|
|
|
/****************************************************************************
|
|
|
|
**
|
|
|
|
** Implementation of TQPointArray class
|
|
|
|
**
|
|
|
|
** Created : 940213
|
|
|
|
**
|
|
|
|
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
|
|
|
|
**
|
|
|
|
** This file is part of the kernel module of the TQt GUI Toolkit.
|
|
|
|
**
|
|
|
|
** This file may be used under the terms of the GNU General
|
|
|
|
** Public License versions 2.0 or 3.0 as published by the Free
|
|
|
|
** Software Foundation and appearing in the files LICENSE.GPL2
|
|
|
|
** and LICENSE.GPL3 included in the packaging of this file.
|
|
|
|
** Alternatively you may (at your option) use any later version
|
|
|
|
** of the GNU General Public License if such license has been
|
|
|
|
** publicly approved by Trolltech ASA (or its successors, if any)
|
|
|
|
** and the KDE Free TQt Foundation.
|
|
|
|
**
|
|
|
|
** Please review the following information to ensure GNU General
|
|
|
|
** Public Licensing requirements will be met:
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
|
|
|
|
** If you are unsure which license is appropriate for your use, please
|
|
|
|
** review the following information:
|
|
|
|
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
|
|
|
|
** or contact the sales department at sales@trolltech.com.
|
|
|
|
**
|
|
|
|
** This file may be used under the terms of the Q Public License as
|
|
|
|
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
|
|
|
|
** included in the packaging of this file. Licensees holding valid TQt
|
|
|
|
** Commercial licenses may use this file in accordance with the TQt
|
|
|
|
** Commercial License Agreement provided with the Software.
|
|
|
|
**
|
|
|
|
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
|
|
|
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
|
|
|
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
|
|
|
|
** herein.
|
|
|
|
**
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
#include "ntqpointarray.h"
|
|
|
|
#include "ntqrect.h"
|
|
|
|
#include "ntqdatastream.h"
|
|
|
|
#include "ntqwmatrix.h"
|
|
|
|
#include <stdarg.h>
|
|
|
|
|
|
|
|
const double Q_PI = 3.14159265358979323846; // pi // one more useful comment
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\class TQPointArray ntqpointarray.h
|
|
|
|
\brief The TQPointArray class provides an array of points.
|
|
|
|
|
|
|
|
\ingroup images
|
|
|
|
\ingroup graphics
|
|
|
|
\ingroup shared
|
|
|
|
|
|
|
|
A TQPointArray is an array of TQPoint objects. In addition to the
|
|
|
|
functions provided by TQMemArray, TQPointArray provides some
|
|
|
|
point-specific functions.
|
|
|
|
|
|
|
|
For convenient reading and writing of the point data use
|
|
|
|
setPoints(), putPoints(), point(), and setPoint().
|
|
|
|
|
|
|
|
For geometry operations use boundingRect() and translate(). There
|
|
|
|
is also the TQWMatrix::map() function for more general
|
|
|
|
transformations of TQPointArrays. You can also create arcs and
|
|
|
|
ellipses with makeArc() and makeEllipse().
|
|
|
|
|
|
|
|
Among others, TQPointArray is used by TQPainter::drawLineSegments(),
|
|
|
|
TQPainter::drawPolyline(), TQPainter::drawPolygon() and
|
|
|
|
TQPainter::drawCubicBezier().
|
|
|
|
|
|
|
|
Note that because this class is a TQMemArray, copying an array and
|
|
|
|
modifying the copy modifies the original as well, i.e. a shallow
|
|
|
|
copy. If you need a deep copy use copy() or detach(), for example:
|
|
|
|
|
|
|
|
\code
|
|
|
|
void drawGiraffe( const TQPointArray & r, TQPainter * p )
|
|
|
|
{
|
|
|
|
TQPointArray tmp = r;
|
|
|
|
tmp.detach();
|
|
|
|
// some code that modifies tmp
|
|
|
|
p->drawPoints( tmp );
|
|
|
|
}
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
If you forget the tmp.detach(), the const array will be modified.
|
|
|
|
|
|
|
|
\sa TQPainter TQWMatrix TQMemArray
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQPointArray member functions
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray::TQPointArray()
|
|
|
|
|
|
|
|
Constructs a null point array.
|
|
|
|
|
|
|
|
\sa isNull()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray::TQPointArray( int size )
|
|
|
|
|
|
|
|
Constructs a point array with room for \a size points. Makes a
|
|
|
|
null array if \a size == 0.
|
|
|
|
|
|
|
|
\sa resize(), isNull()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray::TQPointArray( const TQPointArray &a )
|
|
|
|
|
|
|
|
Constructs a shallow copy of the point array \a a.
|
|
|
|
|
|
|
|
\sa copy() detach()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs a point array from the rectangle \a r.
|
|
|
|
|
|
|
|
If \a closed is FALSE, then the point array just contains the
|
|
|
|
following four points in the listed order: r.topLeft(),
|
|
|
|
r.topRight(), r.bottomRight() and r.bottomLeft().
|
|
|
|
|
|
|
|
If \a closed is TRUE, then a fifth point is set to r.topLeft().
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQPointArray::TQPointArray( const TQRect &r, bool closed )
|
|
|
|
{
|
|
|
|
setPoints( 4, r.left(), r.top(),
|
|
|
|
r.right(), r.top(),
|
|
|
|
r.right(), r.bottom(),
|
|
|
|
r.left(), r.bottom() );
|
|
|
|
if ( closed ) {
|
|
|
|
resize( 5 );
|
|
|
|
setPoint( 4, r.left(), r.top() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
Constructs a point array with \a nPoints points, taken from the
|
|
|
|
\a points array.
|
|
|
|
|
|
|
|
Equivalent to setPoints(nPoints, points).
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQPointArray::TQPointArray( int nPoints, const TQCOORD *points )
|
|
|
|
{
|
|
|
|
setPoints( nPoints, points );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray::~TQPointArray()
|
|
|
|
|
|
|
|
Destroys the point array.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray &TQPointArray::operator=( const TQPointArray &a )
|
|
|
|
|
|
|
|
Assigns a shallow copy of \a a to this point array and returns a
|
|
|
|
reference to this point array.
|
|
|
|
|
|
|
|
Equivalent to assign(a).
|
|
|
|
|
|
|
|
\sa copy() detach()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn TQPointArray TQPointArray::copy() const
|
|
|
|
|
|
|
|
Creates a deep copy of the array.
|
|
|
|
|
|
|
|
\sa detach()
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Translates all points in the array by \a (dx, dy).
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQPointArray::translate( int dx, int dy )
|
|
|
|
{
|
|
|
|
register TQPoint *p = data();
|
|
|
|
register int i = size();
|
|
|
|
TQPoint pt( dx, dy );
|
|
|
|
while ( i-- ) {
|
|
|
|
*p += pt;
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Reads the coordinates of the point at position \a index within the
|
|
|
|
array and writes them into \a *x and \a *y.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQPointArray::point( uint index, int *x, int *y ) const
|
|
|
|
{
|
|
|
|
TQPoint p = TQMemArray<TQPoint>::at( index );
|
|
|
|
if ( x )
|
|
|
|
*x = (int)p.x();
|
|
|
|
if ( y )
|
|
|
|
*y = (int)p.y();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the point at position \a index within the array.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQPoint TQPointArray::point( uint index ) const
|
|
|
|
{ // #### index out of bounds
|
|
|
|
return TQMemArray<TQPoint>::at( index );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn void TQPointArray::setPoint( uint i, const TQPoint &p )
|
|
|
|
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Sets the point at array index \a i to \a p.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the point at position \a index in the array to \a (x, y).
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQPointArray::setPoint( uint index, int x, int y )
|
|
|
|
{ // #### index out of bounds
|
|
|
|
TQMemArray<TQPoint>::at( index ) = TQPoint( x, y );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
Resizes the array to \a nPoints and sets the points in the array to
|
|
|
|
the values taken from \a points.
|
|
|
|
|
|
|
|
Returns TRUE if successful, or FALSE if the array could not be
|
|
|
|
resized (normally due to lack of memory).
|
|
|
|
|
|
|
|
The example code creates an array with two points (1,2) and (3,4):
|
|
|
|
\code
|
|
|
|
static TQCOORD points[] = { 1,2, 3,4 };
|
|
|
|
TQPointArray a;
|
|
|
|
a.setPoints( 2, points );
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
\sa resize(), putPoints()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQPointArray::setPoints( int nPoints, const TQCOORD *points )
|
|
|
|
{
|
|
|
|
if ( !resize(nPoints) )
|
|
|
|
return FALSE;
|
|
|
|
int i = 0;
|
|
|
|
while ( nPoints-- ) { // make array of points
|
|
|
|
setPoint( i++, *points, *(points+1) );
|
|
|
|
points++;
|
|
|
|
points++;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Resizes the array to \a nPoints and sets the points in the array
|
|
|
|
to the values taken from the variable argument list.
|
|
|
|
|
|
|
|
Returns TRUE if successful, or FALSE if the array could not be
|
|
|
|
resized (typically due to lack of memory).
|
|
|
|
|
|
|
|
The example code creates an array with two points (1,2) and (3,4):
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQPointArray a;
|
|
|
|
a.setPoints( 2, 1,2, 3,4 );
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
The points are given as a sequence of integers, starting with \a
|
|
|
|
firstx then \a firsty, and so on.
|
|
|
|
|
|
|
|
\sa resize(), putPoints()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQPointArray::setPoints( int nPoints, int firstx, int firsty, ... )
|
|
|
|
{
|
|
|
|
va_list ap;
|
|
|
|
if ( !resize(nPoints) )
|
|
|
|
return FALSE;
|
|
|
|
setPoint( 0, firstx, firsty ); // set first point
|
|
|
|
int i = 1, x, y;
|
|
|
|
nPoints--;
|
|
|
|
va_start( ap, firsty );
|
|
|
|
while ( nPoints-- ) {
|
|
|
|
x = va_arg( ap, int );
|
|
|
|
y = va_arg( ap, int );
|
|
|
|
setPoint( i++, x, y );
|
|
|
|
}
|
|
|
|
va_end( ap );
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*! \overload
|
|
|
|
\internal
|
|
|
|
Copies \a nPoints points from the \a points coord array into
|
|
|
|
this point array, and resizes the point array if
|
|
|
|
\c{index+nPoints} exceeds the size of the array.
|
|
|
|
|
|
|
|
Returns TRUE if successful, or FALSE if the array could not be
|
|
|
|
resized (typically due to lack of memory).
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQPointArray::putPoints( int index, int nPoints, const TQCOORD *points )
|
|
|
|
{
|
|
|
|
if ( index + nPoints > (int)size() ) { // extend array
|
|
|
|
if ( !resize( index + nPoints ) )
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
int i = index;
|
|
|
|
while ( nPoints-- ) { // make array of points
|
|
|
|
setPoint( i++, *points, *(points+1) );
|
|
|
|
points++;
|
|
|
|
points++;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Copies \a nPoints points from the variable argument list into this
|
|
|
|
point array from position \a index, and resizes the point array if
|
|
|
|
\c{index+nPoints} exceeds the size of the array.
|
|
|
|
|
|
|
|
Returns TRUE if successful, or FALSE if the array could not be
|
|
|
|
resized (typically due to lack of memory).
|
|
|
|
|
|
|
|
The example code creates an array with three points (4,5), (6,7)
|
|
|
|
and (8,9), by expanding the array from 1 to 3 points:
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQPointArray a( 1 );
|
|
|
|
a[0] = TQPoint( 4, 5 );
|
|
|
|
a.putPoints( 1, 2, 6,7, 8,9 ); // index == 1, points == 2
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
This has the same result, but here putPoints overwrites rather
|
|
|
|
than extends:
|
|
|
|
\code
|
|
|
|
TQPointArray a( 3 );
|
|
|
|
a.putPoints( 0, 3, 4,5, 0,0, 8,9 );
|
|
|
|
a.putPoints( 1, 1, 6,7 );
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
The points are given as a sequence of integers, starting with \a
|
|
|
|
firstx then \a firsty, and so on.
|
|
|
|
|
|
|
|
\sa resize()
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQPointArray::putPoints( int index, int nPoints, int firstx, int firsty,
|
|
|
|
... )
|
|
|
|
{
|
|
|
|
va_list ap;
|
|
|
|
if ( index + nPoints > (int)size() ) { // extend array
|
|
|
|
if ( !resize(index + nPoints) )
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
if ( nPoints <= 0 )
|
|
|
|
return TRUE;
|
|
|
|
setPoint( index, firstx, firsty ); // set first point
|
|
|
|
int i = index + 1, x, y;
|
|
|
|
nPoints--;
|
|
|
|
va_start( ap, firsty );
|
|
|
|
while ( nPoints-- ) {
|
|
|
|
x = va_arg( ap, int );
|
|
|
|
y = va_arg( ap, int );
|
|
|
|
setPoint( i++, x, y );
|
|
|
|
}
|
|
|
|
va_end( ap );
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
This version of the function copies \a nPoints from \a from into
|
|
|
|
this array, starting at \a index in this array and \a fromIndex in
|
|
|
|
\a from. \a fromIndex is 0 by default.
|
|
|
|
|
|
|
|
\code
|
|
|
|
TQPointArray a;
|
|
|
|
a.putPoints( 0, 3, 1,2, 0,0, 5,6 );
|
|
|
|
// a is now the three-point array ( 1,2, 0,0, 5,6 );
|
|
|
|
TQPointArray b;
|
|
|
|
b.putPoints( 0, 3, 4,4, 5,5, 6,6 );
|
|
|
|
// b is now ( 4,4, 5,5, 6,6 );
|
|
|
|
a.putPoints( 2, 3, b );
|
|
|
|
// a is now ( 1,2, 0,0, 4,4, 5,5, 6,6 );
|
|
|
|
\endcode
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool TQPointArray::putPoints( int index, int nPoints,
|
|
|
|
const TQPointArray & from, int fromIndex )
|
|
|
|
{
|
|
|
|
if ( index + nPoints > (int)size() ) { // extend array
|
|
|
|
if ( !resize(index + nPoints) )
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
if ( nPoints <= 0 )
|
|
|
|
return TRUE;
|
|
|
|
int n = 0;
|
|
|
|
while( n < nPoints ) {
|
|
|
|
setPoint( index+n, from[fromIndex+n] );
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the bounding rectangle of the points in the array, or
|
|
|
|
TQRect(0,0,0,0) if the array is empty.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQRect TQPointArray::boundingRect() const
|
|
|
|
{
|
|
|
|
if ( isEmpty() )
|
|
|
|
return TQRect( 0, 0, 0, 0 ); // null rectangle
|
|
|
|
register TQPoint *pd = data();
|
|
|
|
int minx, maxx, miny, maxy;
|
|
|
|
minx = maxx = pd->x();
|
|
|
|
miny = maxy = pd->y();
|
|
|
|
pd++;
|
|
|
|
for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
|
|
|
|
if ( pd->x() < minx )
|
|
|
|
minx = pd->x();
|
|
|
|
else if ( pd->x() > maxx )
|
|
|
|
maxx = pd->x();
|
|
|
|
if ( pd->y() < miny )
|
|
|
|
miny = pd->y();
|
|
|
|
else if ( pd->y() > maxy )
|
|
|
|
maxy = pd->y();
|
|
|
|
pd++;
|
|
|
|
}
|
|
|
|
return TQRect( TQPoint(minx,miny), TQPoint(maxx,maxy) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int fix_angle( int a )
|
|
|
|
{
|
|
|
|
if ( a > 16*360 )
|
|
|
|
a %= 16*360;
|
|
|
|
else if ( a < -16*360 ) {
|
|
|
|
a = -( (-a) % (16*360) );
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the points of the array to those describing an arc of an
|
|
|
|
ellipse with size, width \a w by height \a h, and position (\a x,
|
|
|
|
\a y), starting from angle \a a1 and spanning by angle \a a2. The
|
|
|
|
resulting array has sufficient resolution for pixel accuracy (see
|
|
|
|
the overloaded function which takes an additional TQWMatrix
|
|
|
|
parameter).
|
|
|
|
|
|
|
|
Angles are specified in 16ths of a degree, i.e. a full circle
|
|
|
|
equals 5760 (16*360). Positive values mean counter-clockwise,
|
|
|
|
whereas negative values mean the clockwise direction. Zero degrees
|
|
|
|
is at the 3 o'clock position.
|
|
|
|
|
|
|
|
See the \link qcanvasellipse.html#anglediagram angle diagram\endlink.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQPointArray::makeArc( int x, int y, int w, int h, int a1, int a2 )
|
|
|
|
{
|
|
|
|
#if !defined(QT_OLD_MAKEELLIPSE) && !defined(QT_NO_TRANSFORMATIONS)
|
|
|
|
TQWMatrix unit;
|
|
|
|
makeArc(x,y,w,h,a1,a2,unit);
|
|
|
|
#else
|
|
|
|
a1 = fix_angle( a1 );
|
|
|
|
if ( a1 < 0 )
|
|
|
|
a1 += 16*360;
|
|
|
|
a2 = fix_angle( a2 );
|
|
|
|
int a3 = a2 > 0 ? a2 : -a2; // abs angle
|
|
|
|
makeEllipse( x, y, w, h );
|
|
|
|
int npts = a3*size()/(16*360); // # points in arc array
|
|
|
|
TQPointArray a(npts);
|
|
|
|
int i = a1*size()/(16*360);
|
|
|
|
int j = 0;
|
|
|
|
if ( a2 > 0 ) {
|
|
|
|
while ( npts-- ) {
|
|
|
|
if ( i >= (int)size() ) // wrap index
|
|
|
|
i = 0;
|
|
|
|
a.TQMemArray<TQPoint>::at( j++ ) = TQMemArray<TQPoint>::at( i++ );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while ( npts-- ) {
|
|
|
|
if ( i < 0 ) // wrap index
|
|
|
|
i = (int)size()-1;
|
|
|
|
a.TQMemArray<TQPoint>::at( j++ ) = TQMemArray<TQPoint>::at( i-- );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*this = a;
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_TRANSFORMATIONS
|
|
|
|
// Based upon:
|
|
|
|
// parelarc.c from Graphics Gems III
|
|
|
|
// VanAken / Simar, "A Parametric Elliptical Arc Algorithm"
|
|
|
|
//
|
|
|
|
static void
|
|
|
|
qtr_elips(TQPointArray& a, int off, double dxP, double dyP, double dxQ, double dyQ, double dxK, double dyK, int m)
|
|
|
|
{
|
|
|
|
#define PIV2 102944 /* fixed point PI/2 */
|
|
|
|
#define TWOPI 411775 /* fixed point 2*PI */
|
|
|
|
#define HALF 32768 /* fixed point 1/2 */
|
|
|
|
|
|
|
|
int xP, yP, xQ, yQ, xK, yK;
|
|
|
|
xP = int(dxP * 65536.0); yP = int(dyP * 65536.0);
|
|
|
|
xQ = int(dxQ * 65536.0); yQ = int(dyQ * 65536.0);
|
|
|
|
xK = int(dxK * 65536.0); yK = int(dyK * 65536.0);
|
|
|
|
|
|
|
|
int i;
|
|
|
|
int vx, ux, vy, uy, xJ, yJ;
|
|
|
|
|
|
|
|
vx = xK - xQ; /* displacements from center */
|
|
|
|
ux = xK - xP;
|
|
|
|
vy = yK - yQ;
|
|
|
|
uy = yK - yP;
|
|
|
|
xJ = xP - vx + HALF; /* center of ellipse J */
|
|
|
|
yJ = yP - vy + HALF;
|
|
|
|
|
|
|
|
int r;
|
|
|
|
ux -= (r = ux >> (2*m + 3)); /* cancel 2nd-order error */
|
|
|
|
ux -= (r >>= (2*m + 4)); /* cancel 4th-order error */
|
|
|
|
ux -= r >> (2*m + 3); /* cancel 6th-order error */
|
|
|
|
ux += vx >> (m + 1); /* cancel 1st-order error */
|
|
|
|
uy -= (r = uy >> (2*m + 3)); /* cancel 2nd-order error */
|
|
|
|
uy -= (r >>= (2*m + 4)); /* cancel 4th-order error */
|
|
|
|
uy -= r >> (2*m + 3); /* cancel 6th-order error */
|
|
|
|
uy += vy >> (m + 1); /* cancel 1st-order error */
|
|
|
|
|
|
|
|
const int qn = a.size()/4;
|
|
|
|
for (i = 0; i < qn; i++) {
|
|
|
|
a[off+i] = TQPoint((xJ + vx) >> 16, (yJ + vy) >> 16);
|
|
|
|
ux -= vx >> m;
|
|
|
|
vx += ux >> m;
|
|
|
|
uy -= vy >> m;
|
|
|
|
vy += uy >> m;
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef PIV2
|
|
|
|
#undef TWOPI
|
|
|
|
#undef HALF
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Sets the points of the array to those describing an arc of an
|
|
|
|
ellipse with width \a w and height \a h and position (\a x, \a y),
|
|
|
|
starting from angle \a a1, and spanning angle by \a a2, and
|
|
|
|
transformed by the matrix \a xf. The resulting array has
|
|
|
|
sufficient resolution for pixel accuracy.
|
|
|
|
|
|
|
|
Angles are specified in 16ths of a degree, i.e. a full circle
|
|
|
|
equals 5760 (16*360). Positive values mean counter-clockwise,
|
|
|
|
whereas negative values mean the clockwise direction. Zero degrees
|
|
|
|
is at the 3 o'clock position.
|
|
|
|
|
|
|
|
See the \link qcanvasellipse.html#anglediagram angle diagram\endlink.
|
|
|
|
*/
|
|
|
|
void TQPointArray::makeArc( int x, int y, int w, int h,
|
|
|
|
int a1, int a2,
|
|
|
|
const TQWMatrix& xf )
|
|
|
|
{
|
|
|
|
#define PIV2 102944 /* fixed point PI/2 */
|
|
|
|
if ( --w < 0 || --h < 0 || !a2 ) {
|
|
|
|
resize( 0 );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool rev = a2 < 0;
|
|
|
|
if ( rev ) {
|
|
|
|
a1 += a2;
|
|
|
|
a2 = -a2;
|
|
|
|
}
|
|
|
|
a1 = fix_angle( a1 );
|
|
|
|
if ( a1 < 0 )
|
|
|
|
a1 += 16*360;
|
|
|
|
a2 = fix_angle( a2 );
|
|
|
|
|
|
|
|
bool arc = a1 != 0 || a2 != 360*16 || rev;
|
|
|
|
|
|
|
|
double xP, yP, xQ, yQ, xK, yK;
|
|
|
|
|
|
|
|
xf.map(x+w, y+h/2.0, &xP, &yP);
|
|
|
|
xf.map(x+w/2.0, y, &xQ, &yQ);
|
|
|
|
xf.map(x+w, y, &xK, &yK);
|
|
|
|
|
|
|
|
int m = 3;
|
|
|
|
int max;
|
|
|
|
int q = int(TQMAX(TQABS(xP-xQ),TQABS(yP-yQ)));
|
|
|
|
if ( arc )
|
|
|
|
q *= 2;
|
|
|
|
do {
|
|
|
|
m++;
|
|
|
|
max = 4*(1 + (PIV2 >> (16 - m)) );
|
|
|
|
} while (max < q && m < 16); // 16 limits memory usage on HUGE arcs
|
|
|
|
|
|
|
|
double inc = 1.0/(1<<m);
|
|
|
|
|
|
|
|
const int qn = (PIV2 >> (16 - m));
|
|
|
|
resize(qn*4);
|
|
|
|
|
|
|
|
qtr_elips(*this, 0, xP, yP, xQ, yQ, xK, yK, m);
|
|
|
|
xP = xQ; yP = yQ;
|
|
|
|
xf.map(x, y+h/2.0, &xQ, &yQ);
|
|
|
|
xf.map(x, y, &xK, &yK);
|
|
|
|
qtr_elips(*this, qn, xP, yP, xQ, yQ, xK, yK, m);
|
|
|
|
xP = xQ; yP = yQ;
|
|
|
|
xf.map(x+w/2.0, y+h, &xQ, &yQ);
|
|
|
|
xf.map(x, y+h, &xK, &yK);
|
|
|
|
qtr_elips(*this, qn*2, xP, yP, xQ, yQ, xK, yK, m);
|
|
|
|
xP = xQ; yP = yQ;
|
|
|
|
xf.map(x+w, y+h/2.0, &xQ, &yQ);
|
|
|
|
xf.map(x+w, y+h, &xK, &yK);
|
|
|
|
qtr_elips(*this, qn*3, xP, yP, xQ, yQ, xK, yK, m);
|
|
|
|
|
|
|
|
int n = size();
|
|
|
|
|
|
|
|
if ( arc ) {
|
|
|
|
double da1 = double(a1)*Q_PI / (360*8);
|
|
|
|
double da3 = double(a2+a1)*Q_PI / (360*8);
|
|
|
|
int i = int(da1/inc+0.5);
|
|
|
|
int l = int(da3/inc+0.5);
|
|
|
|
int k = (l-i)+1;
|
|
|
|
TQPointArray r(k);
|
|
|
|
int j = 0;
|
|
|
|
|
|
|
|
if ( rev ) {
|
|
|
|
while ( k-- )
|
|
|
|
r[j++] = at((i+k)%n);
|
|
|
|
} else {
|
|
|
|
while ( j < k ) {
|
|
|
|
r[j] = at((i+j)%n);
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*this = r;
|
|
|
|
}
|
|
|
|
#undef PIV2
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_TRANSFORMATIONS
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the points of the array to those describing an ellipse with
|
|
|
|
size, width \a w by height \a h, and position (\a x, \a y).
|
|
|
|
|
|
|
|
The returned array has sufficient resolution for use as pixels.
|
|
|
|
*/
|
|
|
|
void TQPointArray::makeEllipse( int x, int y, int w, int h )
|
|
|
|
{ // midpoint, 1/4 ellipse
|
|
|
|
#if !defined(QT_OLD_MAKEELLIPSE) && !defined(QT_NO_TRANSFORMATIONS)
|
|
|
|
TQWMatrix unit;
|
|
|
|
makeArc(x,y,w,h,0,360*16,unit);
|
|
|
|
return;
|
|
|
|
#else
|
|
|
|
if ( w <= 0 || h <= 0 ) {
|
|
|
|
if ( w == 0 || h == 0 ) {
|
|
|
|
resize( 0 );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if ( w < 0 ) { // negative width
|
|
|
|
w = -w;
|
|
|
|
x -= w;
|
|
|
|
}
|
|
|
|
if ( h < 0 ) { // negative height
|
|
|
|
h = -h;
|
|
|
|
y -= h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int s = (w+h+2)/2; // max size of xx,yy array
|
|
|
|
int *px = new int[s]; // 1/4th of ellipse
|
|
|
|
int *py = new int[s];
|
|
|
|
int xx, yy, i=0;
|
|
|
|
double d1, d2;
|
|
|
|
double a2=(w/2)*(w/2), b2=(h/2)*(h/2);
|
|
|
|
xx = 0;
|
|
|
|
yy = int(h/2);
|
|
|
|
d1 = b2 - a2*(h/2) + 0.25*a2;
|
|
|
|
px[i] = xx;
|
|
|
|
py[i] = yy;
|
|
|
|
i++;
|
|
|
|
while ( a2*(yy-0.5) > b2*(xx+0.5) ) { // region 1
|
|
|
|
if ( d1 < 0 ) {
|
|
|
|
d1 = d1 + b2*(3.0+2*xx);
|
|
|
|
xx++;
|
|
|
|
} else {
|
|
|
|
d1 = d1 + b2*(3.0+2*xx) + 2.0*a2*(1-yy);
|
|
|
|
xx++;
|
|
|
|
yy--;
|
|
|
|
}
|
|
|
|
px[i] = xx;
|
|
|
|
py[i] = yy;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
d2 = b2*(xx+0.5)*(xx+0.5) + a2*(yy-1)*(yy-1) - a2*b2;
|
|
|
|
while ( yy > 0 ) { // region 2
|
|
|
|
if ( d2 < 0 ) {
|
|
|
|
d2 = d2 + 2.0*b2*(xx+1) + a2*(3-2*yy);
|
|
|
|
xx++;
|
|
|
|
yy--;
|
|
|
|
} else {
|
|
|
|
d2 = d2 + a2*(3-2*yy);
|
|
|
|
yy--;
|
|
|
|
}
|
|
|
|
px[i] = xx;
|
|
|
|
py[i] = yy;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
s = i;
|
|
|
|
resize( 4*s ); // make full point array
|
|
|
|
x += w/2;
|
|
|
|
y += h/2;
|
|
|
|
for ( i=0; i<s; i++ ) { // mirror
|
|
|
|
xx = px[i];
|
|
|
|
yy = py[i];
|
|
|
|
setPoint( s-i-1, x+xx, y-yy );
|
|
|
|
setPoint( s+i, x-xx, y-yy );
|
|
|
|
setPoint( 3*s-i-1, x-xx, y+yy );
|
|
|
|
setPoint( 3*s+i, x+xx, y+yy );
|
|
|
|
}
|
|
|
|
delete[] px;
|
|
|
|
delete[] py;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_BEZIER
|
|
|
|
// Work functions for TQPointArray::cubicBezier()
|
|
|
|
static
|
|
|
|
void split(const double *p, double *l, double *r)
|
|
|
|
{
|
|
|
|
double tmpx;
|
|
|
|
double tmpy;
|
|
|
|
|
|
|
|
l[0] = p[0];
|
|
|
|
l[1] = p[1];
|
|
|
|
r[6] = p[6];
|
|
|
|
r[7] = p[7];
|
|
|
|
|
|
|
|
l[2] = (p[0]+ p[2])/2;
|
|
|
|
l[3] = (p[1]+ p[3])/2;
|
|
|
|
tmpx = (p[2]+ p[4])/2;
|
|
|
|
tmpy = (p[3]+ p[5])/2;
|
|
|
|
r[4] = (p[4]+ p[6])/2;
|
|
|
|
r[5] = (p[5]+ p[7])/2;
|
|
|
|
|
|
|
|
l[4] = (l[2]+ tmpx)/2;
|
|
|
|
l[5] = (l[3]+ tmpy)/2;
|
|
|
|
r[2] = (tmpx + r[4])/2;
|
|
|
|
r[3] = (tmpy + r[5])/2;
|
|
|
|
|
|
|
|
l[6] = (l[4]+ r[2])/2;
|
|
|
|
l[7] = (l[5]+ r[3])/2;
|
|
|
|
r[0] = l[6];
|
|
|
|
r[1] = l[7];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Based on:
|
|
|
|
//
|
|
|
|
// A Fast 2D Point-On-Line Test
|
|
|
|
// by Alan Paeth
|
|
|
|
// from "Graphics Gems", Academic Press, 1990
|
|
|
|
static
|
|
|
|
int pnt_on_line( const int* p, const int* q, const int* t )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
|
|
|
|
* return 0 if T is not on the line through <--P--Q-->
|
|
|
|
* 1 if T is on the open ray ending at P: <--P
|
|
|
|
* 2 if T is on the closed interior along: P--Q
|
|
|
|
* 3 if T is on the open ray beginning at Q: Q-->
|
|
|
|
*
|
|
|
|
* Example: consider the line P = (3,2), Q = (17,7). A plot
|
|
|
|
* of the test points T(x,y) (with 0 mapped onto '.') yields:
|
|
|
|
*
|
|
|
|
* 8| . . . . . . . . . . . . . . . . . 3 3
|
|
|
|
* Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
|
|
|
|
* 6| . . . . . . . . . . . 2 2 2 2 2 . . .
|
|
|
|
* a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
|
|
|
|
* x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
|
|
|
|
* i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
|
|
|
|
* s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
|
|
|
|
* 1| 1 1 . . . . . . . . . . . . . . . . .
|
|
|
|
* +--------------------------------------
|
|
|
|
* 1 2 3 4 5 X-axis 10 15 19
|
|
|
|
*
|
|
|
|
* Point-Line distance is normalized with the Infinity Norm
|
|
|
|
* avoiding square-root code and tightening the test vs the
|
|
|
|
* Manhattan Norm. All math is done on the field of integers.
|
|
|
|
* The latter replaces the initial ">= MAX(...)" test with
|
|
|
|
* "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
|
|
|
|
* and norm, yielding a broader target line for selection.
|
|
|
|
* The tightest test is employed here for best discrimination
|
|
|
|
* in merging collinear (to grid coordinates) vertex chains
|
|
|
|
* into a larger, spanning vectors within the Lemming editor.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// if all points are coincident, return condition 2 (on line)
|
|
|
|
if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( TQABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
|
|
|
|
(TQMAX(TQABS(q[0]-p[0]), TQABS(q[1]-p[1])))) return 0;
|
|
|
|
|
|
|
|
if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
|
|
|
|
return 1 ;
|
|
|
|
if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
|
|
|
|
return 1 ;
|
|
|
|
if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
|
|
|
|
return 3 ;
|
|
|
|
if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
|
|
|
|
return 3 ;
|
|
|
|
|
|
|
|
return 2 ;
|
|
|
|
}
|
|
|
|
static
|
|
|
|
void polygonizeTQBezier( double* acc, int& accsize, const double ctrl[],
|
|
|
|
int maxsize )
|
|
|
|
{
|
|
|
|
if ( accsize > maxsize / 2 )
|
|
|
|
{
|
|
|
|
// This never happens in practice.
|
|
|
|
|
|
|
|
if ( accsize >= maxsize-4 )
|
|
|
|
return;
|
|
|
|
// Running out of space - approximate by a line.
|
|
|
|
acc[accsize++] = ctrl[0];
|
|
|
|
acc[accsize++] = ctrl[1];
|
|
|
|
acc[accsize++] = ctrl[6];
|
|
|
|
acc[accsize++] = ctrl[7];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//intersects:
|
|
|
|
double l[8];
|
|
|
|
double r[8];
|
|
|
|
split( ctrl, l, r);
|
|
|
|
|
|
|
|
// convert to integers for line condition check
|
|
|
|
int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
|
|
|
|
int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
|
|
|
|
int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
|
|
|
|
int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
|
|
|
|
|
|
|
|
// #### Duplication needed?
|
|
|
|
if ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
|
|
|
|
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
|
|
|
|
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 )
|
|
|
|
{
|
|
|
|
// Approximate by one line.
|
|
|
|
// Dont need to write last pt as it is the same as first pt
|
|
|
|
// on the next segment
|
|
|
|
acc[accsize++] = l[0];
|
|
|
|
acc[accsize++] = l[1];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|
|
|
|
|| ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
|
|
|
|
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
|
|
|
|
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) )
|
|
|
|
{
|
|
|
|
// Approximate by one line.
|
|
|
|
// Dont need to write last pt as it is the same as first pt
|
|
|
|
// on the next segment
|
|
|
|
acc[accsize++] = l[0];
|
|
|
|
acc[accsize++] = l[1];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Too big and too curved - recusively subdivide.
|
|
|
|
polygonizeTQBezier( acc, accsize, l, maxsize );
|
|
|
|
polygonizeTQBezier( acc, accsize, r, maxsize );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the Bezier points for the four control points in this
|
|
|
|
array.
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQPointArray TQPointArray::cubicBezier() const
|
|
|
|
{
|
|
|
|
#ifdef USE_SIMPLE_QBEZIER_CODE
|
|
|
|
if ( size() != 4 ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQPointArray::bezier: The array must have 4 control points" );
|
|
|
|
#endif
|
|
|
|
TQPointArray p;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
int v;
|
|
|
|
float xvec[4];
|
|
|
|
float yvec[4];
|
|
|
|
for ( v=0; v<4; v++ ) { // store all x,y in xvec,yvec
|
|
|
|
int x, y;
|
|
|
|
point( v, &x, &y );
|
|
|
|
xvec[v] = (float)x;
|
|
|
|
yvec[v] = (float)y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQRect r = boundingRect();
|
|
|
|
int m = TQMAX(r.width(),r.height())/2;
|
|
|
|
m = TQMIN(m,30); // m = number of result points
|
|
|
|
if ( m < 2 ) // at least two points
|
|
|
|
m = 2;
|
|
|
|
TQPointArray p( m ); // p = Bezier point array
|
|
|
|
register TQPointData *pd = p.data();
|
|
|
|
|
|
|
|
float x0 = xvec[0], y0 = yvec[0];
|
|
|
|
float dt = 1.0F/m;
|
|
|
|
float cx = 3.0F * (xvec[1] - x0);
|
|
|
|
float bx = 3.0F * (xvec[2] - xvec[1]) - cx;
|
|
|
|
float ax = xvec[3] - (x0 + cx + bx);
|
|
|
|
float cy = 3.0F * (yvec[1] - y0);
|
|
|
|
float by = 3.0F * (yvec[2] - yvec[1]) - cy;
|
|
|
|
float ay = yvec[3] - (y0 + cy + by);
|
|
|
|
float t = dt;
|
|
|
|
|
|
|
|
pd->rx() = (TQCOORD)xvec[0];
|
|
|
|
pd->ry() = (TQCOORD)yvec[0];
|
|
|
|
pd++;
|
|
|
|
m -= 2;
|
|
|
|
|
|
|
|
while ( m-- ) {
|
|
|
|
pd->rx() = (TQCOORD)tqRound( ((ax * t + bx) * t + cx) * t + x0 );
|
|
|
|
pd->ry() = (TQCOORD)tqRound( ((ay * t + by) * t + cy) * t + y0 );
|
|
|
|
pd++;
|
|
|
|
t += dt;
|
|
|
|
}
|
|
|
|
|
|
|
|
pd->rx() = (TQCOORD)xvec[3];
|
|
|
|
pd->ry() = (TQCOORD)yvec[3];
|
|
|
|
|
|
|
|
return p;
|
|
|
|
#else
|
|
|
|
|
|
|
|
if ( size() != 4 ) {
|
|
|
|
#if defined(QT_CHECK_RANGE)
|
|
|
|
tqWarning( "TQPointArray::bezier: The array must have 4 control points" );
|
|
|
|
#endif
|
|
|
|
TQPointArray pa;
|
|
|
|
return pa;
|
|
|
|
} else {
|
|
|
|
TQRect r = boundingRect();
|
|
|
|
int m = 4+2*TQMAX(r.width(),r.height());
|
|
|
|
double *p = new double[m];
|
|
|
|
double ctrl[8];
|
|
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
|
|
ctrl[i*2] = at(i).x();
|
|
|
|
ctrl[i*2+1] = at(i).y();
|
|
|
|
}
|
|
|
|
int len=0;
|
|
|
|
polygonizeTQBezier( p, len, ctrl, m );
|
|
|
|
TQPointArray pa((len/2)+1); // one extra point for last point on line
|
|
|
|
int j=0;
|
|
|
|
for (i=0; j<len; i++) {
|
|
|
|
int x = tqRound(p[j++]);
|
|
|
|
int y = tqRound(p[j++]);
|
|
|
|
pa[i] = TQPoint(x,y);
|
|
|
|
}
|
|
|
|
// add last pt on the line, which will be at the last control pt
|
|
|
|
pa[(int)pa.size()-1] = at(3);
|
|
|
|
delete[] p;
|
|
|
|
|
|
|
|
return pa;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif //QT_NO_BEZIER
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
TQPointArray stream functions
|
|
|
|
*****************************************************************************/
|
|
|
|
#ifndef QT_NO_DATASTREAM
|
|
|
|
/*!
|
|
|
|
\relates TQPointArray
|
|
|
|
|
|
|
|
Writes the point array, \a a to the stream \a s and returns a
|
|
|
|
reference to the stream.
|
|
|
|
|
|
|
|
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQDataStream &operator<<( TQDataStream &s, const TQPointArray &a )
|
|
|
|
{
|
|
|
|
register uint i;
|
|
|
|
uint len = a.size();
|
|
|
|
s << len; // write size of array
|
|
|
|
for ( i=0; i<len; i++ ) // write each point
|
|
|
|
s << a.point( i );
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\relates TQPointArray
|
|
|
|
|
|
|
|
Reads a point array, \a a from the stream \a s and returns a
|
|
|
|
reference to the stream.
|
|
|
|
|
|
|
|
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
|
|
|
|
*/
|
|
|
|
|
|
|
|
TQDataStream &operator>>( TQDataStream &s, TQPointArray &a )
|
|
|
|
{
|
|
|
|
register uint i;
|
|
|
|
uint len;
|
|
|
|
s >> len; // read size of array
|
|
|
|
if ( !a.resize( len ) ) // no memory
|
|
|
|
return s;
|
|
|
|
TQPoint p;
|
|
|
|
for ( i=0; i<len; i++ ) { // read each point
|
|
|
|
s >> p;
|
|
|
|
a.setPoint( i, p );
|
|
|
|
}
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
#endif //QT_NO_DATASTREAM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct TQShortPoint { // Binary compatible with XPoint
|
|
|
|
short x, y;
|
|
|
|
};
|
|
|
|
|
|
|
|
uint TQPointArray::splen = 0;
|
|
|
|
void* TQPointArray::sp = 0; // Really a TQShortPoint*
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
|
|
|
|
Converts the point coords to short (16bit) size, compatible with
|
|
|
|
X11's XPoint structure. The pointer returned points to a static
|
|
|
|
array, so its contents will be overwritten the next time this
|
|
|
|
function is called.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void* TQPointArray::shortPoints( int index, int nPoints ) const
|
|
|
|
{
|
|
|
|
|
|
|
|
if ( isNull() || !nPoints )
|
|
|
|
return 0;
|
|
|
|
TQPoint* p = data();
|
|
|
|
p += index;
|
|
|
|
uint i = nPoints < 0 ? size() : nPoints;
|
|
|
|
if ( splen < i ) {
|
|
|
|
if ( sp )
|
|
|
|
delete[] ((TQShortPoint*)sp);
|
|
|
|
sp = new TQShortPoint[i];
|
|
|
|
splen = i;
|
|
|
|
}
|
|
|
|
TQShortPoint* ps = (TQShortPoint*)sp;
|
|
|
|
while ( i-- ) {
|
|
|
|
ps->x = (short)p->x();
|
|
|
|
ps->y = (short)p->y();
|
|
|
|
p++;
|
|
|
|
ps++;
|
|
|
|
}
|
|
|
|
return sp;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\internal
|
|
|
|
|
|
|
|
Deallocates the internal buffer used by shortPoints().
|
|
|
|
*/
|
|
|
|
|
|
|
|
void TQPointArray::cleanBuffers()
|
|
|
|
{
|
|
|
|
if ( sp )
|
|
|
|
delete[] ((TQShortPoint*)sp);
|
|
|
|
sp = 0;
|
|
|
|
splen = 0;
|
|
|
|
}
|