depth of the root window
XWindowAttributes root_attr;
if ( ! XGetWindowAttributes( dpy, window_attr.root, &root_attr ) )
return TQPixmap();
if ( window_attr.depth == root_attr.depth ) {
// if the depth of the specified window and the root window are the
// same, grab pixels from the root window (so that we get the any
// overlapping windows and window manager frames)
// map x and y to the root window
WId unused;
if ( ! XTranslateCoordinates( dpy, window, window_attr.root, x, y,
&x, &y, &unused ) )
return TQPixmap();
window = window_attr.root;
}
TQPixmap pm( w, h );
pm.data->uninit = FALSE;
pm.x11SetScreen( scr );
GC gc = tqt_xget_temp_gc( scr, FALSE );
XSetSubwindowMode( dpy, gc, IncludeInferiors );
XCopyArea( dpy, window, pm.handle(), gc, x, y, w, h, 0, 0 );
XSetSubwindowMode( dpy, gc, ClipByChildren );
return pm;
}
/*!
Returns a copy of the pixmap that is transformed using \a matrix.
The original pixmap is not changed.
The transformation \a matrix is internally adjusted to compensate
for unwanted translation, i.e. xForm() returns the smallest image
that contains all the transformed points of the original image.
This function is slow because it involves transformation to a
TQImage, non-trivial computations and a transformation back to a
TQPixmap.
\sa trueMatrix(), TQWMatrix, TQPainter::setWorldMatrix() TQImage::xForm()
*/
TQPixmap TQPixmap::xForm( const TQWMatrix &matrix ) const
{
uint w = 0;
uint h = 0; // size of target pixmap
uint ws, hs; // size of source pixmap
uchar *dptr; // data in target pixmap
uint dbpl, dbytes; // bytes per line/bytes total
uchar *sptr; // data in original pixmap
int sbpl; // bytes per line in original
int bpp; // bits per pixel
bool depth1 = depth() == 1;
Display *dpy = x11Display();
if ( isNull() ) // this is a null pixmap
return copy();
ws = width();
hs = height();
TQWMatrix mat( matrix.m11(), matrix.m12(), matrix.m21(), matrix.m22(), 0., 0. );
double scaledWidth;
double scaledHeight;
if ( matrix.m12() == 0.0F && matrix.m21() == 0.0F ) {
if ( matrix.m11() == 1.0F && matrix.m22() == 1.0F )
return *this; // identity matrix
scaledHeight = matrix.m22()*hs;
scaledWidth = matrix.m11()*ws;
h = TQABS( tqRound( scaledHeight ) );
w = TQABS( tqRound( scaledWidth ) );
} else { // rotation or shearing
TQPointArray a( TQRect(0,0,ws+1,hs+1) );
a = mat.map( a );
TQRect r = a.boundingRect().normalize();
w = r.width()-1;
h = r.height()-1;
scaledWidth = w;
scaledHeight = h;
}
mat = trueMatrix( mat, ws, hs ); // true matrix
bool invertible;
mat = mat.invert( &invertible ); // invert matrix
if ( h == 0 || w == 0 || !invertible
|| TQABS(scaledWidth) >= 32768 || TQABS(scaledHeight) >= 32768 ) { // error, return null pixmap
TQPixmap pm;
pm.data->bitmap = data->bitmap;
return pm;
}
#if defined(QT_MITSHM_XFORM)
static bool try_once = TRUE;
if (try_once) {
try_once = FALSE;
if ( !xshminit )
qt_create_mitshm_buffer( this, 800, 600 );
}
bool use_mitshm = xshmimg && !depth1 &&
xshmimg->width >= w && xshmimg->height >= h;
#endif
XImage *xi = (XImage*)data->ximage; // any cached ximage?
if ( !xi )
xi = XGetImage( x11Display(), handle(), 0, 0, ws, hs, AllPlanes,
depth1 ? XYPixmap : ZPixmap );
if ( !xi ) { // error, return null pixmap
TQPixmap pm;
pm.data->bitmap = data->bitmap;
pm.data->alphapm = data->alphapm;
return pm;
}
sbpl = xi->bytes_per_line;
sptr = (uchar *)xi->data;
bpp = xi->bits_per_pixel;
if ( depth1 )
dbpl = (w+7)/8;
else
dbpl = ((w*bpp+31)/32)*4;
dbytes = dbpl*h;
#if defined(QT_MITSHM_XFORM)
if ( use_mitshm ) {
dptr = (uchar *)xshmimg->data;
uchar fillbyte = bpp == 8 ? white.pixel() : 0xff;
for ( int y=0; y<h; y++ )
memset( dptr + y*xshmimg->bytes_per_line, fillbyte, dbpl );
} else {
#endif
dptr = (uchar *)malloc( dbytes ); // create buffer for bits
TQ_CHECK_PTR( dptr );
if ( depth1 ) // fill with zeros
memset( dptr, 0, dbytes );
else if ( bpp == 8 ) // fill with background color
memset( dptr, TQt::white.pixel( x11Screen() ), dbytes );
else
memset( dptr, 0xff, dbytes );
#if defined(QT_MITSHM_XFORM)
}
#endif
// #define QT_DEBUG_XIMAGE
#if defined(QT_DEBUG_XIMAGE)
tqDebug( "----IMAGE--INFO--------------" );
tqDebug( "width............. %d", xi->width );
tqDebug( "height............ %d", xi->height );
tqDebug( "xoffset........... %d", xi->xoffset );
tqDebug( "format............ %d", xi->format );
tqDebug( "byte order........ %d", xi->byte_order );
tqDebug( "bitmap unit....... %d", xi->bitmap_unit );
tqDebug( "bitmap bit order.. %d", xi->bitmap_bit_order );
tqDebug( "depth............. %d", xi->depth );
tqDebug( "bytes per line.... %d", xi->bytes_per_line );
tqDebug( "bits per pixel.... %d", xi->bits_per_pixel );
#endif
int type;
if ( xi->bitmap_bit_order == MSBFirst )
type = QT_XFORM_TYPE_MSBFIRST;
else
type = QT_XFORM_TYPE_LSBFIRST;
int xbpl, p_inc;
if ( depth1 ) {
xbpl = (w+7)/8;
p_inc = dbpl - xbpl;
} else {
xbpl = (w*bpp)/8;
p_inc = dbpl - xbpl;
#if defined(QT_MITSHM_XFORM)
if ( use_mitshm )
p_inc = xshmimg->bytes_per_line - xbpl;
#endif
}
if ( !qt_xForm_helper( mat, xi->xoffset, type, bpp, dptr, xbpl, p_inc, h, sptr, sbpl, ws, hs ) ){
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPixmap::xForm: display not supported (bpp=%d)",bpp);
#endif
TQPixmap pm;
return pm;
}
if ( data->optim == NoOptim ) { // throw away ximage
qSafeXDestroyImage( xi );
data->ximage = 0;
} else { // keep ximage that we fetched
data->ximage = xi;
}
if ( depth1 ) { // mono bitmap
TQPixmap pm( w, h, dptr, TQImage::systemBitOrder() != TQImage::BigEndian );
pm.data->bitmap = data->bitmap;
free( dptr );
if ( data->mask ) {
if ( data->selfmask ) // pixmap == mask
pm.setMask( *((TQBitmap*)(&pm)) );
else
pm.setMask( data->mask->xForm(matrix) );
}
return pm;
} else { // color pixmap
GC gc = tqt_xget_readonly_gc( x11Screen(), FALSE );
TQPixmap pm( w, h );
pm.data->uninit = FALSE;
pm.x11SetScreen( x11Screen() );
#if defined(QT_MITSHM_XFORM)
if ( use_mitshm ) {
XCopyArea( dpy, xshmpm, pm.handle(), gc, 0, 0, w, h, 0, 0 );
} else {
#endif
xi = XCreateImage( dpy, (Visual *)x11Visual(), x11Depth(),
ZPixmap, 0, (char *)dptr, w, h, 32, 0 );
XPutImage( dpy, pm.handle(), gc, xi, 0, 0, 0, 0, w, h);
qSafeXDestroyImage( xi );
#if defined(QT_MITSHM_XFORM)
}
#endif
if ( data->mask ) // xform mask, too
pm.setMask( data->mask->xForm(matrix) );
#ifndef QT_NO_XFTFREETYPE
if ( tqt_use_xrender && tqt_has_xft && data->alphapm ) { // xform the alpha channel
XImage *axi = 0;
if ((axi = XGetImage(x11Display(), data->alphapm->handle(),
0, 0, ws, hs, AllPlanes, ZPixmap))) {
sbpl = axi->bytes_per_line;
sptr = (uchar *) axi->data;
bpp = axi->bits_per_pixel;
dbytes = dbpl * h;
dptr = (uchar *) malloc(dbytes);
TQ_CHECK_PTR( dptr );
memset(dptr, 0, dbytes);
if ( axi->bitmap_bit_order == MSBFirst )
type = QT_XFORM_TYPE_MSBFIRST;
else
type = QT_XFORM_TYPE_LSBFIRST;
if (qt_xForm_helper( mat, axi->xoffset, type, bpp, dptr, w,
0, h, sptr, sbpl, ws, hs )) {
delete pm.data->alphapm;
pm.data->alphapm = new TQPixmap; // create a null pixmap
// setup pixmap data
pm.data->alphapm->data->w = w;
pm.data->alphapm->data->h = h;
pm.data->alphapm->data->d = 8;
// create 8bpp pixmap and render picture
pm.data->alphapm->hd =
XCreatePixmap(x11Display(),
RootWindow(x11Display(), x11Screen()),
w, h, 8);
pm.data->alphapm->rendhd =
(HANDLE) XftDrawCreateAlpha( x11Display(),
pm.data->alphapm->hd, 8 );
XImage *axi2 = XCreateImage(x11Display(), (Visual *) x11Visual(),
8, ZPixmap, 0, (char *)dptr, w, h, 8, 0);
if (axi2) {
// the data is deleted by qSafeXDestroyImage
GC gc = XCreateGC(x11Display(), pm.data->alphapm->hd, 0, 0);
XPutImage(dpy, pm.data->alphapm->hd, gc, axi2, 0, 0, 0, 0, w, h);
XFreeGC(x11Display(), gc);
qSafeXDestroyImage(axi2);
}
}
qSafeXDestroyImage(axi);
}
}
#endif // QT_NO_XFTFREETYPE
return pm;
}
}
/*!
\internal
*/
int TQPixmap::x11SetDefaultScreen( int screen )
{
int old = defaultScreen;
defaultScreen = screen;
return old;
}
/*!
\internal
*/
void TQPixmap::x11SetScreen( int screen )
{
if ( screen < 0 )
screen = x11AppScreen();
if ( screen == x11Screen() )
return; // nothing to do
if ( isNull() ) {
TQPaintDeviceX11Data* xd = getX11Data( TRUE );
xd->x_screen = screen;
xd->x_depth = TQPaintDevice::x11AppDepth( screen );
xd->x_cells = TQPaintDevice::x11AppCells( screen );
xd->x_colormap = TQPaintDevice::x11AppColormap( screen );
xd->x_defcolormap = TQPaintDevice::x11AppDefaultColormap( screen );
xd->x_visual = TQPaintDevice::x11AppVisual( screen );
xd->x_defvisual = TQPaintDevice::x11AppDefaultVisual( screen );
setX11Data( xd );
return;
}
#if 0
tqDebug("TQPixmap::x11SetScreen for %p from %d to %d. Size is %d/%d", data, x11Screen(), screen, width(), height() );
#endif
TQImage img = convertToImage();
resize(0,0);
TQPaintDeviceX11Data* xd = getX11Data( TRUE );
xd->x_screen = screen;
xd->x_depth = TQPaintDevice::x11AppDepth( screen );
xd->x_cells = TQPaintDevice::x11AppCells( screen );
xd->x_colormap = TQPaintDevice::x11AppColormap( screen );
xd->x_defcolormap = TQPaintDevice::x11AppDefaultColormap( screen );
xd->x_visual = TQPaintDevice::x11AppVisual( screen );
xd->x_defvisual = TQPaintDevice::x11AppDefaultVisual( screen );
setX11Data( xd );
convertFromImage( img );
}
/*!
Returns TRUE this pixmap has an alpha channel or a mask.
\sa hasAlphaChannel() mask()
*/
bool TQPixmap::hasAlpha() const
{
return data->alphapm || data->mask;
}
/*!
Returns TRUE if the pixmap has an alpha channel; otherwise it
returns FALSE.
NOTE: If the pixmap has a mask but not alpha channel, this
function returns FALSE.
\sa hasAlpha() mask()
*/
bool TQPixmap::hasAlphaChannel() const
{
return data->alphapm != 0;
}
/*!
\relates TQPixmap
Copies a block of pixels from \a src to \a dst. The alpha channel
and mask data (if any) is also copied from \a src. NOTE: \a src
is \e not alpha blended or masked when copied to \a dst. Use
bitBlt() or TQPainter::drawPixmap() to perform alpha blending or
masked drawing.
\a sx, \a sy is the top-left pixel in \a src (0, 0 by default), \a
dx, \a dy is the top-left position in \a dst and \a sw, \sh is the
size of the copied block (all of \a src by default).
If \a src, \a dst, \a sw or \a sh is 0 (zero), copyBlt() does
nothing. If \a sw or \a sh is negative, copyBlt() copies starting
at \a sx (and respectively, \a sy) and ending at the right edge
(and respectively, the bottom edge) of \a src.
copyBlt() does nothing if \a src and \a dst have different depths.
*/
Q_EXPORT void copyBlt( TQPixmap *dst, int dx, int dy,
const TQPixmap *src, int sx, int sy, int sw, int sh )
{
if ( ! dst || ! src || sw == 0 || sh == 0 || dst->depth() != src->depth() ) {
#ifdef QT_CHECK_NULL
Q_ASSERT( dst != 0 );
Q_ASSERT( src != 0 );
#endif
return;
}
// copy pixel data
bitBlt( dst, dx, dy, src, sx, sy, sw, sh, TQt::CopyROP, TRUE );
// copy mask data
if ( src->data->mask ) {
if ( ! dst->data->mask ) {
dst->data->mask = new TQBitmap( dst->width(), dst->height() );
// new masks are fully opaque by default
dst->data->mask->fill( TQt::color1 );
}
bitBlt( dst->data->mask, dx, dy,
src->data->mask, sx, sy, sw, sh, TQt::CopyROP, TRUE );
}
#ifndef QT_NO_XFTFREETYPE
// copy alpha data
extern bool tqt_use_xrender; // from qapplication_x11.cpp
if ( ! tqt_use_xrender || ! src->data->alphapm )
return;
if ( sw < 0 )
sw = src->width() - sx;
else
sw = TQMIN( src->width()-sx, sw );
sw = TQMIN( dst->width()-dx, sw );
if ( sh < 0 )
sh = src->height() - sy ;
else
sh = TQMIN( src->height()-sy, sh );
sh = TQMIN( dst->height()-dy, sh );
if ( sw <= 0 || sh <= 0 )
return;
// create an alpha pixmap for dst if it doesn't exist
bool do_init = FALSE;
if ( ! dst->data->alphapm ) {
dst->data->alphapm = new TQPixmap;
// setup pixmap d
dst->data->alphapm->data->w = dst->width();
dst->data->alphapm->data->h = dst->height();
dst->data->alphapm->data->d = 8;
// create 8bpp pixmap and render picture
dst->data->alphapm->hd =
XCreatePixmap(dst->x11Display(),
RootWindow(dst->x11Display(), dst->x11Screen()),
dst->width(), dst->height(), 8);
// new alpha pixmaps should be fully opaque by default
do_init = TRUE;
dst->data->alphapm->rendhd =
(TQt::HANDLE) XftDrawCreateAlpha( dst->x11Display(),
dst->data->alphapm->hd, 8 );
}
GC gc = XCreateGC(dst->x11Display(), dst->data->alphapm->hd, 0, 0);
if ( do_init ) {
// the alphapm was just created, make it fully opaque
XSetForeground( dst->x11Display(), gc, 255 );
XSetBackground( dst->x11Display(), gc, 255 );
XFillRectangle( dst->x11Display(), dst->data->alphapm->hd, gc,
0, 0, dst->data->alphapm->data->w,
dst->data->alphapm->data->h );
}
XCopyArea(dst->x11Display(), src->data->alphapm->hd, dst->data->alphapm->hd, gc,
sx, sy, sw, sh, dx, dy);
XFreeGC(dst->x11Display(), gc);
#endif // QT_NO_XFTFREETYPE
}