You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/3rdparty/sqlite/util.c

1136 lines
31 KiB

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.74 2004/02/22 17:49:34 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>
/*
** If malloc() ever fails, this global variable gets set to 1.
** This causes the library to abort and never again function.
*/
int sqlite_malloc_failed = 0;
/*
** If MEMORY_DEBUG is defined, then use versions of malloc() and
** free() that track memory usage and check for buffer overruns.
*/
#ifdef MEMORY_DEBUG
/*
** For keeping track of the number of mallocs and frees. This
** is used to check for memory leaks.
*/
int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
int sqlite_nFree; /* Number of sqliteFree() calls */
int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
#if MEMORY_DEBUG>1
static int memcnt = 0;
#endif
/*
** Number of 32-bit guard words
*/
#define N_GUARD 1
/*
** Allocate new memory and set it to zero. Return NULL if
** no memory is available.
*/
void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
void *p;
int *pi;
int i, k;
if( sqlite_iMallocFail>=0 ){
sqlite_iMallocFail--;
if( sqlite_iMallocFail==0 ){
sqlite_malloc_failed++;
#if MEMORY_DEBUG>1
fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
n, zFile,line);
#endif
sqlite_iMallocFail--;
return 0;
}
}
if( n==0 ) return 0;
k = (n+sizeof(int)-1)/sizeof(int);
pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
if( pi==0 ){
sqlite_malloc_failed++;
return 0;
}
sqlite_nMalloc++;
for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
pi[N_GUARD] = n;
for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344;
p = &pi[N_GUARD+1];
memset(p, bZero==0, n);
#if MEMORY_DEBUG>1
fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
++memcnt, n, (int)p, zFile,line);
#endif
return p;
}
/*
** Check to see if the given pointer was obtained from sqliteMalloc()
** and is able to hold at least N bytes. Raise an exception if this
** is not the case.
**
** This routine is used for testing purposes only.
*/
void sqliteCheckMemory(void *p, int N){
int *pi = p;
int n, i, k;
pi -= N_GUARD+1;
for(i=0; i<N_GUARD; i++){
assert( pi[i]==0xdead1122 );
}
n = pi[N_GUARD];
assert( N>=0 && N<n );
k = (n+sizeof(int)-1)/sizeof(int);
for(i=0; i<N_GUARD; i++){
assert( pi[k+N_GUARD+1+i]==0xdead3344 );
}
}
/*
** Free memory previously obtained from sqliteMalloc()
*/
void sqliteFree_(void *p, char *zFile, int line){
if( p ){
int *pi, i, k, n;
pi = p;
pi -= N_GUARD+1;
sqlite_nFree++;
for(i=0; i<N_GUARD; i++){
if( pi[i]!=0xdead1122 ){
fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
return;
}
}
n = pi[N_GUARD];
k = (n+sizeof(int)-1)/sizeof(int);
for(i=0; i<N_GUARD; i++){
if( pi[k+N_GUARD+1+i]!=0xdead3344 ){
fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
return;
}
}
memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int));
#if MEMORY_DEBUG>1
fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
++memcnt, n, (int)p, zFile,line);
#endif
free(pi);
}
}
/*
** Resize a prior allocation. If p==0, then this routine
** works just like sqliteMalloc(). If n==0, then this routine
** works just like sqliteFree().
*/
void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
int *oldPi, *pi, i, k, oldN, oldK;
void *p;
if( oldP==0 ){
return sqliteMalloc_(n,1,zFile,line);
}
if( n==0 ){
sqliteFree_(oldP,zFile,line);
return 0;
}
oldPi = oldP;
oldPi -= N_GUARD+1;
if( oldPi[0]!=0xdead1122 ){
fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
return 0;
}
oldN = oldPi[N_GUARD];
oldK = (oldN+sizeof(int)-1)/sizeof(int);
for(i=0; i<N_GUARD; i++){
if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){
fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n",
(int)oldP);
return 0;
}
}
k = (n + sizeof(int) - 1)/sizeof(int);
pi = malloc( (k+N_GUARD*2+1)*sizeof(int) );
if( pi==0 ){
sqlite_malloc_failed++;
return 0;
}
for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
pi[N_GUARD] = n;
for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344;
p = &pi[N_GUARD+1];
memcpy(p, oldP, n>oldN ? oldN : n);
if( n>oldN ){
memset(&((char*)p)[oldN], 0, n-oldN);
}
memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
free(oldPi);
#if MEMORY_DEBUG>1
fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
#endif
return p;
}
/*
** Make a duplicate of a string into memory obtained from malloc()
** Free the original string using sqliteFree().
**
** This routine is called on all strings that are passed outside of
** the SQLite library. That way clients can free the string using free()
** rather than having to call sqliteFree().
*/
void sqliteStrRealloc(char **pz){
char *zNew;
if( pz==0 || *pz==0 ) return;
zNew = malloc( strlen(*pz) + 1 );
if( zNew==0 ){
sqlite_malloc_failed++;
sqliteFree(*pz);
*pz = 0;
}
strcpy(zNew, *pz);
sqliteFree(*pz);
*pz = zNew;
}
/*
** Make a copy of a string in memory obtained from sqliteMalloc()
*/
char *sqliteStrDup_(const char *z, char *zFile, int line){
char *zNew;
if( z==0 ) return 0;
zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
if( zNew ) strcpy(zNew, z);
return zNew;
}
char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
char *zNew;
if( z==0 ) return 0;
zNew = sqliteMalloc_(n+1, 0, zFile, line);
if( zNew ){
memcpy(zNew, z, n);
zNew[n] = 0;
}
return zNew;
}
#endif /* MEMORY_DEBUG */
/*
** The following versions of malloc() and free() are for use in a
** normal build.
*/
#if !defined(MEMORY_DEBUG)
/*
** Allocate new memory and set it to zero. Return NULL if
** no memory is available. See also sqliteMallocRaw().
*/
void *sqliteMalloc(int n){
void *p;
if( (p = malloc(n))==0 ){
if( n>0 ) sqlite_malloc_failed++;
}else{
memset(p, 0, n);
}
return p;
}
/*
** Allocate new memory but do not set it to zero. Return NULL if
** no memory is available. See also sqliteMalloc().
*/
void *sqliteMallocRaw(int n){
void *p;
if( (p = malloc(n))==0 ){
if( n>0 ) sqlite_malloc_failed++;
}
return p;
}
/*
** Free memory previously obtained from sqliteMalloc()
*/
void sqliteFree(void *p){
if( p ){
free(p);
}
}
/*
** Resize a prior allocation. If p==0, then this routine
** works just like sqliteMalloc(). If n==0, then this routine
** works just like sqliteFree().
*/
void *sqliteRealloc(void *p, int n){
void *p2;
if( p==0 ){
return sqliteMalloc(n);
}
if( n==0 ){
sqliteFree(p);
return 0;
}
p2 = realloc(p, n);
if( p2==0 ){
sqlite_malloc_failed++;
}
return p2;
}
/*
** Make a copy of a string in memory obtained from sqliteMalloc()
*/
char *sqliteStrDup(const char *z){
char *zNew;
if( z==0 ) return 0;
zNew = sqliteMallocRaw(strlen(z)+1);
if( zNew ) strcpy(zNew, z);
return zNew;
}
char *sqliteStrNDup(const char *z, int n){
char *zNew;
if( z==0 ) return 0;
zNew = sqliteMallocRaw(n+1);
if( zNew ){
memcpy(zNew, z, n);
zNew[n] = 0;
}
return zNew;
}
#endif /* !defined(MEMORY_DEBUG) */
/*
** Create a string from the 2nd and subsequent arguments (up to the
** first NULL argument), store the string in memory obtained from
** sqliteMalloc() and make the pointer indicated by the 1st argument
** point to that string. The 1st argument must either be NULL or
** point to memory obtained from sqliteMalloc().
*/
void sqliteSetString(char **pz, const char *zFirst, ...){
va_list ap;
int nByte;
const char *z;
char *zResult;
if( pz==0 ) return;
nByte = strlen(zFirst) + 1;
va_start(ap, zFirst);
while( (z = va_arg(ap, const char*))!=0 ){
nByte += strlen(z);
}
va_end(ap);
sqliteFree(*pz);
*pz = zResult = sqliteMallocRaw( nByte );
if( zResult==0 ){
return;
}
strcpy(zResult, zFirst);
zResult += strlen(zResult);
va_start(ap, zFirst);
while( (z = va_arg(ap, const char*))!=0 ){
strcpy(zResult, z);
zResult += strlen(zResult);
}
va_end(ap);
#ifdef MEMORY_DEBUG
#if MEMORY_DEBUG>1
fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
}
/*
** Works like sqliteSetString, but each string is now followed by
** a length integer which specifies how much of the source string
** to copy (in bytes). -1 means use the whole string. The 1st
** argument must either be NULL or point to memory obtained from
** sqliteMalloc().
*/
void sqliteSetNString(char **pz, ...){
va_list ap;
int nByte;
const char *z;
char *zResult;
int n;
if( pz==0 ) return;
nByte = 0;
va_start(ap, pz);
while( (z = va_arg(ap, const char*))!=0 ){
n = va_arg(ap, int);
if( n<=0 ) n = strlen(z);
nByte += n;
}
va_end(ap);
sqliteFree(*pz);
*pz = zResult = sqliteMallocRaw( nByte + 1 );
if( zResult==0 ) return;
va_start(ap, pz);
while( (z = va_arg(ap, const char*))!=0 ){
n = va_arg(ap, int);
if( n<=0 ) n = strlen(z);
strncpy(zResult, z, n);
zResult += n;
}
*zResult = 0;
#ifdef MEMORY_DEBUG
#if MEMORY_DEBUG>1
fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
va_end(ap);
}
/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
** The following formatting characters are allowed:
**
** %s Insert a string
** %z A string that should be freed after use
** %d Insert an integer
** %T Insert a token
** %S Insert the first element of a SrcList
*/
void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
va_list ap;
pParse->nErr++;
sqliteFree(pParse->zErrMsg);
va_start(ap, zFormat);
pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
va_end(ap);
}
/*
** Convert an SQL-style quoted string into a normal string by removing
** the quote characters. The conversion is done in-place. If the
** input does not begin with a quote character, then this routine
** is a no-op.
**
** 2002-Feb-14: This routine is extended to remove MS-Access style
** brackets from around identifers. For example: "[a-b-c]" becomes
** "a-b-c".
*/
void sqliteDequote(char *z){
int quote;
int i, j;
if( z==0 ) return;
quote = z[0];
switch( quote ){
case '\'': break;
case '"': break;
case '[': quote = ']'; break;
default: return;
}
for(i=1, j=0; z[i]; i++){
if( z[i]==quote ){
if( z[i+1]==quote ){
z[j++] = quote;
i++;
}else{
z[j++] = 0;
break;
}
}else{
z[j++] = z[i];
}
}
}
/* An array to map all upper-case characters into their corresponding
** lower-case character.
*/
static unsigned char UpperToLower[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
252,253,254,255
};
/*
** This function computes a hash on the name of a keyword.
** Case is not significant.
*/
int sqliteHashNoCase(const char *z, int n){
int h = 0;
if( n<=0 ) n = strlen(z);
while( n > 0 ){
h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
n--;
}
return h & 0x7fffffff;
}
/*
** Some systems have stricmp(). Others have strcasecmp(). Because
** there is no consistency, we will define our own.
*/
int sqliteStrICmp(const char *zLeft, const char *zRight){
unsigned char *a, *b;
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
return *a - *b;
}
int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
unsigned char *a, *b;
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
return N<0 ? 0 : *a - *b;
}
/*
** Return TRUE if z is a pure numeric string. Return FALSE if the
** string contains any character which is not part of a number.
**
** Am empty string is considered non-numeric.
*/
int sqliteIsNumber(const char *z){
if( *z=='-' || *z=='+' ) z++;
if( !isdigit(*z) ){
return 0;
}
z++;
while( isdigit(*z) ){ z++; }
if( *z=='.' ){
z++;
if( !isdigit(*z) ) return 0;
while( isdigit(*z) ){ z++; }
}
if( *z=='e' || *z=='E' ){
z++;
if( *z=='+' || *z=='-' ) z++;
if( !isdigit(*z) ) return 0;
while( isdigit(*z) ){ z++; }
}
return *z==0;
}
/*
** The string z[] is an ascii representation of a real number.
** Convert this string to a double.
**
** This routine assumes that z[] really is a valid number. If it
** is not, the result is undefined.
**
** This routine is used instead of the library atof() function because
** the library atof() might want to use "," as the decimal point instead
** of "." depending on how locale is set. But that would cause problems
** for SQL. So this routine always uses "." regardless of locale.
*/
double sqliteAtoF(const char *z, const char **pzEnd){
int sign = 1;
LONGDOUBLE_TYPE v1 = 0.0;
if( *z=='-' ){
sign = -1;
z++;
}else if( *z=='+' ){
z++;
}
while( isdigit(*z) ){
v1 = v1*10.0 + (*z - '0');
z++;
}
if( *z=='.' ){
LONGDOUBLE_TYPE divisor = 1.0;
z++;
while( isdigit(*z) ){
v1 = v1*10.0 + (*z - '0');
divisor *= 10.0;
z++;
}
v1 /= divisor;
}
if( *z=='e' || *z=='E' ){
int esign = 1;
int eval = 0;
LONGDOUBLE_TYPE scale = 1.0;
z++;
if( *z=='-' ){
esign = -1;
z++;
}else if( *z=='+' ){
z++;
}
while( isdigit(*z) ){
eval = eval*10 + *z - '0';
z++;
}
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
if( esign<0 ){
v1 /= scale;
}else{
v1 *= scale;
}
}
if( pzEnd ) *pzEnd = z;
return sign<0 ? -v1 : v1;
}
/*
** The string zNum represents an integer. There might be some other
** information following the integer too, but that part is ignored.
** If the integer that the prefix of zNum represents will fit in a
** 32-bit signed integer, return TRUE. Otherwise return FALSE.
**
** This routine returns FALSE for the string -2147483648 even that
** that number will, in theory fit in a 32-bit integer. But positive
** 2147483648 will not fit in 32 bits. So it seems safer to return
** false.
*/
int sqliteFitsIn32Bits(const char *zNum){
int i, c;
if( *zNum=='-' || *zNum=='+' ) zNum++;
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
}
/* This comparison routine is what we use for comparison operations
** between numeric values in an SQL expression. "Numeric" is a little
** bit misleading here. What we mean is that the strings have a
** type of "numeric" from the point of view of SQL. The strings
** do not necessarily contain numbers. They could contain text.
**
** If the input strings both look like actual numbers then they
** compare in numerical order. Numerical strings are always less
** than non-numeric strings so if one input string looks like a
** number and the other does not, then the one that looks like
** a number is the smaller. Non-numeric strings compare in
** lexigraphical order (the same order as strcmp()).
*/
int sqliteCompare(const char *atext, const char *btext){
int result;
int isNumA, isNumB;
if( atext==0 ){
return -1;
}else if( btext==0 ){
return 1;
}
isNumA = sqliteIsNumber(atext);
isNumB = sqliteIsNumber(btext);
if( isNumA ){
if( !isNumB ){
result = -1;
}else{
double rA, rB;
rA = sqliteAtoF(atext, 0);
rB = sqliteAtoF(btext, 0);
if( rA<rB ){
result = -1;
}else if( rA>rB ){
result = +1;
}else{
result = 0;
}
}
}else if( isNumB ){
result = +1;
}else {
result = strcmp(atext, btext);
}
return result;
}
/*
** This routine is used for sorting. Each key is a list of one or more
** null-terminated elements. The list is terminated by two nulls in
** a row. For example, the following text is a key with three elements
**
** Aone\000Dtwo\000Athree\000\000
**
** All elements begin with one of the characters "+-AD" and end with "\000"
** with zero or more text elements in between. Except, NULL elements
** consist of the special two-character sequence "N\000".
**
** Both arguments will have the same number of elements. This routine
** returns negative, zero, or positive if the first argument is less
** than, equal to, or greater than the first. (Result is a-b).
**
** Each element begins with one of the characters "+", "-", "A", "D".
** This character determines the sort order and collating sequence:
**
** + Sort numerically in ascending order
** - Sort numerically in descending order
** A Sort as strings in ascending order
** D Sort as strings in descending order.
**
** For the "+" and "-" sorting, pure numeric strings (strings for which the
** isNum() function above returns TRUE) always compare less than strings
** that are not pure numerics. Non-numeric strings compare in memcmp()
** order. This is the same sort order as the sqliteCompare() function
** above generates.
**
** The last point is a change from version 2.6.3 to version 2.7.0. In
** version 2.6.3 and earlier, substrings of digits compare in numerical
** and case was used only to break a tie.
**
** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
** of whether or not they look like a number.
**
** Note that the sort order imposed by the rules above is the same
** from the ordering defined by the "<", "<=", ">", and ">=" operators
** of expressions and for indices. This was not the case for version
** 2.6.3 and earlier.
*/
int sqliteSortCompare(const char *a, const char *b){
int res = 0;
int isNumA, isNumB;
int dir = 0;
while( res==0 && *a && *b ){
if( a[0]=='N' || b[0]=='N' ){
if( a[0]==b[0] ){
a += 2;
b += 2;
continue;
}
if( a[0]=='N' ){
dir = b[0];
res = -1;
}else{
dir = a[0];
res = +1;
}
break;
}
assert( a[0]==b[0] );
if( (dir=a[0])=='A' || a[0]=='D' ){
res = strcmp(&a[1],&b[1]);
if( res ) break;
}else{
isNumA = sqliteIsNumber(&a[1]);
isNumB = sqliteIsNumber(&b[1]);
if( isNumA ){
double rA, rB;
if( !isNumB ){
res = -1;
break;
}
rA = sqliteAtoF(&a[1], 0);
rB = sqliteAtoF(&b[1], 0);
if( rA<rB ){
res = -1;
break;
}
if( rA>rB ){
res = +1;
break;
}
}else if( isNumB ){
res = +1;
break;
}else{
res = strcmp(&a[1],&b[1]);
if( res ) break;
}
}
a += strlen(&a[1]) + 2;
b += strlen(&b[1]) + 2;
}
if( dir=='-' || dir=='D' ) res = -res;
return res;
}
/*
** Some powers of 64. These constants are needed in the
** sqliteRealToSortable() routine below.
*/
#define _64e3 (64.0 * 64.0 * 64.0)
#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
/*
** The following procedure converts a double-precision floating point
** number into a string. The resulting string has the property that
** two such strings comparied using strcmp() or memcmp() will give the
** same results as a numeric comparison of the original floating point
** numbers.
**
** This routine is used to generate database keys from floating point
** numbers such that the keys sort in the same order as the original
** floating point numbers even though the keys are compared using
** memcmp().
**
** The calling function should have allocated at least 14 characters
** of space for the buffer z[].
*/
void sqliteRealToSortable(double r, char *z){
int neg;
int exp;
int cnt = 0;
/* This array maps integers between 0 and 63 into base-64 digits.
** The digits must be chosen such at their ASCII codes are increasing.
** This means we can not use the traditional base-64 digit set. */
static const char zDigit[] =
"0123456789"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"|~";
if( r<0.0 ){
neg = 1;
r = -r;
*z++ = '-';
} else {
neg = 0;
*z++ = '0';
}
exp = 0;
if( r==0.0 ){
exp = -1024;
}else if( r<(0.5/64.0) ){
while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
}else if( r>=0.5 ){
while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
}
if( neg ){
exp = -exp;
r = -r;
}
exp += 1024;
r += 0.5;
if( exp<0 ) return;
if( exp>=2048 || r>=1.0 ){
strcpy(z, "~~~~~~~~~~~~");
return;
}
*z++ = zDigit[(exp>>6)&0x3f];
*z++ = zDigit[exp & 0x3f];
while( r>0.0 && cnt<10 ){
int digit;
r *= 64.0;
digit = (int)r;
assert( digit>=0 && digit<64 );
*z++ = zDigit[digit & 0x3f];
r -= digit;
cnt++;
}
*z = 0;
}
#ifdef SQLITE_UTF8
/*
** X is a pointer to the first byte of a UTF-8 character. Increment
** X so that it points to the next character. This only works right
** if X points to a well-formed UTF-8 string.
*/
#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
#define sqliteCharVal(X) sqlite_utf8_to_int(X)
#else /* !defined(SQLITE_UTF8) */
/*
** For iso8859 encoding, the next character is just the next byte.
*/
#define sqliteNextChar(X) (++(X));
#define sqliteCharVal(X) ((int)*(X))
#endif /* defined(SQLITE_UTF8) */
#ifdef SQLITE_UTF8
/*
** Convert the UTF-8 character to which z points into a 31-bit
** UCS character. This only works right if z points to a well-formed
** UTF-8 string.
*/
static int sqlite_utf8_to_int(const unsigned char *z){
int c;
static const int initVal[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
255,
};
c = initVal[*(z++)];
while( (0xc0&*z)==0x80 ){
c = (c<<6) | (0x3f&*(z++));
}
return c;
}
#endif
/*
** Compare two UTF-8 strings for equality where the first string can
** potentially be a "glob" expression. Return true (1) if they
** are the same and false (0) if they are different.
**
** Globbing rules:
**
** '*' Matches any sequence of zero or more characters.
**
** '?' Matches exactly one character.
**
** [...] Matches one character from the enclosed list of
** characters.
**
** [^...] Matches one character not in the enclosed list.
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'. A
** range of characters can be specified using '-'. Example:
** "[a-z]" matches any single lower-case letter. To match a '-', make
** it the last character in the list.
**
** This routine is usually quick, but can be N**2 in the worst case.
**
** Hints: to match '*' or '?', put them in "[]". Like this:
**
** abc[*]xyz Matches "abc*xyz" only
*/
int
sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
int c;
int invert;
int seen;
int c2;
while( (c = *zPattern)!=0 ){
switch( c ){
case '*':
while( (c=zPattern[1]) == '*' || c == '?' ){
if( c=='?' ){
if( *zString==0 ) return 0;
sqliteNextChar(zString);
}
zPattern++;
}
if( c==0 ) return 1;
if( c=='[' ){
while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
sqliteNextChar(zString);
}
return *zString!=0;
}else{
while( (c2 = *zString)!=0 ){
while( c2 != 0 && c2 != c ){ c2 = *++zString; }
if( c2==0 ) return 0;
if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
sqliteNextChar(zString);
}
return 0;
}
case '?': {
if( *zString==0 ) return 0;
sqliteNextChar(zString);
zPattern++;
break;
}
case '[': {
int prior_c = 0;
seen = 0;
invert = 0;
c = sqliteCharVal(zString);
if( c==0 ) return 0;
c2 = *++zPattern;
if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
if( c2==']' ){
if( c==']' ) seen = 1;
c2 = *++zPattern;
}
while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
zPattern++;
c2 = sqliteCharVal(zPattern);
if( c>=prior_c && c<=c2 ) seen = 1;
prior_c = 0;
}else if( c==c2 ){
seen = 1;
prior_c = c2;
}else{
prior_c = c2;
}
sqliteNextChar(zPattern);
}
if( c2==0 || (seen ^ invert)==0 ) return 0;
sqliteNextChar(zString);
zPattern++;
break;
}
default: {
if( c != *zString ) return 0;
zPattern++;
zString++;
break;
}
}
}
return *zString==0;
}
/*
** Compare two UTF-8 strings for equality using the "LIKE" operator of
** SQL. The '%' character matches any sequence of 0 or more
** characters and '_' matches any single character. Case is
** not significant.
**
** This routine is just an adaptation of the sqliteGlobCompare()
** routine above.
*/
int
sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
int c;
int c2;
while( (c = UpperToLower[*zPattern])!=0 ){
switch( c ){
case '%': {
while( (c=zPattern[1]) == '%' || c == '_' ){
if( c=='_' ){
if( *zString==0 ) return 0;
sqliteNextChar(zString);
}
zPattern++;
}
if( c==0 ) return 1;
c = UpperToLower[c];
while( (c2=UpperToLower[*zString])!=0 ){
while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
if( c2==0 ) return 0;
if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
sqliteNextChar(zString);
}
return 0;
}
case '_': {
if( *zString==0 ) return 0;
sqliteNextChar(zString);
zPattern++;
break;
}
default: {
if( c != UpperToLower[*zString] ) return 0;
zPattern++;
zString++;
break;
}
}
}
return *zString==0;
}
/*
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
** when this routine is called.
**
** This routine is a attempt to detect if two threads use the
** same sqlite* pointer at the same time. There is a race
** condition so it is possible that the error is not detected.
** But usually the problem will be seen. The result will be an
** error which can be used to debug the application that is
** using SQLite incorrectly.
**
** Ticket #202: If db->magic is not a valid open value, take care not
** to modify the db structure at all. It could be that db is a stale
** pointer. In other words, it could be that there has been a prior
** call to sqlite_close(db) and db has been deallocated. And we do
** not want to write into deallocated memory.
*/
int sqliteSafetyOn(sqlite *db){
if( db->magic==SQLITE_MAGIC_OPEN ){
db->magic = SQLITE_MAGIC_BUSY;
return 0;
}else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
|| db->want_to_close ){
db->magic = SQLITE_MAGIC_ERROR;
db->flags |= SQLITE_Interrupt;
}
return 1;
}
/*
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
** when this routine is called.
*/
int sqliteSafetyOff(sqlite *db){
if( db->magic==SQLITE_MAGIC_BUSY ){
db->magic = SQLITE_MAGIC_OPEN;
return 0;
}else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
|| db->want_to_close ){
db->magic = SQLITE_MAGIC_ERROR;
db->flags |= SQLITE_Interrupt;
}
return 1;
}
/*
** Check to make sure we are not currently executing an sqlite_exec().
** If we are currently in an sqlite_exec(), return true and set
** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
** shutdown of the database.
**
** This routine is used to try to detect when API routines are called
** at the wrong time or in the wrong sequence.
*/
int sqliteSafetyCheck(sqlite *db){
if( db->pVdbe!=0 ){
db->magic = SQLITE_MAGIC_ERROR;
return 1;
}
return 0;
}