You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/opengl/qgl.cpp

2368 lines
66 KiB

/****************************************************************************
**
** Implementation of OpenGL classes for TQt
**
** Created : 970112
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the opengl module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqgl.h"
#include "ntqpixmap.h"
#include "ntqpaintdevicemetrics.h"
#include "ntqimage.h"
#include "ntqcleanuphandler.h"
#include "ntqptrdict.h"
static TQGLFormat* qgl_default_format = 0;
static TQGLFormat* qgl_default_overlay_format = 0;
#if defined(Q_WS_X11)
#include "private/qt_x11_p.h"
#define INT32 dummy_INT32
#define INT8 dummy_INT8
#include <GL/glx.h>
#undef INT32
#undef INT8
#include "qgl_x11_p.h"
#endif
static TQCleanupHandler<TQGLFormat> qgl_cleanup_format;
/*!
\class TQGL ntqgl.h
\brief The TQGL class is a namespace for miscellaneous identifiers
in the TQt OpenGL module.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\module OpenGL
\ingroup graphics
\ingroup images
Normally you can ignore this class. TQGLWidget and the other
OpenGL<sup>*</sup> module classes inherit it, so when you make your
own TQGLWidget subclass you can use the identifiers in the TQGL
namespace without qualification.
However, you may occasionally find yourself in situations where you
need to refer to these identifiers from outside the TQGL namespace's
scope, e.g. in static functions. In such cases, simply write e.g. \c
TQGL::DoubleBuffer instead of just \c DoubleBuffer.
<sup>*</sup> OpenGL is a trademark of Silicon Graphics, Inc. in the
United States and other countries.
*/
/*****************************************************************************
TQGLFormat implementation
*****************************************************************************/
/*!
\class TQGLFormat ntqgl.h
\brief The TQGLFormat class specifies the display format of an OpenGL
rendering context.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\ingroup graphics
\ingroup images
\module OpenGL
A display format has several characteristics:
\list
\i \link setDoubleBuffer() Double or single buffering.\endlink
\i \link setDepth() Depth buffer.\endlink
\i \link setRgba() RGBA or color index mode.\endlink
\i \link setAlpha() Alpha channel.\endlink
\i \link setAccum() Accumulation buffer.\endlink
\i \link setStencil() Stencil buffer.\endlink
\i \link setStereo() Stereo buffers.\endlink
\i \link setDirectRendering() Direct rendering.\endlink
\i \link setOverlay() Presence of an overlay.\endlink
\i \link setPlane() The plane of an overlay format.\endlink
\endlist
You create and tell a TQGLFormat object what rendering options you
want from an OpenGL<sup>*</sup> rendering context.
OpenGL drivers or accelerated hardware may or may not support
advanced features such as alpha channel or stereographic viewing.
If you request some features that the driver/hardware does not
provide when you create a TQGLWidget, you will get a rendering
context with the nearest subset of features.
There are different ways to define the display characteristics of
a rendering context. One is to create a TQGLFormat and make it the
default for the entire application:
\code
TQGLFormat f;
f.setAlpha( TRUE );
f.setStereo( TRUE );
TQGLFormat::setDefaultFormat( f );
\endcode
Or you can specify the desired format when creating an object of
your TQGLWidget subclass:
\code
TQGLFormat f;
f.setDoubleBuffer( FALSE ); // single buffer
f.setDirectRendering( FALSE ); // software rendering
MyGLWidget* myWidget = new MyGLWidget( f, ... );
\endcode
After the widget has been created, you can find out which of the
requested features the system was able to provide:
\code
TQGLFormat f;
f.setOverlay( TRUE );
f.setStereo( TRUE );
MyGLWidget* myWidget = new MyGLWidget( f, ... );
if ( !w->format().stereo() ) {
// ok, goggles off
if ( !w->format().hasOverlay() ) {
tqFatal( "Cool hardware required" );
}
}
\endcode
<sup>*</sup> OpenGL is a trademark of Silicon Graphics, Inc. in the
United States and other countries.
\sa TQGLContext, TQGLWidget
*/
/*!
Constructs a TQGLFormat object with the factory default settings:
\list
\i \link setDoubleBuffer() Double buffer:\endlink Enabled.
\i \link setDepth() Depth buffer:\endlink Enabled.
\i \link setRgba() RGBA:\endlink Enabled (i.e., color index disabled).
\i \link setAlpha() Alpha channel:\endlink Disabled.
\i \link setAccum() Accumulator buffer:\endlink Disabled.
\i \link setStencil() Stencil buffer:\endlink Disabled.
\i \link setStereo() Stereo:\endlink Disabled.
\i \link setDirectRendering() Direct rendering:\endlink Enabled.
\i \link setOverlay() Overlay:\endlink Disabled.
\i \link setPlane() Plane:\endlink 0 (i.e., normal plane).
\endlist
*/
TQGLFormat::TQGLFormat()
{
opts = DoubleBuffer | DepthBuffer | Rgba | DirectRendering;
pln = 0;
}
/*!
Creates a TQGLFormat object that is a copy of the current \link
defaultFormat() application default format\endlink.
If \a options is not 0, this copy is modified by these format
options. The \a options parameter should be \c FormatOption values
OR'ed together.
This constructor makes it easy to specify a certain desired format
in classes derived from TQGLWidget, for example:
\code
// The rendering in MyGLWidget depends on using
// stencil buffer and alpha channel
MyGLWidget::MyGLWidget( TQWidget* parent, const char* name )
: TQGLWidget( TQGLFormat( StencilBuffer | AlphaChannel ), parent, name )
{
if ( !format().stencil() )
tqWarning( "Could not get stencil buffer; results will be suboptimal" );
if ( !format().alphaChannel() )
tqWarning( "Could not get alpha channel; results will be suboptimal" );
...
}
\endcode
Note that there are \c FormatOption values to turn format settings
both on and off, e.g. \c DepthBuffer and \c NoDepthBuffer,
\c DirectRendering and \c IndirectRendering, etc.
The \a plane parameter defaults to 0 and is the plane which this
format should be associated with. Not all OpenGL implmentations
supports overlay/underlay rendering planes.
\sa defaultFormat(), setOption()
*/
TQGLFormat::TQGLFormat( int options, int plane )
{
uint newOpts = options;
opts = defaultFormat().opts;
opts |= ( newOpts & 0xffff );
opts &= ~( newOpts >> 16 );
pln = plane;
}
/*!
\fn bool TQGLFormat::doubleBuffer() const
Returns TRUE if double buffering is enabled; otherwise returns
FALSE. Double buffering is enabled by default.
\sa setDoubleBuffer()
*/
/*!
If \a enable is TRUE sets double buffering; otherwise sets single
buffering.
Double buffering is enabled by default.
Double buffering is a technique where graphics are rendered on an
off-screen buffer and not directly to the screen. When the drawing
has been completed, the program calls a swapBuffers() function to
exchange the screen contents with the buffer. The result is
flicker-free drawing and often better performance.
\sa doubleBuffer(), TQGLContext::swapBuffers(),
TQGLWidget::swapBuffers()
*/
void TQGLFormat::setDoubleBuffer( bool enable )
{
setOption( enable ? DoubleBuffer : SingleBuffer );
}
/*!
\fn bool TQGLFormat::depth() const
Returns TRUE if the depth buffer is enabled; otherwise returns
FALSE. The depth buffer is enabled by default.
\sa setDepth()
*/
/*!
If \a enable is TRUE enables the depth buffer; otherwise disables
the depth buffer.
The depth buffer is enabled by default.
The purpose of a depth buffer (or Z-buffering) is to remove hidden
surfaces. Pixels are assigned Z values based on the distance to
the viewer. A pixel with a high Z value is closer to the viewer
than a pixel with a low Z value. This information is used to
decide whether to draw a pixel or not.
\sa depth()
*/
void TQGLFormat::setDepth( bool enable )
{
setOption( enable ? DepthBuffer : NoDepthBuffer );
}
/*!
\fn bool TQGLFormat::rgba() const
Returns TRUE if RGBA color mode is set. Returns FALSE if color
index mode is set. The default color mode is RGBA.
\sa setRgba()
*/
/*!
If \a enable is TRUE sets RGBA mode. If \a enable is FALSE sets
color index mode.
The default color mode is RGBA.
RGBA is the preferred mode for most OpenGL applications. In RGBA
color mode you specify colors as red + green + blue + alpha
quadruplets.
In color index mode you specify an index into a color lookup
table.
\sa rgba()
*/
void TQGLFormat::setRgba( bool enable )
{
setOption( enable ? Rgba : ColorIndex );
}
/*!
\fn bool TQGLFormat::alpha() const
Returns TRUE if the alpha channel of the framebuffer is enabled;
otherwise returns FALSE. The alpha channel is disabled by default.
\sa setAlpha()
*/
/*!
If \a enable is TRUE enables the alpha channel; otherwise disables
the alpha channel.
The alpha buffer is disabled by default.
The alpha channel is typically used for implementing transparency
or translucency. The A in RGBA specifies the transparency of a
pixel.
\sa alpha()
*/
void TQGLFormat::setAlpha( bool enable )
{
setOption( enable ? AlphaChannel : NoAlphaChannel );
}
/*!
\fn bool TQGLFormat::accum() const
Returns TRUE if the accumulation buffer is enabled; otherwise
returns FALSE. The accumulation buffer is disabled by default.
\sa setAccum()
*/
/*!
If \a enable is TRUE enables the accumulation buffer; otherwise
disables the accumulation buffer.
The accumulation buffer is disabled by default.
The accumulation buffer is used to create blur effects and
multiple exposures.
\sa accum()
*/
void TQGLFormat::setAccum( bool enable )
{
setOption( enable ? AccumBuffer : NoAccumBuffer );
}
/*!
\fn bool TQGLFormat::stencil() const
Returns TRUE if the stencil buffer is enabled; otherwise returns
FALSE. The stencil buffer is disabled by default.
\sa setStencil()
*/
/*!
If \a enable is TRUE enables the stencil buffer; otherwise
disables the stencil buffer.
The stencil buffer is disabled by default.
The stencil buffer masks certain parts of the drawing area so that
masked parts are not drawn on.
\sa stencil()
*/
void TQGLFormat::setStencil( bool enable )
{
setOption( enable ? StencilBuffer: NoStencilBuffer );
}
/*!
\fn bool TQGLFormat::stereo() const
Returns TRUE if stereo buffering is enabled; otherwise returns
FALSE. Stereo buffering is disabled by default.
\sa setStereo()
*/
/*!
If \a enable is TRUE enables stereo buffering; otherwise disables
stereo buffering.
Stereo buffering is disabled by default.
Stereo buffering provides extra color buffers to generate left-eye
and right-eye images.
\sa stereo()
*/
void TQGLFormat::setStereo( bool enable )
{
setOption( enable ? StereoBuffers : NoStereoBuffers );
}
/*!
\fn bool TQGLFormat::directRendering() const
Returns TRUE if direct rendering is enabled; otherwise returns
FALSE.
Direct rendering is enabled by default.
\sa setDirectRendering()
*/
/*!
If \a enable is TRUE enables direct rendering; otherwise disables
direct rendering.
Direct rendering is enabled by default.
Enabling this option will make OpenGL bypass the underlying window
system and render directly from hardware to the screen, if this is
supported by the system.
\sa directRendering()
*/
void TQGLFormat::setDirectRendering( bool enable )
{
setOption( enable ? DirectRendering : IndirectRendering );
}
/*!
\fn bool TQGLFormat::hasOverlay() const
Returns TRUE if overlay plane is enabled; otherwise returns FALSE.
Overlay is disabled by default.
\sa setOverlay()
*/
/*!
If \a enable is TRUE enables an overlay plane; otherwise disables
the overlay plane.
Enabling the overlay plane will cause TQGLWidget to create an
additional context in an overlay plane. See the TQGLWidget
documentation for further information.
\sa hasOverlay()
*/
void TQGLFormat::setOverlay( bool enable )
{
setOption( enable ? HasOverlay : NoOverlay );
}
/*!
Returns the plane of this format. The default for normal formats
is 0, which means the normal plane. The default for overlay
formats is 1, which is the first overlay plane.
\sa setPlane()
*/
int TQGLFormat::plane() const
{
return pln;
}
/*!
Sets the requested plane to \a plane. 0 is the normal plane, 1 is
the first overlay plane, 2 is the second overlay plane, etc.; -1,
-2, etc. are underlay planes.
Note that in contrast to other format specifications, the plane
specifications will be matched exactly. This means that if you
specify a plane that the underlying OpenGL system cannot provide,
an \link TQGLWidget::isValid() invalid\endlink TQGLWidget will be
created.
\sa plane()
*/
void TQGLFormat::setPlane( int plane )
{
pln = plane;
}
/*!
Sets the format option to \a opt.
\sa testOption()
*/
void TQGLFormat::setOption( FormatOption opt )
{
if ( opt & 0xffff )
opts |= opt;
else
opts &= ~( opt >> 16 );
}
/*!
Returns TRUE if format option \a opt is set; otherwise returns FALSE.
\sa setOption()
*/
bool TQGLFormat::testOption( FormatOption opt ) const
{
if ( opt & 0xffff )
return ( opts & opt ) != 0;
else
return ( opts & ( opt >> 16 ) ) == 0;
}
/*!
\fn bool TQGLFormat::hasOpenGL()
Returns TRUE if the window system has any OpenGL support;
otherwise returns FALSE.
\warning This function must not be called until the TQApplication
object has been created.
*/
/*!
\fn bool TQGLFormat::hasOpenGLOverlays()
Returns TRUE if the window system supports OpenGL overlays;
otherwise returns FALSE.
\warning This function must not be called until the TQApplication
object has been created.
*/
/*!
Returns the default TQGLFormat for the application. All TQGLWidgets
that are created use this format unless another format is
specified, e.g. when they are constructed.
If no special default format has been set using
setDefaultFormat(), the default format is the same as that created
with TQGLFormat().
\sa setDefaultFormat()
*/
TQGLFormat TQGLFormat::defaultFormat()
{
if ( !qgl_default_format ) {
qgl_default_format = new TQGLFormat;
qgl_cleanup_format.add( &qgl_default_format );
}
return *qgl_default_format;
}
/*!
Sets a new default TQGLFormat for the application to \a f. For
example, to set single buffering as the default instead of double
buffering, your main() might contain code like this:
\code
TQApplication a(argc, argv);
TQGLFormat f;
f.setDoubleBuffer( FALSE );
TQGLFormat::setDefaultFormat( f );
\endcode
\sa defaultFormat()
*/
void TQGLFormat::setDefaultFormat( const TQGLFormat &f )
{
if ( !qgl_default_format ) {
qgl_default_format = new TQGLFormat;
qgl_cleanup_format.add( &qgl_default_format );
}
*qgl_default_format = f;
}
/*!
Returns the default TQGLFormat for overlay contexts.
The factory default overlay format is:
\list
\i \link setDoubleBuffer() Double buffer:\endlink Disabled.
\i \link setDepth() Depth buffer:\endlink Disabled.
\i \link setRgba() RGBA:\endlink Disabled (i.e., color index enabled).
\i \link setAlpha() Alpha channel:\endlink Disabled.
\i \link setAccum() Accumulator buffer:\endlink Disabled.
\i \link setStencil() Stencil buffer:\endlink Disabled.
\i \link setStereo() Stereo:\endlink Disabled.
\i \link setDirectRendering() Direct rendering:\endlink Enabled.
\i \link setOverlay() Overlay:\endlink Disabled.
\i \link setPlane() Plane:\endlink 1 (i.e., first overlay plane).
\endlist
\sa setDefaultFormat()
*/
TQGLFormat TQGLFormat::defaultOverlayFormat()
{
if ( !qgl_default_overlay_format ) {
qgl_default_overlay_format = new TQGLFormat;
qgl_default_overlay_format->opts = DirectRendering;
qgl_default_overlay_format->pln = 1;
qgl_cleanup_format.add( &qgl_default_overlay_format );
}
return *qgl_default_overlay_format;
}
/*!
Sets a new default TQGLFormat for overlay contexts to \a f. This
format is used whenever a TQGLWidget is created with a format that
hasOverlay() enabled.
For example, to get a double buffered overlay context (if
available), use code like this:
\code
TQGLFormat f = TQGLFormat::defaultOverlayFormat();
f.setDoubleBuffer( TRUE );
TQGLFormat::setDefaultOverlayFormat( f );
\endcode
As usual, you can find out after widget creation whether the
underlying OpenGL system was able to provide the requested
specification:
\code
// ...continued from above
MyGLWidget* myWidget = new MyGLWidget( TQGLFormat( TQGL::HasOverlay ), ... );
if ( myWidget->format().hasOverlay() ) {
// Yes, we got an overlay, let's check _its_ format:
TQGLContext* olContext = myWidget->overlayContext();
if ( olContext->format().doubleBuffer() )
; // yes, we got a double buffered overlay
else
; // no, only single buffered overlays are available
}
\endcode
\sa defaultOverlayFormat()
*/
void TQGLFormat::setDefaultOverlayFormat( const TQGLFormat &f )
{
if ( !qgl_default_overlay_format ) {
qgl_default_overlay_format = new TQGLFormat;
qgl_cleanup_format.add( &qgl_default_overlay_format );
}
*qgl_default_overlay_format = f;
// Make sure the user doesn't request that the overlays themselves
// have overlays, since it is unlikely that the system supports
// infinitely many planes...
qgl_default_overlay_format->setOverlay( FALSE );
}
/*!
Returns TRUE if all the options of the two TQGLFormats are equal;
otherwise returns FALSE.
*/
bool operator==( const TQGLFormat& a, const TQGLFormat& b )
{
return (a.opts == b.opts) && (a.pln == b.pln);
}
/*!
Returns FALSE if all the options of the two TQGLFormats are equal;
otherwise returns TRUE.
*/
bool operator!=( const TQGLFormat& a, const TQGLFormat& b )
{
return !( a == b );
}
/*****************************************************************************
TQGLContext implementation
*****************************************************************************/
TQGLContext* TQGLContext::currentCtx = 0;
/*!
\class TQGLContext ntqgl.h
\brief The TQGLContext class encapsulates an OpenGL rendering context.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\ingroup graphics
\ingroup images
\module OpenGL
An OpenGL<sup>*</sup> rendering context is a complete set of
OpenGL state variables.
The context's \link TQGL::FormatOption format\endlink is set in the
constructor or later with setFormat(). The format options that are
actually set are returned by format(); the options you asked for
are returned by requestedFormat(). Note that after a TQGLContext
object has been constructed, the actual OpenGL context must be
created by explicitly calling the \link create() create()\endlink
function. The makeCurrent() function makes this context the
current rendering context. You can make \e no context current
using doneCurrent(). The reset() function will reset the context
and make it invalid.
You can examine properties of the context with, e.g. isValid(),
isSharing(), initialized(), windowCreated() and
overlayTransparentColor().
If you're using double buffering you can swap the screen contents
with the off-screen buffer using swapBuffers().
Please note that TQGLContext is not thread safe.
<sup>*</sup> OpenGL is a trademark of Silicon Graphics, Inc. in the
United States and other countries.
*/
/*!
Constructs an OpenGL context for the paint device \a device, which
can be a widget or a pixmap. The \a format specifies several
display options for the context.
If the underlying OpenGL/Window system cannot satisfy all the
features requested in \a format, the nearest subset of features
will be used. After creation, the format() method will return the
actual format obtained.
Note that after a TQGLContext object has been constructed, \link
create() create()\endlink must be called explicitly to create
the actual OpenGL context. The context will be \link isValid()
invalid\endlink if it was not possible to obtain a GL context at
all.
\sa format(), isValid()
*/
TQGLContext::TQGLContext( const TQGLFormat &format, TQPaintDevice *device )
: glFormat(format), reqFormat(format)
{
init( device );
}
/*!
\overload
\internal
*/
TQGLContext::TQGLContext( const TQGLFormat &format )
: glFormat( format ), reqFormat(format)
{
init();
}
/*!
Destroys the OpenGL context and frees its resources.
*/
TQGLContext::~TQGLContext()
{
reset();
if ( d )
delete d;
}
/*!
\fn TQGLFormat TQGLContext::format() const
Returns the frame buffer format that was obtained (this may be a
subset of what was requested).
\sa requestedFormat()
*/
/*!
\fn TQGLFormat TQGLContext::requestedFormat() const
Returns the frame buffer format that was originally requested in
the constructor or setFormat().
\sa format()
*/
/*!
Sets a \a format for this context. The context is \link reset()
reset\endlink.
Call create() to create a new GL context that tries to match the
new format.
\code
TQGLContext *cx;
// ...
TQGLFormat f;
f.setStereo( TRUE );
cx->setFormat( f );
if ( !cx->create() )
exit(); // no OpenGL support, or cannot render on the specified paintdevice
if ( !cx->format().stereo() )
exit(); // could not create stereo context
\endcode
\sa format(), reset(), create()
*/
void TQGLContext::setFormat( const TQGLFormat &format )
{
reset();
glFormat = reqFormat = format;
}
/*!
\internal
*/
void TQGLContext::setDevice( TQPaintDevice *pDev )
{
if ( isValid() )
reset();
d->paintDevice = pDev;
if ( d->paintDevice && (d->paintDevice->devType() != TQInternal::Widget
&& d->paintDevice->devType() != TQInternal::Pixmap) ) {
#if defined(QT_CHECK_RANGE)
tqWarning( "TQGLContext: Unsupported paint device type" );
#endif
}
}
void TQGLContext::init( TQPaintDevice *dev )
{
d = new Private;
d->valid = FALSE;
#if defined(Q_WS_X11)
qt_resolve_gl_symbols();
gpm = 0;
#endif
setDevice( dev );
#if defined(Q_WS_WIN)
dc = 0;
win = 0;
pixelFormatId = 0;
cmap = 0;
#endif
#if defined(Q_WS_MAC)
d->oldR = TQRect(1, 1, 1, 1);
#endif
d->crWin = FALSE;
d->initDone = FALSE;
d->sharing = FALSE;
}
/*!
\fn bool TQGLContext::isValid() const
Returns TRUE if a GL rendering context has been successfully
created; otherwise returns FALSE.
*/
/*!
\fn void TQGLContext::setValid( bool valid )
\internal
Forces the GL rendering context to be valid.
*/
/*!
\fn bool TQGLContext::isSharing() const
Returns TRUE if display list sharing with another context was
requested in the create() call and the GL system was able to
fulfill this request; otherwise returns FALSE. Note that display
list sharing might not be supported between contexts with
different formats.
*/
/*!
\fn bool TQGLContext::deviceIsPixmap() const
Returns TRUE if the paint device of this context is a pixmap;
otherwise returns FALSE.
*/
/*!
\fn bool TQGLContext::windowCreated() const
Returns TRUE if a window has been created for this context;
otherwise returns FALSE.
\sa setWindowCreated()
*/
/*!
\fn void TQGLContext::setWindowCreated( bool on )
If \a on is TRUE the context has had a window created for it. If
\a on is FALSE no window has been created for the context.
\sa windowCreated()
*/
/*!
\fn uint TQGLContext::colorIndex( const TQColor& c ) const
\internal
Returns a colormap index for the color c, in ColorIndex mode. Used
by qglColor() and qglClearColor().
*/
/*!
\fn bool TQGLContext::initialized() const
Returns TRUE if this context has been initialized, i.e. if
TQGLWidget::initializeGL() has been performed on it; otherwise
returns FALSE.
\sa setInitialized()
*/
/*!
\fn void TQGLContext::setInitialized( bool on )
If \a on is TRUE the context has been initialized, i.e.
TQGLContext::setInitialized() has been called on it. If \a on is
FALSE the context has not been initialized.
\sa initialized()
*/
/*!
\fn const TQGLContext* TQGLContext::currentContext()
Returns the current context, i.e. the context to which any OpenGL
commands will currently be directed. Returns 0 if no context is
current.
\sa makeCurrent()
*/
/*!
\fn TQColor TQGLContext::overlayTransparentColor() const
If this context is a valid context in an overlay plane, returns
the plane's transparent color. Otherwise returns an \link
TQColor::isValid() invalid \endlink color.
The returned color's \link TQColor::pixel() pixel \endlink value is
the index of the transparent color in the colormap of the overlay
plane. (Naturally, the color's RGB values are meaningless.)
The returned TQColor object will generally work as expected only
when passed as the argument to TQGLWidget::qglColor() or
TQGLWidget::qglClearColor(). Under certain circumstances it can
also be used to draw transparent graphics with a TQPainter. See the
examples/opengl/overlay_x11 example for details.
*/
/*!
Creates the GL context. Returns TRUE if it was successful in
creating a valid GL rendering context on the paint device
specified in the constructor; otherwise returns FALSE (i.e. the
context is invalid).
After successful creation, format() returns the set of features of
the created GL rendering context.
If \a shareContext points to a valid TQGLContext, this method will
try to establish OpenGL display list sharing between this context
and the \a shareContext. Note that this may fail if the two
contexts have different formats. Use isSharing() to see if sharing
succeeded.
\warning Implementation note: initialization of C++ class
members usually takes place in the class constructor. TQGLContext
is an exception because it must be simple to customize. The
virtual functions chooseContext() (and chooseVisual() for X11) can
be reimplemented in a subclass to select a particular context. The
problem is that virtual functions are not properly called during
construction (even though this is correct C++) because C++
constructs class hierarchies from the bottom up. For this reason
we need a create() function.
\sa chooseContext(), format(), isValid()
*/
bool TQGLContext::create( const TQGLContext* shareContext )
{
reset();
d->valid = chooseContext( shareContext );
return d->valid;
}
/*!
\fn bool TQGLContext::chooseContext( const TQGLContext* shareContext = 0 )
This semi-internal function is called by create(). It creates a
system-dependent OpenGL handle that matches the format() of \a
shareContext as closely as possible.
On Windows, it calls the virtual function choosePixelFormat(),
which finds a matching pixel format identifier. On X11, it calls
the virtual function chooseVisual() which finds an appropriate X
visual. On other platforms it may work differently.
*/
/*!
\fn void TQGLContext::reset()
Resets the context and makes it invalid.
\sa create(), isValid()
*/
/*!
\fn void TQGLContext::makeCurrent()
Makes this context the current OpenGL rendering context. All GL
functions you call operate on this context until another context
is made current.
In some very rare cases the underlying call may fail. If this
occurs an error message is output to stderr.
*/
/*!
\fn void TQGLContext::swapBuffers() const
Swaps the screen contents with an off-screen buffer. Only works if
the context is in double buffer mode.
\sa TQGLFormat::setDoubleBuffer()
*/
/*!
\fn void TQGLContext::doneCurrent()
Makes no GL context the current context. Normally, you do not need
to call this function; TQGLContext calls it as necessary.
*/
/*!
\fn TQPaintDevice* TQGLContext::device() const
Returns the paint device set for this context.
\sa TQGLContext::TQGLContext()
*/
/*!
\fn void TQGLContext::generateFontDisplayLists( const TQFont& font, int listBase )
Generates a set of 256 display lists for the 256 first characters
in the font \a font. The first list will start at index \a listBase.
\sa TQGLWidget::renderText()
*/
/*****************************************************************************
TQGLWidget implementation
*****************************************************************************/
/*!
\class TQGLWidget ntqgl.h
\brief The TQGLWidget class is a widget for rendering OpenGL graphics.
\if defined(commercial)
It is part of the <a href="commercialeditions.html">TQt Enterprise Edition</a>.
\endif
\ingroup graphics
\ingroup images
\mainclass
\module OpenGL
TQGLWidget provides functionality for displaying OpenGL<sup>*</sup>
graphics integrated into a TQt application. It is very simple to
use. You inherit from it and use the subclass like any other
TQWidget, except that instead of drawing the widget's contents
using TQPainter etc. you use the standard OpenGL rendering
commands.
TQGLWidget provides three convenient virtual functions that you can
reimplement in your subclass to perform the typical OpenGL tasks:
\list
\i paintGL() - Renders the OpenGL scene. Gets called whenever the widget
needs to be updated.
\i resizeGL() - Sets up the OpenGL viewport, projection, etc. Gets
called whenever the the widget has been resized (and also when it
is shown for the first time because all newly created widgets get a
resize event automatically).
\i initializeGL() - Sets up the OpenGL rendering context, defines display
lists, etc. Gets called once before the first time resizeGL() or
paintGL() is called.
\endlist
Here is a rough outline of how a TQGLWidget subclass might look:
\code
class MyGLDrawer : public TQGLWidget
{
TQ_OBJECT // must include this if you use TQt signals/slots
public:
MyGLDrawer( TQWidget *parent, const char *name )
: TQGLWidget(parent, name) {}
protected:
void initializeGL()
{
// Set up the rendering context, define display lists etc.:
...
glClearColor( 0.0, 0.0, 0.0, 0.0 );
glEnable(GL_DEPTH_TEST);
...
}
void resizeGL( int w, int h )
{
// setup viewport, projection etc.:
glViewport( 0, 0, (GLint)w, (GLint)h );
...
glFrustum( ... );
...
}
void paintGL()
{
// draw the scene:
...
glRotatef( ... );
glMaterialfv( ... );
glBegin( GL_QUADS );
glVertex3f( ... );
glVertex3f( ... );
...
glEnd();
...
}
};
\endcode
If you need to trigger a repaint from places other than paintGL()
(a typical example is when using \link TQTimer timers\endlink to
animate scenes), you should call the widget's updateGL() function.
Your widget's OpenGL rendering context is made current when
paintGL(), resizeGL(), or initializeGL() is called. If you need to
call the standard OpenGL API functions from other places (e.g. in
your widget's constructor or in your own paint functions), you
must call makeCurrent() first.
TQGLWidget provides functions for requesting a new display \link
TQGLFormat format\endlink and you can also create widgets with
customized rendering \link TQGLContext contexts\endlink.
You can also share OpenGL display lists between TQGLWidgets (see
the documentation of the TQGLWidget constructors for details).
\section1 Overlays
The TQGLWidget creates a GL overlay context in addition to the
normal context if overlays are supported by the underlying system.
If you want to use overlays, you specify it in the \link TQGLFormat
format\endlink. (Note: Overlay must be requested in the format
passed to the TQGLWidget constructor.) Your GL widget should also
implement some or all of these virtual methods:
\list
\i paintOverlayGL()
\i resizeOverlayGL()
\i initializeOverlayGL()
\endlist
These methods work in the same way as the normal paintGL() etc.
functions, except that they will be called when the overlay
context is made current. You can explicitly make the overlay
context current by using makeOverlayCurrent(), and you can access
the overlay context directly (e.g. to ask for its transparent
color) by calling overlayContext().
On X servers in which the default visual is in an overlay plane,
non-GL TQt windows can also be used for overlays. See the
examples/opengl/overlay_x11 example program for details.
<sup>*</sup> OpenGL is a trademark of Silicon Graphics, Inc. in the
United States and other countries.
*/
// ### BCI - fix in 4.0
// the display list cache can't be global because display lists are
// tied to the GL contexts for each individual widget
class TQGLWidgetPrivate
{
public:
TQMap<TQString, int> displayListCache;
};
static TQPtrDict<TQGLWidgetPrivate> * qgl_d_ptr = 0;
static TQSingleCleanupHandler< TQPtrDict<TQGLWidgetPrivate> > qgl_cleanup_d_ptr;
static TQGLWidgetPrivate * qgl_d( const TQGLWidget * w )
{
if ( !qgl_d_ptr ) {
qgl_d_ptr = new TQPtrDict<TQGLWidgetPrivate>;
qgl_cleanup_d_ptr.set( &qgl_d_ptr );
qgl_d_ptr->setAutoDelete( TRUE );
}
TQGLWidgetPrivate * ret = qgl_d_ptr->find( (void *) w );
if ( !ret ) {
ret = new TQGLWidgetPrivate;
qgl_d_ptr->replace( (void *) w, ret );
}
return ret;
}
void qgl_delete_d( const TQGLWidget * w )
{
if ( qgl_d_ptr )
qgl_d_ptr->remove( (void *) w );
}
/*!
Constructs an OpenGL widget with a \a parent widget and a \a name.
The \link TQGLFormat::defaultFormat() default format\endlink is
used. The widget will be \link isValid() invalid\endlink if the
system has no \link TQGLFormat::hasOpenGL() OpenGL support\endlink.
The \a parent, \a name and widget flag, \a f, arguments are passed
to the TQWidget constructor.
If the \a shareWidget parameter points to a valid TQGLWidget, this
widget will share OpenGL display lists with \a shareWidget. If
this widget and \a shareWidget have different \link format()
formats\endlink, display list sharing may fail. You can check
whether display list sharing succeeded by calling isSharing().
The initialization of OpenGL rendering state, etc. should be done
by overriding the initializeGL() function, rather than in the
constructor of your TQGLWidget subclass.
\sa TQGLFormat::defaultFormat()
*/
TQGLWidget::TQGLWidget( TQWidget *parent, const char *name,
const TQGLWidget* shareWidget, WFlags f )
: TQWidget( parent, name, f | TQt::WWinOwnDC | TQt::WNoAutoErase )
{
init( new TQGLContext(TQGLFormat::defaultFormat(), this), shareWidget );
}
/*!
Constructs an OpenGL widget with parent \a parent, called \a name.
The \a format argument specifies the desired \link TQGLFormat
rendering options \endlink. If the underlying OpenGL/Window system
cannot satisfy all the features requested in \a format, the
nearest subset of features will be used. After creation, the
format() method will return the actual format obtained.
The widget will be \link isValid() invalid\endlink if the system
has no \link TQGLFormat::hasOpenGL() OpenGL support\endlink.
The \a parent, \a name and widget flag, \a f, arguments are passed
to the TQWidget constructor.
If the \a shareWidget parameter points to a valid TQGLWidget, this
widget will share OpenGL display lists with \a shareWidget. If
this widget and \a shareWidget have different \link format()
formats\endlink, display list sharing may fail. You can check
whether display list sharing succeeded by calling isSharing().
The initialization of OpenGL rendering state, etc. should be done
by overriding the initializeGL() function, rather than in the
constructor of your TQGLWidget subclass.
\sa TQGLFormat::defaultFormat(), isValid()
*/
TQGLWidget::TQGLWidget( const TQGLFormat &format, TQWidget *parent,
const char *name, const TQGLWidget* shareWidget,
WFlags f )
: TQWidget( parent, name, f | TQt::WWinOwnDC | TQt::WNoAutoErase )
{
init( new TQGLContext(format, this), shareWidget );
}
/*!
Constructs an OpenGL widget with parent \a parent, called \a name.
The \a context argument is a pointer to the TQGLContext that
you wish to be bound to this widget. This allows you to pass in
your own TQGLContext sub-classes.
The widget will be \link isValid() invalid\endlink if the system
has no \link TQGLFormat::hasOpenGL() OpenGL support\endlink.
The \a parent, \a name and widget flag, \a f, arguments are passed
to the TQWidget constructor.
If the \a shareWidget parameter points to a valid TQGLWidget, this
widget will share OpenGL display lists with \a shareWidget. If
this widget and \a shareWidget have different \link format()
formats\endlink, display list sharing may fail. You can check
whether display list sharing succeeded by calling isSharing().
The initialization of OpenGL rendering state, etc. should be done
by overriding the initializeGL() function, rather than in the
constructor of your TQGLWidget subclass.
\sa TQGLFormat::defaultFormat(), isValid()
*/
TQGLWidget::TQGLWidget( TQGLContext *context, TQWidget *parent,
const char *name, const TQGLWidget *shareWidget, WFlags f )
: TQWidget( parent, name, f | TQt::WWinOwnDC | TQt::WNoAutoErase )
{
init( context, shareWidget );
}
/*!
Destroys the widget.
*/
TQGLWidget::~TQGLWidget()
{
#if defined(GLX_MESA_release_buffers) && defined(TQGL_USE_MESA_EXT)
bool doRelease = ( glcx && glcx->windowCreated() );
#endif
qgl_delete_d( this );
delete glcx;
#if defined(Q_WGL)
delete olcx;
#endif
#if defined(GLX_MESA_release_buffers) && defined(TQGL_USE_MESA_EXT)
if ( doRelease )
glXReleaseBuffersMESA( x11Display(), winId() );
#endif
#if defined(Q_WS_MAC)
if(gl_pix) {
delete gl_pix;
gl_pix = NULL;
}
#endif
cleanupColormaps();
}
/*!
\fn TQGLFormat TQGLWidget::format() const
Returns the format of the contained GL rendering context.
*/
/*!
\fn bool TQGLWidget::doubleBuffer() const
Returns TRUE if the contained GL rendering context has double
buffering; otherwise returns FALSE.
\sa TQGLFormat::doubleBuffer()
*/
/*!
\fn void TQGLWidget::setAutoBufferSwap( bool on )
If \a on is TRUE automatic GL buffer swapping is switched on;
otherwise it is switched off.
If \a on is TRUE and the widget is using a double-buffered format,
the background and foreground GL buffers will automatically be
swapped after each paintGL() call.
The buffer auto-swapping is on by default.
\sa autoBufferSwap(), doubleBuffer(), swapBuffers()
*/
/*!
\fn bool TQGLWidget::autoBufferSwap() const
Returns TRUE if the widget is doing automatic GL buffer swapping;
otherwise returns FALSE.
\sa setAutoBufferSwap()
*/
/*!
\fn bool TQGLWidget::isValid() const
Returns TRUE if the widget has a valid GL rendering context;
otherwise returns FALSE. A widget will be invalid if the system
has no \link TQGLFormat::hasOpenGL() OpenGL support\endlink.
*/
bool TQGLWidget::isValid() const
{
return glcx->isValid();
}
/*!
\fn bool TQGLWidget::isSharing() const
Returns TRUE if display list sharing with another TQGLWidget was
requested in the constructor, and the GL system was able to
provide it; otherwise returns FALSE. The GL system may fail to
provide display list sharing if the two TQGLWidgets use different
formats.
\sa format()
*/
bool TQGLWidget::isSharing() const
{
return glcx->isSharing();
}
/*!
\fn void TQGLWidget::makeCurrent()
Makes this widget the current widget for OpenGL operations, i.e.
makes the widget's rendering context the current OpenGL rendering
context.
*/
void TQGLWidget::makeCurrent()
{
#if defined( Q_WS_MAC )
macInternalDoubleBuffer(); //make sure the correct context is used
#endif
glcx->makeCurrent();
}
/*!
\fn void TQGLWidget::doneCurrent()
Makes no GL context the current context. Normally, you do not need
to call this function; TQGLContext calls it as necessary. However,
it may be useful in multithreaded environments.
*/
void TQGLWidget::doneCurrent()
{
glcx->doneCurrent();
}
/*!
\fn void TQGLWidget::swapBuffers()
Swaps the screen contents with an off-screen buffer. This only
works if the widget's format specifies double buffer mode.
Normally, there is no need to explicitly call this function
because it is done automatically after each widget repaint, i.e.
each time after paintGL() has been executed.
\sa doubleBuffer(), setAutoBufferSwap(), TQGLFormat::setDoubleBuffer()
*/
void TQGLWidget::swapBuffers()
{
glcx->swapBuffers();
#if defined(Q_WS_MAC)
if(macInternalDoubleBuffer() && gl_pix)
bitBlt(this, 0, 0, gl_pix);
#endif
}
/*!
\fn const TQGLContext* TQGLWidget::overlayContext() const
Returns the overlay context of this widget, or 0 if this widget
has no overlay.
\sa context()
*/
/*!
\fn void TQGLWidget::makeOverlayCurrent()
Makes the overlay context of this widget current. Use this if you
need to issue OpenGL commands to the overlay context outside of
initializeOverlayGL(), resizeOverlayGL(), and paintOverlayGL().
Does nothing if this widget has no overlay.
\sa makeCurrent()
*/
/*
\obsolete
Sets a new format for this widget.
If the underlying OpenGL/Window system cannot satisfy all the
features requested in \a format, the nearest subset of features will
be used. After creation, the format() method will return the actual
rendering context format obtained.
The widget will be assigned a new TQGLContext, and the initializeGL()
function will be executed for this new context before the first
resizeGL() or paintGL().
This method will try to keep any existing display list sharing with
other TQGLWidgets, but it may fail. Use isSharing() to test.
\sa format(), isSharing(), isValid()
*/
void TQGLWidget::setFormat( const TQGLFormat &format )
{
setContext( new TQGLContext(format,this) );
}
/*!
\fn const TQGLContext *TQGLWidget::context() const
Returns the context of this widget.
It is possible that the context is not valid (see isValid()), for
example, if the underlying hardware does not support the format
attributes that were requested.
*/
/*
\obsolete
\fn void TQGLWidget::setContext( TQGLContext *context,
const TQGLContext* shareContext,
bool deleteOldContext )
Sets a new context for this widget. The TQGLContext \a context must
be created using \e new. TQGLWidget will delete \a context when
another context is set or when the widget is destroyed.
If \a context is invalid, TQGLContext::create() is performed on
it. The initializeGL() function will then be executed for the new
context before the first resizeGL() or paintGL().
If \a context is invalid, this method will try to keep any existing
display list sharing with other TQGLWidgets this widget currently
has, or (if \a shareContext points to a valid context) start display
list sharing with that context, but it may fail. Use isSharing() to
test.
If \a deleteOldContext is TRUE (the default), the existing context
will be deleted. You may use FALSE here if you have kept a pointer
to the old context (as returned by context()), and want to restore
that context later.
\sa context(), isSharing()
*/
/*!
\fn void TQGLWidget::updateGL()
Updates the widget by calling glDraw().
*/
void TQGLWidget::updateGL()
{
glDraw();
}
/*!
\fn void TQGLWidget::updateOverlayGL()
Updates the widget's overlay (if any). Will cause the virtual
function paintOverlayGL() to be executed.
The widget's rendering context will become the current context and
initializeGL() will be called if it hasn't already been called.
*/
/*!
This virtual function is called once before the first call to
paintGL() or resizeGL(), and then once whenever the widget has
been assigned a new TQGLContext. Reimplement it in a subclass.
This function should set up any required OpenGL context rendering
flags, defining display lists, etc.
There is no need to call makeCurrent() because this has already
been done when this function is called.
*/
void TQGLWidget::initializeGL()
{
}
/*!
This virtual function is called whenever the widget needs to be
painted. Reimplement it in a subclass.
There is no need to call makeCurrent() because this has already
been done when this function is called.
*/
void TQGLWidget::paintGL()
{
}
/*!
\fn void TQGLWidget::resizeGL( int width , int height )
This virtual function is called whenever the widget has been
resized. The new size is passed in \a width and \a height.
Reimplement it in a subclass.
There is no need to call makeCurrent() because this has already
been done when this function is called.
*/
void TQGLWidget::resizeGL( int, int )
{
}
/*!
This virtual function is used in the same manner as initializeGL()
except that it operates on the widget's overlay context instead of
the widget's main context. This means that initializeOverlayGL()
is called once before the first call to paintOverlayGL() or
resizeOverlayGL(). Reimplement it in a subclass.
This function should set up any required OpenGL context rendering
flags, defining display lists, etc. for the overlay context.
There is no need to call makeOverlayCurrent() because this has
already been done when this function is called.
*/
void TQGLWidget::initializeOverlayGL()
{
}
/*!
This virtual function is used in the same manner as paintGL()
except that it operates on the widget's overlay context instead of
the widget's main context. This means that paintOverlayGL() is
called whenever the widget's overlay needs to be painted.
Reimplement it in a subclass.
There is no need to call makeOverlayCurrent() because this has
already been done when this function is called.
*/
void TQGLWidget::paintOverlayGL()
{
}
/*!
\fn void TQGLWidget::resizeOverlayGL( int width , int height )
This virtual function is used in the same manner as paintGL()
except that it operates on the widget's overlay context instead of
the widget's main context. This means that resizeOverlayGL() is
called whenever the widget has been resized. The new size is
passed in \a width and \a height. Reimplement it in a subclass.
There is no need to call makeOverlayCurrent() because this has
already been done when this function is called.
*/
void TQGLWidget::resizeOverlayGL( int, int )
{
}
/*!
Handles paint events. Will cause the virtual paintGL() function to
be called.
The widget's rendering context will become the current context and
initializeGL() will be called if it hasn't already been called.
*/
void TQGLWidget::paintEvent( TQPaintEvent * )
{
glDraw();
updateOverlayGL();
}
/*!
\fn void TQGLWidget::resizeEvent( TQResizeEvent * )
Handles resize events. Calls the virtual function resizeGL().
*/
/*!
\fn void TQGLWidget::setMouseTracking( bool enable )
\reimp
*/
/*!
Renders the current scene on a pixmap and returns the pixmap.
You can use this method on both visible and invisible TQGLWidgets.
This method will create a pixmap and a temporary TQGLContext to
render on the pixmap. It will then call initializeGL(),
resizeGL(), and paintGL() on this context. Finally, the widget's
original GL context is restored.
The size of the pixmap will be \a w pixels wide and \a h pixels
high unless one of these parameters is 0 (the default), in which
case the pixmap will have the same size as the widget.
If \a useContext is TRUE, this method will try to be more
efficient by using the existing GL context to render the pixmap.
The default is FALSE. Only use TRUE if you understand the risks.
Overlays are not rendered onto the pixmap.
If the GL rendering context and the desktop have different bit
depths, the result will most likely look surprising.
Note that the creation of display lists, modifications of the view
frustum etc. should be done from within initializeGL(). If this is
not done, the temporary TQGLContext will not be initialized
properly, and the rendered pixmap may be incomplete/corrupted.
*/
TQPixmap TQGLWidget::renderPixmap( int w, int h, bool useContext )
{
TQSize sz = size();
if ( (w > 0) && (h > 0) )
sz = TQSize( w, h );
#if defined(Q_WS_X11)
TQPixmap pm( sz.width(), sz.height(), x11Depth() );
bool needConversion = x11Visual() != TQPaintDevice::x11AppVisual();
// make sure the pixmap uses the same visual as the widget itself
if ( needConversion ) {
TQPaintDeviceX11Data* xd = pm.getX11Data( TRUE );
xd->x_depth = x11Depth();
xd->x_visual = (Visual *) x11Visual();
pm.setX11Data( xd );
}
#else
TQPixmap pm;
pm.resize( sz );
#endif
glcx->doneCurrent();
bool success = TRUE;
if ( useContext && isValid() && renderCxPm( &pm ) )
return pm;
TQGLFormat fmt = glcx->requestedFormat();
fmt.setDirectRendering( FALSE ); // Direct is unlikely to work
fmt.setDoubleBuffer( FALSE ); // We don't need dbl buf
TQGLContext* ocx = glcx;
bool wasCurrent = (TQGLContext::currentContext() == ocx );
ocx->doneCurrent();
glcx = new TQGLContext( fmt, &pm );
glcx->create();
if ( glcx->isValid() )
updateGL();
else
success = FALSE;
delete glcx;
glcx = ocx;
if ( wasCurrent )
ocx->makeCurrent();
if ( success ) {
#if defined(Q_WS_X11)
if ( needConversion ) {
TQImage image = pm.convertToImage();
TQPixmap p;
p = image;
return p;
}
#endif
return pm;
} else
return TQPixmap();
}
/*!
Returns an image of the frame buffer. If \a withAlpha is TRUE the
alpha channel is included.
Depending on your hardware, you can explicitly select which color
buffer to grab with a glReadBuffer() call before calling this
function.
*/
TQImage TQGLWidget::grabFrameBuffer( bool withAlpha )
{
#if defined( Q_WS_MAC )
if(dblbuf == macInternalDoubleBuffer(FALSE) && gl_pix) //why not optimize?
return ((TQPixmap*)gl_pix)->convertToImage();
#endif
makeCurrent();
TQImage res;
int w = width();
int h = height();
if ( format().rgba() ) {
res = TQImage( w, h, 32 );
glReadPixels( 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, res.bits() );
if ( TQImage::systemByteOrder() == TQImage::BigEndian ) {
// OpenGL gives RGBA; TQt wants ARGB
uint *p = (uint*)res.bits();
uint *end = p + w*h;
if ( withAlpha && format().alpha() ) {
while ( p < end ) {
uint a = *p << 24;
*p = (*p >> 8) | a;
p++;
}
}
else {
while ( p < end )
*p++ >>= 8;
}
}
else {
// OpenGL gives ABGR (i.e. RGBA backwards); TQt wants ARGB
res = res.swapRGB();
}
res.setAlphaBuffer( withAlpha && format().alpha() );
}
else {
#if defined (Q_WS_WIN)
res = TQImage( w, h, 8 );
glReadPixels( 0, 0, w, h, GL_COLOR_INDEX, GL_UNSIGNED_BYTE,
res.bits() );
int palSize = 0;
const TQRgb* pal = TQColor::palette( &palSize );
if ( pal && palSize ) {
res.setNumColors( palSize );
for ( int i = 0; i < palSize; i++ )
res.setColor( i, pal[i] );
}
#endif
}
return res.mirror();
}
/*!
Initializes OpenGL for this widget's context. Calls the virtual
function initializeGL().
*/
void TQGLWidget::glInit()
{
if ( !isValid() )
return;
makeCurrent();
initializeGL();
glcx->setInitialized( TRUE );
}
/*!
Executes the virtual function paintGL().
The widget's rendering context will become the current context and
initializeGL() will be called if it hasn't already been called.
*/
void TQGLWidget::glDraw()
{
if ( !isValid() )
return;
makeCurrent();
if ( glcx->deviceIsPixmap() )
glDrawBuffer( GL_FRONT );
if ( !glcx->initialized() ) {
glInit();
TQPaintDeviceMetrics dm( glcx->device() );
resizeGL( dm.width(), dm.height() ); // New context needs this "resize"
}
paintGL();
if ( doubleBuffer() ) {
if ( autoSwap )
swapBuffers();
} else {
glFlush();
#if defined( Q_WS_MAC )
if(dblbuf && gl_pix)
bitBlt(this, 0, 0, gl_pix);
#endif
}
}
/*!
Convenience function for specifying a drawing color to OpenGL.
Calls glColor3 (in RGBA mode) or glIndex (in color-index mode)
with the color \a c. Applies to the current GL context.
\sa qglClearColor(), TQGLContext::currentContext(), TQColor
*/
void TQGLWidget::qglColor( const TQColor& c ) const
{
const TQGLContext* ctx = TQGLContext::currentContext();
if ( ctx ) {
if ( ctx->format().rgba() )
glColor3ub( c.red(), c.green(), c.blue() );
else if ( ctx->device() == context()->device()
&& !cmap.isEmpty() ) { // TQGLColormap in use?
int i = cmap.find( c.rgb() );
if ( i < 0 )
i = cmap.findNearest( c.rgb() );
glIndexi( i );
} else
glIndexi( ctx->colorIndex( c ) );
}
}
/*!
Convenience function for specifying the clearing color to OpenGL.
Calls glClearColor (in RGBA mode) or glClearIndex (in color-index
mode) with the color \a c. Applies to the current GL context.
\sa qglColor(), TQGLContext::currentContext(), TQColor
*/
void TQGLWidget::qglClearColor( const TQColor& c ) const
{
const TQGLContext* ctx = TQGLContext::currentContext();
if ( ctx ) {
if ( ctx->format().rgba() )
glClearColor( (GLfloat)c.red() / 255.0, (GLfloat)c.green() / 255.0,
(GLfloat)c.blue() / 255.0, (GLfloat) 0.0 );
else if ( ctx->device() == context()->device()
&& !cmap.isEmpty() ) { // TQGLColormap in use?
int i = cmap.find( c.rgb() );
if ( i < 0 )
i = cmap.findNearest( c.rgb() );
glClearIndex( i );
} else
glClearIndex( ctx->colorIndex( c ) );
}
}
/*!
Converts the image \a img into the unnamed format expected by
OpenGL functions such as glTexImage2D(). The returned image is not
usable as a TQImage, but TQImage::width(), TQImage::height() and
TQImage::bits() may be used with OpenGL. The following few lines
are from the texture example. Most of the code is irrelevant, so
we just quote the relevant bits:
\quotefile opengl/texture/gltexobj.cpp
\skipto tex1
\printline tex1
\printline gllogo.bmp
We create \e tex1 (and another variable) for OpenGL, and load a real
image into \e buf.
\skipto convertToGLFormat
\printline convertToGLFormat
A few lines later, we convert \e buf into OpenGL format and store it
in \e tex1.
\skipto glTexImage2D
\printline glTexImage2D
\printline tex1.bits
Note the dimension restrictions for texture images as described in
the glTexImage2D() documentation. The width must be 2^m + 2*border
and the height 2^n + 2*border where m and n are integers and
border is either 0 or 1.
Another function in the same example uses \e tex1 with OpenGL.
*/
TQImage TQGLWidget::convertToGLFormat( const TQImage& img )
{
TQImage res = img.convertDepth( 32 );
res = res.mirror();
if ( TQImage::systemByteOrder() == TQImage::BigEndian ) {
// TQt has ARGB; OpenGL wants RGBA
for ( int i=0; i < res.height(); i++ ) {
uint *p = (uint*)res.scanLine( i );
uint *end = p + res.width();
while ( p < end ) {
*p = (*p << 8) | ((*p >> 24) & 0xFF);
p++;
}
}
}
else {
// TQt has ARGB; OpenGL wants ABGR (i.e. RGBA backwards)
res = res.swapRGB();
}
return res;
}
/*!
\fn TQGLColormap & TQGLWidget::colormap() const
Returns the colormap for this widget.
Usually it is only top-level widgets that can have different
colormaps installed. Asking for the colormap of a child widget
will return the colormap for the child's top-level widget.
If no colormap has been set for this widget, the TQColormap
returned will be empty.
\sa setColormap()
*/
/*!
\fn void TQGLWidget::setColormap( const TQGLColormap & cmap )
Set the colormap for this widget to \a cmap. Usually it is only
top-level widgets that can have colormaps installed.
\sa colormap()
*/
int TQGLWidget::displayListBase( const TQFont & fnt, int listBase )
{
int base;
TQGLWidgetPrivate * d = qgl_d( this );
if ( !d || !glcx ) { // this can't happen unless we run out of mem
return 0;
}
// always regenerate font disp. lists for pixmaps - hw accelerated
// contexts can't handle this otherwise
bool regenerate = glcx->deviceIsPixmap();
#if 0 // QT_NO_XFTFREETYPE
// font color needs to be part of the font cache key when using
// antialiased fonts since one set of glyphs needs to be generated
// for each font color
TQString color_key;
if (fnt.styleStrategy() != TQFont::NoAntialias) {
GLfloat color[4];
glGetFloatv(GL_CURRENT_COLOR, color);
color_key.sprintf("%f_%f_%f",color[0], color[1], color[2]);
}
TQString key = fnt.key() + color_key + TQString::number((int) regenerate);
#else
TQString key = fnt.key() + TQString::number((int) regenerate);
#endif
if ( !regenerate && (d->displayListCache.find( key ) != d->displayListCache.end()) ) {
base = d->displayListCache[ key ];
} else {
int maxBase = listBase - 256;
TQMapConstIterator<TQString,int> it;
for ( it = d->displayListCache.begin(); it != d->displayListCache.end(); ++it ) {
if ( maxBase < it.data() ) {
maxBase = it.data();
}
}
maxBase += 256;
glcx->generateFontDisplayLists( fnt, maxBase );
d->displayListCache[ key ] = maxBase;
base = maxBase;
}
return base;
}
/*!
Renders the string \a str into the GL context of this widget.
\a x and \a y are specified in window coordinates, with the origin
in the upper left-hand corner of the window. If \a fnt is not
specified, the currently set application font will be used to
render the string. To change the color of the rendered text you can
use the glColor() call (or the qglColor() convenience function),
just before the renderText() call. Note that if you have
GL_LIGHTING enabled, the string will not appear in the color you
want. You should therefore switch lighting off before using
renderText().
\a listBase specifies the index of the first display list that is
generated by this function. The default value is 2000. 256 display
lists will be generated, one for each of the first 256 characters
in the font that is used to render the string. If several fonts are
used in the same widget, the display lists for these fonts will
follow the last generated list. You would normally not have to
change this value unless you are using lists in the same range. The
lists are deleted when the widget is destroyed.
Note: This function only works reliably with ASCII strings.
*/
void TQGLWidget::renderText( int x, int y, const TQString & str, const TQFont & fnt, int listBase )
{
if (str.isEmpty())
return;
makeCurrent();
glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT | GL_LIST_BIT | GL_CURRENT_BIT );
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadIdentity();
glOrtho( 0, width(), height(), 0, -1, 1 );
glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadIdentity();
glRasterPos2i( 0, 0 );
glBitmap(0, 0, 0, 0, x, -y, NULL);
glListBase( displayListBase( fnt, listBase ) );
const char *cstr = str.latin1();
glCallLists( tqstrlen(cstr), GL_UNSIGNED_BYTE, cstr );
// restore the matrix stacks and GL state
glPopMatrix();
glMatrixMode( GL_PROJECTION );
glPopMatrix();
glPopAttrib();
}
/*! \overload
\a x, \a y and \a z are specified in scene or object coordinates
relative to the currently set projection and model matrices. This
can be useful if you want to annotate models with text labels and
have the labels move with the model as it is rotated etc.
*/
void TQGLWidget::renderText( double x, double y, double z, const TQString & str, const TQFont & fnt,
int listBase )
{
if (str.isEmpty())
return;
makeCurrent();
glRasterPos3d( x, y, z );
glPushAttrib( GL_LIST_BIT );
glListBase( displayListBase( fnt, listBase ) );
const char *cstr = str.latin1();
glCallLists( tqstrlen(cstr), GL_UNSIGNED_BYTE, cstr );
glPopAttrib();
}
/*****************************************************************************
TQGL classes overview documentation.
*****************************************************************************/
/*!
\page opengl.html
\title TQt OpenGL 3D Graphics
\if defined(commercial)
This module is part of the \link commercialeditions.html TQt Enterprise
Edition\endlink.
\endif
\section1 Introduction
OpenGL is a standard API for rendering 3D graphics.
OpenGL only deals with 3D rendering and provides little or no support
for GUI programming issues. The user interface for an
OpenGL<sup>*</sup> application must be created with another toolkit,
such as Motif on the X platform, Microsoft Foundation Classes (MFC)
under Windows, or TQt on \e both platforms.
The TQt OpenGL module makes it easy to use OpenGL in TQt applications.
It provides an OpenGL widget class that can be used just like any
other TQt widget, except that it opens an OpenGL display buffer where
you can use the OpenGL API to render the contents.
The TQt OpenGL module is implemented as a platform-independent TQt/C++
wrapper around the platform-dependent GLX, WGL, or AGL C APIs. The
functionality provided is very similar to Mark Kilgard's GLUT library,
but with much more non-OpenGL-specific GUI functionality, i.e. the
whole TQt API.
\section1 Installation
When you install TQt for X11, the configure script will autodetect if
OpenGL headers and libraries are installed on your system, and if so,
it will include the TQt OpenGL module in the TQt library. (If your
OpenGL headers or libraries are placed in a non-standard directory,
you may need to change the QMAKE_INCDIR_OPENGL and/or
QMAKE_LIBDIR_OPENGL in the config file for your system). Some
configurations require threading to be enabled for OpenGL, so if
OpenGL is not detected, try \c{configure -thread}.
When you install TQt for Windows, the TQt OpenGL module is always
included.
The TQt OpenGL module is not licensed for use with the TQt Professional
Edition. Consider upgrading to the TQt Enterprise Edition if you
require OpenGL support.
Note about using Mesa on X11: Mesa versions earlier than 3.1 would use
the name "MesaGL" and "MesaGLU" for the libraries, instead of "GL" and
"GLU". If you want to use a pre-3.1 version of Mesa, you must change
the Makefiles to use these library names instead. The easiest way to
do this is to edit the QMAKE_LIBS_OPENGL line in the config file you
are using, changing "-lGL -lGLU" to "-lMesaGL -lMesaGLU"; then run
"configure" again.
\section1 The TQGL Classes
The OpenGL support classes in TQt are:
\list
\i \link TQGLWidget TQGLWidget\endlink: An easy-to-use TQt
widget for rendering OpenGL scenes.
\i \link TQGLContext TQGLContext\endlink: Encapsulates an OpenGL rendering context.
\i \link TQGLFormat TQGLFormat\endlink: Specifies the
display format of a rendering context.
\i \link TQGLColormap TQGLColormap\endlink: Handles indexed
colormaps in GL-index mode.
\endlist
Many applications only need the high-level TQGLWidget class. The other
TQGL classes provide advanced features. X11 users might like to read
the notes on \link opengl-x11-overlays.html overlays\endlink.
See also the \link opengl-examples.html OpenGL examples\endlink.
The TQGL documentation assumes that you are familiar with OpenGL
programming. If you're new to the subject a good starting point is
\l{http://www.opengl.org/}.
<sup>*</sup> OpenGL is a trademark of Silicon Graphics, Inc. in the
United States and other countries.
*/
/*!
\enum TQGL::FormatOption
This enum specifies the format options.
\value DoubleBuffer
\value DepthBuffer
\value Rgba
\value AlphaChannel
\value AccumBuffer
\value StencilBuffer
\value StereoBuffers
\value DirectRendering
\value HasOverlay
\value SingleBuffer
\value NoDepthBuffer
\value ColorIndex
\value NoAlphaChannel
\value NoAccumBuffer
\value NoStencilBuffer
\value NoStereoBuffers
\value IndirectRendering
\value NoOverlay
*/