You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqt3/src/kernel/qpixmap.cpp

1511 lines
41 KiB

/****************************************************************************
**
** Implementation of TQPixmap class
**
** Created : 950301
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing retquirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "qpixmap.h"
#include "qbitmap.h"
#include "qimage.h"
#include "qwidget.h"
#include "qpainter.h"
#include "qdatastream.h"
#include "qbuffer.h"
#include "qobjectlist.h"
#include "qapplication.h"
#include <private/qinternal_p.h>
#include "qmime.h"
#include "qdragobject.h"
#include "qfile.h"
/*!
\class TQPixmap qpixmap.h
\brief The TQPixmap class is an off-screen, pixel-based paint device.
\ingroup graphics
\ingroup images
\ingroup shared
\mainclass
TQPixmap is one of the two classes TQt provides for dealing with
images; the other is TQImage. TQPixmap is designed and optimized
for drawing; TQImage is designed and optimized for I/O and for
direct pixel access/manipulation. There are (slow) functions to
convert between TQImage and TQPixmap: convertToImage() and
convertFromImage().
One common use of the TQPixmap class is to enable smooth updating
of widgets. Whenever something complex needs to be drawn, you can
use a pixmap to obtain flicker-free drawing, like this:
\list 1
\i Create a pixmap with the same size as the widget.
\i Fill the pixmap with the widget background color.
\i Paint the pixmap.
\i bitBlt() the pixmap contents onto the widget.
\endlist
Pixel data in a pixmap is internal and is managed by the
underlying window system. Pixels can be accessed only through
TQPainter functions, through bitBlt(), and by converting the
TQPixmap to a TQImage.
You can easily display a TQPixmap on the screen using
TQLabel::setPixmap(). For example, all the TQButton subclasses
support pixmap use.
The TQPixmap class uses \link shclass.html copy-on-write\endlink,
so it is practical to pass TQPixmap objects by value.
You can retrieve the width(), height(), depth() and size() of a
pixmap. The enclosing rectangle is given by rect(). Pixmaps can be
filled with fill() and resized with resize(). You can create and
set a mask with createHeuristicMask() and setMask(). Use
selfMask() to see if the pixmap is identical to its mask.
In addition to loading a pixmap from file using load() you can
also loadFromData(). You can control optimization with
setOptimization() and obtain a transformed version of the pixmap
using xForm()
Note regarding Windows 95 and 98: on Windows 9x the system crashes
if you create more than about 1000 pixmaps, independent of the
size of the pixmaps or installed RAM. Windows NT-systems (including
2000, XP and following versions) do not have the same limitation,
but depending on the graphics etquipment the system will fail to
allocate pixmap objects at some point (due to system running out of
GDI resources).
TQt tries to work around the resource limitation. If you set the
pixmap optimization to \c TQPixmap::MemoryOptim and the width of
your pixmap is less than or equal to 128 pixels, TQt stores the
pixmap in a way that is very memory-efficient when there are many
pixmaps.
If your application uses dozens or hundreds of pixmaps (for
example on tool bar buttons and in popup menus), and you plan to
run it on Windows 95 or Windows 98, we recommend using code like
this:
\code
TQPixmap::setDefaultOptimization( TQPixmap::MemoryOptim );
while ( ... ) {
// load tool bar pixmaps etc.
TQPixmap *pixmap = new TQPixmap(fileName);
}
TQPixmap::setDefaultOptimization( TQPixmap::NormalOptim );
\endcode
In general it is recommended to make as much use of TQPixmap's
implicit sharing and the TQPixmapCache as possible.
\sa TQBitmap, TQImage, TQImageIO, \link shclass.html Shared Classes\endlink
*/
/*!
\enum TQPixmap::ColorMode
This enum type defines the color modes that exist for converting
TQImage objects to TQPixmap.
\value Auto Select \c Color or \c Mono on a case-by-case basis.
\value Color Always create colored pixmaps.
\value Mono Always create bitmaps.
*/
/*!
\enum TQPixmap::Optimization
TQPixmap has the choice of optimizing for speed or memory in a few
places; the best choice varies from pixmap to pixmap but can
generally be derived heuristically. This enum type defines a
number of optimization modes that you can set for any pixmap to
tweak the speed/memory tradeoffs:
\value DefaultOptim Whatever TQPixmap::defaultOptimization()
returns. A pixmap with this optimization will have whatever
the current default optimization is. If the default
optimization is changed using setDefaultOptimization(), then
this will not effect any pixmaps that have already been
created.
\value NoOptim No optimization (currently the same as \c
MemoryOptim).
\value MemoryOptim Optimize for minimal memory use on Windows
9x and X11 systems.
\value NormalOptim Optimize for typical usage. Often uses more
memory than \c MemoryOptim, and is often faster.
\value BestOptim Optimize for pixmaps that are drawn very often
and where performance is critical. Generally uses more memory
than \c NormalOptim and may provide a little more speed.
We recommend using \c DefaultOptim.
*/
TQPixmap::Optimization TQPixmap::defOptim = TQPixmap::NormalOptim;
/*!
\internal
Private constructor which takes the bitmap flag, the optimization.and a screen.
*/
TQPixmap::TQPixmap( int w, int h, int depth, bool bitmap,
Optimization optimization )
: TQPaintDevice( TQInternal::Pixmap )
{
init( w, h, depth, bitmap, optimization );
}
/*!
Constructs a null pixmap.
\sa isNull()
*/
TQPixmap::TQPixmap()
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
}
/*!
Constructs a pixmap from the TQImage \a image.
\sa convertFromImage()
*/
TQPixmap::TQPixmap( const TQImage& image )
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
convertFromImage( image );
}
/*!
Constructs a pixmap with \a w width, \a h height and \a depth bits
per pixel. The pixmap is optimized in accordance with the \a
optimization value.
The contents of the pixmap is uninitialized.
The \a depth can be either 1 (monochrome) or the depth of the
current video mode. If \a depth is negative, then the hardware
depth of the current video mode will be used.
If either \a w or \a h is zero, a null pixmap is constructed.
\sa isNull() TQPixmap::Optimization
*/
TQPixmap::TQPixmap( int w, int h, int depth, Optimization optimization )
: TQPaintDevice( TQInternal::Pixmap )
{
init( w, h, depth, FALSE, optimization );
}
/*!
\overload TQPixmap::TQPixmap( const TQSize &size, int depth, Optimization optimization )
Constructs a pixmap of size \a size, \a depth bits per pixel,
optimized in accordance with the \a optimization value.
*/
TQPixmap::TQPixmap( const TQSize &size, int depth, Optimization optimization )
: TQPaintDevice( TQInternal::Pixmap )
{
init( size.width(), size.height(), depth, FALSE, optimization );
}
#ifndef QT_NO_IMAGEIO
/*!
Constructs a pixmap from the file \a fileName. If the file does
not exist or is of an unknown format, the pixmap becomes a null
pixmap.
The \a fileName, \a format and \a conversion_flags parameters are
passed on to load(). This means that the data in \a fileName is
not compiled into the binary. If \a fileName contains a relative
path (e.g. the filename only) the relevant file must be found
relative to the runtime working directory.
If the image needs to be modified to fit in a lower-resolution
result (e.g. converting from 32-bit to 8-bit), use the \a
conversion_flags to specify how you'd prefer this to happen.
\sa TQt::ImageConversionFlags isNull(), load(), loadFromData(), save(), imageFormat()
*/
TQPixmap::TQPixmap( const TQString& fileName, const char *format,
int conversion_flags )
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
load( fileName, format, conversion_flags );
}
/*!
Constructs a pixmap from the file \a fileName. If the file does
not exist or is of an unknown format, the pixmap becomes a null
pixmap.
The \a fileName, \a format and \a mode parameters are passed on to
load(). This means that the data in \a fileName is not compiled
into the binary. If \a fileName contains a relative path (e.g. the
filename only) the relevant file must be found relative to the
runtime working directory.
\sa TQPixmap::ColorMode isNull(), load(), loadFromData(), save(), imageFormat()
*/
TQPixmap::TQPixmap( const TQString& fileName, const char *format, ColorMode mode )
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
load( fileName, format, mode );
}
/*!
Constructs a pixmap from \a xpm, which must be a valid XPM image.
Errors are silently ignored.
Note that it's possible to squeeze the XPM variable a little bit
by using an unusual declaration:
\code
static const char * const start_xpm[]={
"16 15 8 1",
"a c #cec6bd",
....
\endcode
The extra \c const makes the entire definition read-only, which is
slightly more efficient (for example, when the code is in a shared
library) and ROMable when the application is to be stored in ROM.
In order to use that sort of declaration you must cast the
variable back to \c{const char **} when you create the TQPixmap.
*/
TQPixmap::TQPixmap( const char *xpm[] )
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
TQImage image( xpm );
if ( !image.isNull() )
convertFromImage( image );
}
/*!
Constructs a pixmaps by loading from \a img_data. The data can be
in any image format supported by TQt.
\sa loadFromData()
*/
TQPixmap::TQPixmap( const TQByteArray & img_data )
: TQPaintDevice( TQInternal::Pixmap )
{
init( 0, 0, 0, FALSE, defOptim );
loadFromData( img_data );
}
#endif //QT_NO_IMAGEIO
/*!
Constructs a pixmap that is a copy of \a pixmap.
*/
TQPixmap::TQPixmap( const TQPixmap &pixmap )
: TQPaintDevice( TQInternal::Pixmap )
{
if ( pixmap.paintingActive() ) { // make a deep copy
data = 0;
operator=( pixmap.copy() );
} else {
data = pixmap.data;
data->ref();
devFlags = pixmap.devFlags; // copy TQPaintDevice flags
#if defined(Q_WS_WIN)
hdc = pixmap.hdc; // copy Windows device context
#elif defined(Q_WS_X11)
hd = pixmap.hd; // copy X11 drawable
rendhd = pixmap.rendhd;
copyX11Data( &pixmap ); // copy x11Data
#elif defined(Q_WS_MAC)
hd = pixmap.hd;
#endif
}
}
/*!
Destroys the pixmap.
*/
TQPixmap::~TQPixmap()
{
deref();
}
/*! Convenience function. Gets the data associated with the absolute
name \a abs_name from the default mime source factory and decodes it
to a pixmap.
\sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode()
*/
#ifndef QT_NO_MIME
TQPixmap TQPixmap::fromMimeSource( const TQString &abs_name )
{
const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name );
if ( !m ) {
if ( TQFile::exists( abs_name ) )
return TQPixmap( abs_name );
#if defined(QT_CHECK_STATE)
if ( !abs_name.isEmpty() )
qWarning( "TQPixmap::fromMimeSource: Cannot find pixmap \"%s\" in the mime source factory",
abs_name.latin1() );
#endif
return TQPixmap();
}
TQPixmap pix;
TQImageDrag::decode( m, pix );
return pix;
}
#endif
/*!
Returns a \link shclass.html deep copy\endlink of the pixmap using
the bitBlt() function to copy the pixels.
\sa operator=()
*/
TQPixmap TQPixmap::copy( bool ignoreMask ) const
{
#if defined(Q_WS_X11)
int old = x11SetDefaultScreen( x11Screen() );
#endif // Q_WS_X11
TQPixmap pm( data->w, data->h, data->d, data->bitmap, data->optim );
if ( !pm.isNull() ) { // copy the bitmap
#if defined(Q_WS_X11)
pm.cloneX11Data( this );
#endif // Q_WS_X11
if ( ignoreMask )
bitBlt( &pm, 0, 0, this, 0, 0, data->w, data->h, TQt::CopyROP, TRUE );
else
copyBlt( &pm, 0, 0, this, 0, 0, data->w, data->h );
}
#if defined(Q_WS_X11)
x11SetDefaultScreen( old );
#endif // Q_WS_X11
return pm;
}
/*!
Assigns the pixmap \a pixmap to this pixmap and returns a
reference to this pixmap.
*/
TQPixmap &TQPixmap::operator=( const TQPixmap &pixmap )
{
if ( paintingActive() ) {
#if defined(QT_CHECK_STATE)
qWarning("TQPixmap::operator=: Cannot assign to pixmap during painting");
#endif
return *this;
}
pixmap.data->ref(); // avoid 'x = x'
deref();
if ( pixmap.paintingActive() ) { // make a deep copy
init( pixmap.width(), pixmap.height(), pixmap.depth(),
pixmap.data->bitmap, pixmap.data->optim );
data->uninit = FALSE;
if ( !isNull() )
copyBlt( this, 0, 0, &pixmap, 0, 0, pixmap.width(), pixmap.height() );
pixmap.data->deref();
} else {
data = pixmap.data;
devFlags = pixmap.devFlags; // copy TQPaintDevice flags
#if defined(Q_WS_WIN)
hdc = pixmap.hdc;
#elif defined(Q_WS_X11)
hd = pixmap.hd; // copy TQPaintDevice drawable
rendhd = pixmap.rendhd;
copyX11Data( &pixmap ); // copy x11Data
#elif defined(Q_WS_MACX) || defined(Q_OS_MAC9)
hd = pixmap.hd;
#endif
}
return *this;
}
/*!
\overload
Converts the image \a image to a pixmap that is assigned to this
pixmap. Returns a reference to the pixmap.
\sa convertFromImage().
*/
TQPixmap &TQPixmap::operator=( const TQImage &image )
{
convertFromImage( image );
return *this;
}
/*!
\fn bool TQPixmap::isTQBitmap() const
Returns TRUE if this is a TQBitmap; otherwise returns FALSE.
*/
/*!
\fn bool TQPixmap::isNull() const
Returns TRUE if this is a null pixmap; otherwise returns FALSE.
A null pixmap has zero width, zero height and no contents. You
cannot draw in a null pixmap or bitBlt() anything to it.
Resizing an existing pixmap to (0, 0) makes a pixmap into a null
pixmap.
\sa resize()
*/
/*!
\fn int TQPixmap::width() const
Returns the width of the pixmap.
\sa height(), size(), rect()
*/
/*!
\fn int TQPixmap::height() const
Returns the height of the pixmap.
\sa width(), size(), rect()
*/
/*!
\fn TQSize TQPixmap::size() const
Returns the size of the pixmap.
\sa width(), height(), rect()
*/
/*!
\fn TQRect TQPixmap::rect() const
Returns the enclosing rectangle (0,0,width(),height()) of the pixmap.
\sa width(), height(), size()
*/
/*!
\fn int TQPixmap::depth() const
Returns the depth of the pixmap.
The pixmap depth is also called bits per pixel (bpp) or bit planes
of a pixmap. A null pixmap has depth 0.
\sa defaultDepth(), isNull(), TQImage::convertDepth()
*/
/*!
\overload void TQPixmap::fill( const TQWidget *widget, const TQPoint &ofs )
Fills the pixmap with the \a widget's background color or pixmap.
If the background is empty, nothing is done.
The \a ofs point is an offset in the widget.
The point \a ofs is a point in the widget's coordinate system. The
pixmap's top-left pixel will be mapped to the point \a ofs in the
widget. This is significant if the widget has a background pixmap;
otherwise the pixmap will simply be filled with the background
color of the widget.
Example:
\code
void CuteWidget::paintEvent( TQPaintEvent *e )
{
TQRect ur = e->rect(); // rectangle to update
TQPixmap pix( ur.size() ); // Pixmap for double-buffering
pix.fill( this, ur.topLeft() ); // fill with widget background
TQPainter p( &pix );
p.translate( -ur.x(), -ur.y() ); // use widget coordinate system
// when drawing on pixmap
// ... draw on pixmap ...
p.end();
bitBlt( this, ur.topLeft(), &pix );
}
\endcode
*/
/*!
\overload void TQPixmap::fill( const TQWidget *widget, int xofs, int yofs )
Fills the pixmap with the \a widget's background color or pixmap.
If the background is empty, nothing is done. \a xofs, \a yofs is
an offset in the widget.
*/
void TQPixmap::fill( const TQWidget *widget, int xofs, int yofs )
{
const TQPixmap* bgpm = widget->backgroundPixmap();
fill( widget->backgroundColor() );
if ( bgpm ) {
if ( !bgpm->isNull() ) {
TQPoint ofs = widget->backgroundOffset();
xofs += ofs.x();
yofs += ofs.y();
TQPainter p;
p.begin( this );
p.setPen( NoPen );
p.drawTiledPixmap( 0, 0, width(), height(), *widget->backgroundPixmap(), xofs, yofs );
p.end();
}
}
}
/*!
\overload void TQPixmap::resize( const TQSize &size )
Resizes the pixmap to size \a size.
*/
/*!
Resizes the pixmap to \a w width and \a h height. If either \a w
or \a h is 0, the pixmap becomes a null pixmap.
If both \a w and \a h are greater than 0, a valid pixmap is
created. New pixels will be uninitialized (random) if the pixmap
is expanded.
*/
void TQPixmap::resize( int w, int h )
{
if ( w < 1 || h < 1 ) { // becomes null
TQPixmap pm( 0, 0, 0, data->bitmap, data->optim );
*this = pm;
return;
}
int d;
if ( depth() > 0 )
d = depth();
else
d = isTQBitmap() ? 1 : -1;
// Create new pixmap
TQPixmap pm( w, h, d, data->bitmap, data->optim );
#ifdef Q_WS_X11
pm.x11SetScreen( x11Screen() );
#endif // Q_WS_X11
if ( !data->uninit && !isNull() ) // has existing pixmap
bitBlt( &pm, 0, 0, this, 0, 0, // copy old pixmap
TQMIN(width(), w),
TQMIN(height(),h), CopyROP, TRUE );
#if defined(Q_WS_MAC)
if(data->alphapm) {
data->alphapm->resize(w, h);
} else
#elif defined(Q_WS_X11) && !defined(QT_NO_XFTFREETYPE)
if (data->alphapm)
qWarning("TQPixmap::resize: TODO: resize alpha data");
else
#endif // Q_WS_X11
if ( data->mask ) { // resize mask as well
if ( data->selfmask ) { // preserve self-mask
pm.setMask( *((TQBitmap*)&pm) );
} else { // independent mask
TQBitmap m = *data->mask;
m.resize( w, h );
pm.setMask( m );
}
}
*this = pm;
}
/*!
\fn const TQBitmap *TQPixmap::mask() const
Returns the mask bitmap, or 0 if no mask has been set.
\sa setMask(), TQBitmap, hasAlpha()
*/
/*!
Sets a mask bitmap.
The \a newmask bitmap defines the clip mask for this pixmap. Every
pixel in \a newmask corresponds to a pixel in this pixmap. Pixel
value 1 means opaque and pixel value 0 means transparent. The mask
must have the same size as this pixmap.
\warning Setting the mask on a pixmap will cause any alpha channel
data to be cleared. For example:
\code
TQPixmap alpha( "image-with-alpha.png" );
TQPixmap alphacopy = alpha;
alphacopy.setMask( *alphacopy.mask() );
\endcode
Now, alpha and alphacopy are visually different.
Setting a \link isNull() null\endlink mask resets the mask.
\sa mask(), createHeuristicMask(), TQBitmap
*/
void TQPixmap::setMask( const TQBitmap &newmask )
{
const TQPixmap *tmp = &newmask; // dec cxx bug
if ( (data == tmp->data) ||
( newmask.handle() && newmask.handle() == handle() ) ) {
TQPixmap m = tmp->copy( TRUE );
setMask( *((TQBitmap*)&m) );
data->selfmask = TRUE; // mask == pixmap
return;
}
if ( newmask.isNull() ) { // reset the mask
if (data->mask) {
detach();
data->selfmask = FALSE;
delete data->mask;
data->mask = 0;
}
return;
}
detach();
data->selfmask = FALSE;
if ( newmask.width() != width() || newmask.height() != height() ) {
#if defined(QT_CHECK_RANGE)
qWarning( "TQPixmap::setMask: The pixmap and the mask must have "
"the same size" );
#endif
return;
}
#if defined(Q_WS_MAC) || (defined(Q_WS_X11) && !defined(QT_NO_XFTFREETYPE))
// when setting the mask, we get rid of the alpha channel completely
delete data->alphapm;
data->alphapm = 0;
#endif // Q_WS_X11 && !QT_NO_XFTFREETYPE
delete data->mask;
TQBitmap* newmaskcopy;
if ( newmask.mask() )
newmaskcopy = (TQBitmap*)new TQPixmap( tmp->copy( TRUE ) );
else
newmaskcopy = new TQBitmap( newmask );
#ifdef Q_WS_X11
newmaskcopy->x11SetScreen( x11Screen() );
#endif
data->mask = newmaskcopy;
}
/*!
\fn bool TQPixmap::selfMask() const
Returns TRUE if the pixmap's mask is identical to the pixmap
itself; otherwise returns FALSE.
\sa mask()
*/
#ifndef QT_NO_IMAGE_HEURISTIC_MASK
/*!
Creates and returns a heuristic mask for this pixmap. It works by
selecting a color from one of the corners and then chipping away
pixels of that color, starting at all the edges.
The mask may not be perfect but it should be reasonable, so you
can do things such as the following:
\code
pm->setMask( pm->createHeuristicMask() );
\endcode
This function is slow because it involves transformation to a
TQImage, non-trivial computations and a transformation back to a
TQBitmap.
If \a clipTight is TRUE the mask is just large enough to cover the
pixels; otherwise, the mask is larger than the data pixels.
\sa TQImage::createHeuristicMask()
*/
TQBitmap TQPixmap::createHeuristicMask( bool clipTight ) const
{
TQBitmap m;
m.convertFromImage( convertToImage().createHeuristicMask(clipTight) );
return m;
}
#endif
#ifndef QT_NO_IMAGEIO
/*!
Returns a string that specifies the image format of the file \a
fileName, or 0 if the file cannot be read or if the format cannot
be recognized.
The TQImageIO documentation lists the supported image formats.
\sa load(), save()
*/
const char* TQPixmap::imageFormat( const TQString &fileName )
{
return TQImageIO::imageFormat(fileName);
}
/*!
Loads a pixmap from the file \a fileName at runtime. Returns TRUE
if successful; otherwise returns FALSE.
If \a format is specified, the loader attempts to read the pixmap
using the specified format. If \a format is not specified
(default), the loader reads a few bytes from the header to guess
the file's format.
See the convertFromImage() documentation for a description of the
\a conversion_flags argument.
The TQImageIO documentation lists the supported image formats and
explains how to add extra formats.
\sa loadFromData(), save(), imageFormat(), TQImage::load(),
TQImageIO
*/
bool TQPixmap::load( const TQString &fileName, const char *format,
int conversion_flags )
{
TQImageIO io( fileName, format );
bool result = io.read();
if ( result ) {
detach(); // ###hanord: Why detach here, convertFromImage does it
result = convertFromImage( io.image(), conversion_flags );
}
return result;
}
/*!
\overload
Loads a pixmap from the file \a fileName at runtime.
If \a format is specified, the loader attempts to read the pixmap
using the specified format. If \a format is not specified
(default), the loader reads a few bytes from the header to guess
the file's format.
The \a mode is used to specify the color mode of the pixmap.
\sa TQPixmap::ColorMode
*/
bool TQPixmap::load( const TQString &fileName, const char *format,
ColorMode mode )
{
int conversion_flags = 0;
switch (mode) {
case Color:
conversion_flags |= ColorOnly;
break;
case Mono:
conversion_flags |= MonoOnly;
break;
default:
break;// Nothing.
}
return load( fileName, format, conversion_flags );
}
#endif //QT_NO_IMAGEIO
/*!
\overload
Converts \a image and sets this pixmap using color mode \a mode.
Returns TRUE if successful; otherwise returns FALSE.
\sa TQPixmap::ColorMode
*/
bool TQPixmap::convertFromImage( const TQImage &image, ColorMode mode )
{
if ( image.isNull() ) {
// convert null image to null pixmap
*this = TQPixmap();
return TRUE;
}
int conversion_flags = 0;
switch (mode) {
case Color:
conversion_flags |= ColorOnly;
break;
case Mono:
conversion_flags |= MonoOnly;
break;
default:
break;// Nothing.
}
return convertFromImage( image, conversion_flags );
}
#ifndef QT_NO_IMAGEIO
/*!
Loads a pixmap from the binary data in \a buf (\a len bytes).
Returns TRUE if successful; otherwise returns FALSE.
If \a format is specified, the loader attempts to read the pixmap
using the specified format. If \a format is not specified
(default), the loader reads a few bytes from the header to guess
the file's format.
See the convertFromImage() documentation for a description of the
\a conversion_flags argument.
The TQImageIO documentation lists the supported image formats and
explains how to add extra formats.
\sa load(), save(), imageFormat(), TQImage::loadFromData(),
TQImageIO
*/
bool TQPixmap::loadFromData( const uchar *buf, uint len, const char *format,
int conversion_flags )
{
TQByteArray a;
a.setRawData( (char *)buf, len );
TQBuffer b( a );
b.open( IO_ReadOnly );
TQImageIO io( &b, format );
bool result = io.read();
b.close();
a.resetRawData( (char *)buf, len );
if ( result ) {
detach();
result = convertFromImage( io.image(), conversion_flags );
}
return result;
}
/*!
\overload
Loads a pixmap from the binary data in \a buf (\a len bytes) using
color mode \a mode. Returns TRUE if successful; otherwise returns
FALSE.
If \a format is specified, the loader attempts to read the pixmap
using the specified format. If \a format is not specified
(default), the loader reads a few bytes from the header to guess
the file's format.
\sa TQPixmap::ColorMode
*/
bool TQPixmap::loadFromData( const uchar *buf, uint len, const char *format,
ColorMode mode )
{
int conversion_flags = 0;
switch (mode) {
case Color:
conversion_flags |= ColorOnly;
break;
case Mono:
conversion_flags |= MonoOnly;
break;
default:
break;// Nothing.
}
return loadFromData( buf, len, format, conversion_flags );
}
/*!
\overload
*/
bool TQPixmap::loadFromData( const TQByteArray &buf, const char *format,
int conversion_flags )
{
return loadFromData( (const uchar *)(buf.data()), buf.size(),
format, conversion_flags );
}
/*!
Saves the pixmap to the file \a fileName using the image file
format \a format and a quality factor \a quality. \a quality must
be in the range [0,100] or -1. Specify 0 to obtain small
compressed files, 100 for large uncompressed files, and -1 to use
the default settings. Returns TRUE if successful; otherwise
returns FALSE.
\sa load(), loadFromData(), imageFormat(), TQImage::save(),
TQImageIO
*/
bool TQPixmap::save( const TQString &fileName, const char *format, int quality ) const
{
if ( isNull() )
return FALSE; // nothing to save
TQImageIO io( fileName, format );
return doImageIO( &io, quality );
}
/*!
\overload
This function writes a TQPixmap to the TQIODevice, \a device. This
can be used, for example, to save a pixmap directly into a
TQByteArray:
\code
TQPixmap pixmap;
TQByteArray ba;
TQBuffer buffer( ba );
buffer.open( IO_WriteOnly );
pixmap.save( &buffer, "PNG" ); // writes pixmap into ba in PNG format
\endcode
*/
bool TQPixmap::save( TQIODevice* device, const char* format, int quality ) const
{
if ( isNull() )
return FALSE; // nothing to save
TQImageIO io( device, format );
return doImageIO( &io, quality );
}
/*! \internal
*/
bool TQPixmap::doImageIO( TQImageIO* io, int quality ) const
{
if ( !io )
return FALSE;
io->setImage( convertToImage() );
#if defined(QT_CHECK_RANGE)
if ( quality > 100 || quality < -1 )
qWarning( "TQPixmap::save: quality out of range [-1,100]" );
#endif
if ( quality >= 0 )
io->setQuality( TQMIN(quality,100) );
return io->write();
}
#endif //QT_NO_IMAGEIO
/*!
\fn int TQPixmap::serialNumber() const
Returns a number that uniquely identifies the contents of this
TQPixmap object. This means that multiple TQPixmap objects can have
the same serial number as long as they refer to the same contents.
An example of where this is useful is for caching TQPixmaps.
\sa TQPixmapCache
*/
/*!
Returns the default pixmap optimization setting.
\sa setDefaultOptimization(), setOptimization(), optimization()
*/
TQPixmap::Optimization TQPixmap::defaultOptimization()
{
return defOptim;
}
/*!
Sets the default pixmap optimization.
All \e new pixmaps that are created will use this default
optimization. You may also set optimization for individual pixmaps
using the setOptimization() function.
The initial default \a optimization setting is \c TQPixmap::Normal.
\sa defaultOptimization(), setOptimization(), optimization()
*/
void TQPixmap::setDefaultOptimization( Optimization optimization )
{
if ( optimization != DefaultOptim )
defOptim = optimization;
}
// helper for next function.
static TQPixmap grabChildWidgets( TQWidget * w )
{
TQPixmap res( w->width(), w->height() );
if ( res.isNull() && w->width() )
return res;
res.fill( w, TQPoint( 0, 0 ) );
TQPaintDevice *oldRedirect = TQPainter::redirect( w );
TQPainter::redirect( w, &res );
bool dblbfr = TQSharedDoubleBuffer::isDisabled();
TQSharedDoubleBuffer::setDisabled( TRUE );
TQPaintEvent e( w->rect(), FALSE );
TQApplication::sendEvent( w, &e );
TQSharedDoubleBuffer::setDisabled( dblbfr );
TQPainter::redirect( w, oldRedirect );
const TQObjectList * children = w->children();
if ( children ) {
TQPainter p( &res );
TQObjectListIt it( *children );
TQObject * child;
while( (child=it.current()) != 0 ) {
++it;
if ( child->isWidgetType() &&
!((TQWidget *)child)->isHidden() &&
!((TQWidget *)child)->isTopLevel() &&
((TQWidget *)child)->geometry().intersects( w->rect() ) ) {
// those conditions aren't tquite right, it's possible
// to have a grandchild completely outside its
// grandparent, but partially inside its parent. no
// point in optimizing for that.
// make sure to evaluate pos() first - who knows what
// the paint event(s) inside grabChildWidgets() will do.
TQPoint childpos = ((TQWidget *)child)->pos();
TQPixmap cpm = grabChildWidgets( (TQWidget *)child );
if ( cpm.isNull() ) {
// Some child pixmap failed - abort and reset
res.resize( 0, 0 );
break;
}
p.drawPixmap( childpos, cpm);
}
}
}
return res;
}
/*!
Creates a pixmap and paints \a widget in it.
If the \a widget has any children, then they are also painted in
the appropriate positions.
If you specify \a x, \a y, \a w or \a h, only the rectangle you
specify is painted. The defaults are 0, 0 (top-left corner) and
-1,-1 (which means the entire widget).
(If \a w is negative, the function copies everything to the right
border of the window. If \a h is negative, the function copies
everything to the bottom of the window.)
If \a widget is 0, or if the rectangle defined by \a x, \a y, the
modified \a w and the modified \a h does not overlap the \a
{widget}->rect(), this function will return a null TQPixmap.
This function actually asks \a widget to paint itself (and its
children to paint themselves). TQPixmap::grabWindow() grabs pixels
off the screen, which is a bit faster and picks up \e exactly
what's on-screen. This function works by calling paintEvent() with
painter redirection turned on. If there are overlaying windows,
grabWindow() will see them, but not this function.
If there is overlap, it returns a pixmap of the size you want,
containing a rendering of \a widget. If the rectangle you ask for
is a superset of \a widget, the areas outside \a widget are
covered with the widget's background.
If an error occurs when trying to grab the widget, such as the
size of the widget being too large to fit in memory, an isNull()
pixmap is returned.
\sa grabWindow() TQPainter::redirect() TQWidget::paintEvent()
*/
TQPixmap TQPixmap::grabWidget( TQWidget * widget, int x, int y, int w, int h )
{
TQPixmap res;
if ( !widget )
return res;
if ( w < 0 )
w = widget->width() - x;
if ( h < 0 )
h = widget->height() - y;
TQRect wr( x, y, w, h );
if ( wr == widget->rect() )
return grabChildWidgets( widget );
if ( !wr.intersects( widget->rect() ) )
return res;
res.resize( w, h );
if( res.isNull() )
return res;
res.fill( widget, TQPoint( w,h ) );
TQPixmap tmp( grabChildWidgets( widget ) );
if( tmp.isNull() )
return tmp;
::bitBlt( &res, 0, 0, &tmp, x, y, w, h );
return res;
}
/*!
Returns the actual matrix used for transforming a pixmap with \a w
width and \a h height and matrix \a matrix.
When transforming a pixmap with xForm(), the transformation matrix
is internally adjusted to compensate for unwanted translation,
i.e. xForm() returns the smallest pixmap containing all
transformed points of the original pixmap.
This function returns the modified matrix, which maps points
correctly from the original pixmap into the new pixmap.
\sa xForm(), TQWMatrix
*/
#ifndef QT_NO_PIXMAP_TRANSFORMATION
TQWMatrix TQPixmap::trueMatrix( const TQWMatrix &matrix, int w, int h )
{
const double dt = (double)0.;
double x1,y1, x2,y2, x3,y3, x4,y4; // get corners
double xx = (double)w;
double yy = (double)h;
TQWMatrix mat( matrix.m11(), matrix.m12(), matrix.m21(), matrix.m22(), 0., 0. );
mat.map( dt, dt, &x1, &y1 );
mat.map( xx, dt, &x2, &y2 );
mat.map( xx, yy, &x3, &y3 );
mat.map( dt, yy, &x4, &y4 );
double ymin = y1; // lowest y value
if ( y2 < ymin ) ymin = y2;
if ( y3 < ymin ) ymin = y3;
if ( y4 < ymin ) ymin = y4;
double xmin = x1; // lowest x value
if ( x2 < xmin ) xmin = x2;
if ( x3 < xmin ) xmin = x3;
if ( x4 < xmin ) xmin = x4;
double ymax = y1; // lowest y value
if ( y2 > ymax ) ymax = y2;
if ( y3 > ymax ) ymax = y3;
if ( y4 > ymax ) ymax = y4;
double xmax = x1; // lowest x value
if ( x2 > xmax ) xmax = x2;
if ( x3 > xmax ) xmax = x3;
if ( x4 > xmax ) xmax = x4;
if ( xmax-xmin > 1.0 )
xmin -= xmin/(xmax-xmin);
if ( ymax-ymin > 1.0 )
ymin -= ymin/(ymax-ymin);
mat.setMatrix( matrix.m11(), matrix.m12(), matrix.m21(), matrix.m22(), -xmin, -ymin );
return mat;
}
#endif // QT_NO_WMATRIX
/*****************************************************************************
TQPixmap stream functions
*****************************************************************************/
#if !defined(QT_NO_DATASTREAM) && !defined(QT_NO_IMAGEIO)
/*!
\relates TQPixmap
Writes the pixmap \a pixmap to the stream \a s as a PNG image.
Note that writing the stream to a file will not produce a valid image file.
\sa TQPixmap::save()
\link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator<<( TQDataStream &s, const TQPixmap &pixmap )
{
s << pixmap.convertToImage();
return s;
}
/*!
\relates TQPixmap
Reads a pixmap from the stream \a s into the pixmap \a pixmap.
\sa TQPixmap::load()
\link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator>>( TQDataStream &s, TQPixmap &pixmap )
{
TQImage img;
s >> img;
pixmap.convertFromImage( img );
return s;
}
#endif //QT_NO_DATASTREAM
/*****************************************************************************
TQPixmap (and TQImage) helper functions
*****************************************************************************/
/*
This internal function contains the common (i.e. platform independent) code
to do a transformation of pixel data. It is used by TQPixmap::xForm() and by
TQImage::xForm().
\a trueMat is the true transformation matrix (see TQPixmap::trueMatrix()) and
\a xoffset is an offset to the matrix.
\a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a
depth specifies the colordepth of the data.
\a dptr is a pointer to the destination data, \a dbpl specifies the bits per
line for the destination data, \a p_inc is the offset that we advance for
every scanline and \a dHeight is the height of the destination image.
\a sprt is the pointer to the source data, \a sbpl specifies the bits per
line of the source data, \a sWidth and \a sHeight are the width and height of
the source data.
*/
#ifndef QT_NO_PIXMAP_TRANSFORMATION
#undef IWX_MSB
#define IWX_MSB(b) if ( trigx < maxws && trigy < maxhs ) { \
if ( *(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \
(1 << (7-((trigx>>16)&7))) ) \
*dptr |= b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
#undef IWX_LSB
#define IWX_LSB(b) if ( trigx < maxws && trigy < maxhs ) { \
if ( *(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \
(1 << ((trigx>>16)&7)) ) \
*dptr |= b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
#undef IWX_PIX
#define IWX_PIX(b) if ( trigx < maxws && trigy < maxhs ) { \
if ( (*(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \
(1 << (7-((trigx>>16)&7)))) == 0 ) \
*dptr &= ~b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
bool qt_xForm_helper( const TQWMatrix &trueMat, int xoffset,
int type, int depth,
uchar *dptr, int dbpl, int p_inc, int dHeight,
uchar *sptr, int sbpl, int sWidth, int sHeight
)
{
int m11 = int(trueMat.m11()*65536.0 + 1.);
int m12 = int(trueMat.m12()*65536.0 + 1.);
int m21 = int(trueMat.m21()*65536.0 + 1.);
int m22 = int(trueMat.m22()*65536.0 + 1.);
int dx = qRound(trueMat.dx() *65536.0);
int dy = qRound(trueMat.dy() *65536.0);
int m21ydx = dx + (xoffset<<16);
int m22ydy = dy;
uint trigx;
uint trigy;
uint maxws = sWidth<<16;
uint maxhs = sHeight<<16;
for ( int y=0; y<dHeight; y++ ) { // for each target scanline
trigx = m21ydx;
trigy = m22ydy;
uchar *maxp = dptr + dbpl;
if ( depth != 1 ) {
switch ( depth ) {
case 8: // 8 bpp transform
while ( dptr < maxp ) {
if ( trigx < maxws && trigy < maxhs )
*dptr = *(sptr+sbpl*(trigy>>16)+(trigx>>16));
trigx += m11;
trigy += m12;
dptr++;
}
break;
case 16: // 16 bpp transform
while ( dptr < maxp ) {
if ( trigx < maxws && trigy < maxhs )
*((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>16) +
((trigx>>16)<<1)));
trigx += m11;
trigy += m12;
dptr++;
dptr++;
}
break;
case 24: { // 24 bpp transform
uchar *p2;
while ( dptr < maxp ) {
if ( trigx < maxws && trigy < maxhs ) {
p2 = sptr+sbpl*(trigy>>16) + ((trigx>>16)*3);
dptr[0] = p2[0];
dptr[1] = p2[1];
dptr[2] = p2[2];
}
trigx += m11;
trigy += m12;
dptr += 3;
}
}
break;
case 32: // 32 bpp transform
while ( dptr < maxp ) {
if ( trigx < maxws && trigy < maxhs )
*((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>16) +
((trigx>>16)<<2)));
trigx += m11;
trigy += m12;
dptr += 4;
}
break;
default: {
return FALSE;
}
}
} else {
switch ( type ) {
case QT_XFORM_TYPE_MSBFIRST:
while ( dptr < maxp ) {
IWX_MSB(128);
IWX_MSB(64);
IWX_MSB(32);
IWX_MSB(16);
IWX_MSB(8);
IWX_MSB(4);
IWX_MSB(2);
IWX_MSB(1);
dptr++;
}
break;
case QT_XFORM_TYPE_LSBFIRST:
while ( dptr < maxp ) {
IWX_LSB(1);
IWX_LSB(2);
IWX_LSB(4);
IWX_LSB(8);
IWX_LSB(16);
IWX_LSB(32);
IWX_LSB(64);
IWX_LSB(128);
dptr++;
}
break;
# if defined(Q_WS_WIN)
case QT_XFORM_TYPE_WINDOWSPIXMAP:
while ( dptr < maxp ) {
IWX_PIX(128);
IWX_PIX(64);
IWX_PIX(32);
IWX_PIX(16);
IWX_PIX(8);
IWX_PIX(4);
IWX_PIX(2);
IWX_PIX(1);
dptr++;
}
break;
# endif
}
}
m21ydx += m21;
m22ydy += m22;
dptr += p_inc;
}
return TRUE;
}
#undef IWX_MSB
#undef IWX_LSB
#undef IWX_PIX
#endif // QT_NO_PIXMAP_TRANSFORMATION