You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tqtinterface/qtinterface/interface_qt3/tqtextcodec.cpp

516 lines
13 KiB

/*
Copyright (C) 2010 Timothy Pearson <kb9vqf@pearsoncomputing.net>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <tqt.h>
#include <tqtextcodec.h>
#ifdef USE_QT4
// returns a string containing the letters and numbers from input,
// with a space separating run of a character class. e.g. "iso8859-1"
// becomes "iso 8859 1"
static QString lettersAndNumbers( const char * input )
{
QString result;
QChar c;
while( input && *input ) {
c = *input;
if ( c.isLetter() || c.isNumber() )
result += c.lower();
if ( input[1] ) {
// add space at character class transition, except
// transition from upper-case to lower-case letter
QChar n( input[1] );
if ( c.isLetter() && n.isLetter() ) {
if ( c == c.lower() && n == n.upper() )
result += ' ';
} else if ( c.category() != n.category() ) {
result += ' ';
}
}
input++;
}
return result.simplifyWhiteSpace();
}
#define CHAINED 0xffff
struct QMultiByteUnicodeTable {
// If multiByte, ignore unicode and index into multiByte
// with the next character.
QMultiByteUnicodeTable() : unicode(0xfffd), multiByte(0) { }
~QMultiByteUnicodeTable()
{
if ( multiByte )
delete [] multiByte;
}
ushort unicode;
QMultiByteUnicodeTable* multiByte;
};
static int getByte(char* &cursor)
{
int byte = 0;
if ( *cursor ) {
if ( cursor[1] == 'x' )
byte = strtol(cursor+2,&cursor,16);
else if ( cursor[1] == 'd' )
byte = strtol(cursor+2,&cursor,10);
else
byte = strtol(cursor+2,&cursor,8);
}
return byte&0xff;
}
class QTextCodecFromIOD;
class QTextCodecFromIODDecoder : public QTextDecoder {
const QTextCodecFromIOD* codec;
QMultiByteUnicodeTable* mb;
public:
QTextCodecFromIODDecoder(const QTextCodecFromIOD* c);
//QString toUnicode(const char* chars, int len);
QString convertToUnicode(const char* chars, int len, int *state);
};
class QTextCodecFromIOD : public QTextCodec {
friend class QTextCodecFromIODDecoder;
TQCString n;
// If from_unicode_page[row()][cell()] is 0 and from_unicode_page_multiByte,
// use from_unicode_page_multiByte[row()][cell()] as string.
char** from_unicode_page;
char*** from_unicode_page_multiByte;
char unkn;
// Only one of these is used
ushort* to_unicode;
QMultiByteUnicodeTable* to_unicode_multiByte;
int max_bytes_per_char;
TQStrList aliases;
bool stateless() const { return !to_unicode_multiByte; }
public:
QTextCodecFromIOD(QIODevice* iod)
{
from_unicode_page = 0;
to_unicode_multiByte = 0;
to_unicode = 0;
from_unicode_page_multiByte = 0;
max_bytes_per_char = 1;
const int maxlen=100;
char line[maxlen];
char esc='\\';
char comm='%';
bool incmap = FALSE;
while (iod->readLine(line,maxlen) > 0) {
if (0==qstrnicmp(line,"<code_set_name>",15))
n = line+15;
else if (0==qstrnicmp(line,"<escape_char> ",14))
esc = line[14];
else if (0==qstrnicmp(line,"<comment_char> ",15))
comm = line[15];
else if (line[0]==comm && 0==qstrnicmp(line+1," alias ",7)) {
aliases.append(line+8);
} else if (0==qstrnicmp(line,"CHARMAP",7)) {
if (!from_unicode_page) {
from_unicode_page = new char*[256];
for (int i=0; i<256; i++)
from_unicode_page[i]=0;
}
if (!to_unicode) {
to_unicode = new ushort[256];
}
incmap = TRUE;
} else if (0==qstrnicmp(line,"END CHARMAP",11))
break;
else if (incmap) {
char* cursor = line;
int byte=-1,unicode=-1;
ushort* mb_unicode=0;
const int maxmb=8; // more -> we'll need to improve datastructures
char mb[maxmb+1];
int nmb=0;
while (*cursor) {
if (cursor[0]=='<' && cursor[1]=='U' &&
cursor[2]>='0' && cursor[2]<='9' &&
cursor[3]>='0' && cursor[3]<='9') {
unicode = strtol(cursor+2,&cursor,16);
} else if (*cursor==esc) {
byte = getByte(cursor);
if ( *cursor == esc ) {
if ( !to_unicode_multiByte ) {
to_unicode_multiByte =
new QMultiByteUnicodeTable[256];
for (int i=0; i<256; i++) {
to_unicode_multiByte[i].unicode =
to_unicode[i];
to_unicode_multiByte[i].multiByte = 0;
}
delete [] to_unicode;
to_unicode = 0;
}
QMultiByteUnicodeTable* mbut =
to_unicode_multiByte+byte;
mb[nmb++] = byte;
while ( nmb < maxmb && *cursor == esc ) {
// Always at least once
mbut->unicode = CHAINED;
byte = getByte(cursor);
mb[nmb++] = byte;
if (!mbut->multiByte) {
mbut->multiByte =
new QMultiByteUnicodeTable[256];
}
mbut = mbut->multiByte+byte;
mb_unicode = & mbut->unicode;
}
if ( nmb > max_bytes_per_char )
max_bytes_per_char = nmb;
}
} else {
cursor++;
}
}
if (unicode >= 0 && unicode <= 0xffff)
{
QChar ch((ushort)unicode);
if (!from_unicode_page[ch.row()]) {
from_unicode_page[ch.row()] = new char[256];
for (int i=0; i<256; i++)
from_unicode_page[ch.row()][i]=0;
}
if ( mb_unicode ) {
from_unicode_page[ch.row()][ch.cell()] = 0;
if (!from_unicode_page_multiByte) {
from_unicode_page_multiByte = new char**[256];
for (int i=0; i<256; i++)
from_unicode_page_multiByte[i]=0;
}
if (!from_unicode_page_multiByte[ch.row()]) {
from_unicode_page_multiByte[ch.row()] = new char*[256];
for (int i=0; i<256; i++)
from_unicode_page_multiByte[ch.row()][i] = 0;
}
mb[nmb++] = 0;
from_unicode_page_multiByte[ch.row()][ch.cell()]
= qstrdup(mb);
*mb_unicode = unicode;
} else {
from_unicode_page[ch.row()][ch.cell()] = (char)byte;
if ( to_unicode )
to_unicode[byte] = unicode;
else
to_unicode_multiByte[byte].unicode = unicode;
}
} else {
}
}
}
n = n.stripWhiteSpace();
unkn = '?'; // ##### Might be a bad choice.
}
~QTextCodecFromIOD()
{
if ( from_unicode_page ) {
for (int i=0; i<256; i++)
if (from_unicode_page[i])
delete [] from_unicode_page[i];
}
if ( from_unicode_page_multiByte ) {
for (int i=0; i<256; i++)
if (from_unicode_page_multiByte[i])
for (int j=0; j<256; j++)
if (from_unicode_page_multiByte[i][j])
delete [] from_unicode_page_multiByte[i][j];
}
if ( to_unicode )
delete [] to_unicode;
if ( to_unicode_multiByte )
delete [] to_unicode_multiByte;
}
bool ok() const
{
return !!from_unicode_page;
}
QTextDecoder* makeDecoder() const
{
if ( stateless() )
return QTextCodec::makeDecoder();
else
return new QTextCodecFromIODDecoder(this);
}
const char* qtio_name() const
{
return n;
}
int mibEnum() const
{
return 0; // #### Unknown.
}
int heuristicContentMatch(const char*, int) const
{
return 0;
}
int heuristicNameMatch(const char* hint) const
{
int bestr = QTextCodec::heuristicNameMatch(hint);
TQStrListIterator it(aliases);
char* a;
while ((a=it.current())) {
++it;
int r = simpleHeuristicNameMatch(a,hint);
if (r > bestr)
bestr = r;
}
return bestr;
}
QString toUnicode(const char* chars, int len) const
{
const uchar* uchars = (const uchar*)chars;
QString result;
QMultiByteUnicodeTable* multiByte=to_unicode_multiByte;
if ( multiByte ) {
while (len--) {
QMultiByteUnicodeTable& mb = multiByte[*uchars];
if ( mb.multiByte ) {
// Chained multi-byte
multiByte = mb.multiByte;
} else {
result += QChar(mb.unicode);
multiByte=to_unicode_multiByte;
}
uchars++;
}
} else {
while (len--)
result += QChar(to_unicode[*uchars++]);
}
return result;
}
QString convertToUnicode(const char* chars, int len, ConverterState *state) const
{
return toUnicode(chars, len);
}
#if !defined(Q_NO_USING_KEYWORD)
using QTextCodec::fromUnicode;
#endif
TQCString fromUnicode(const QString& uc, int& lenInOut) const
{
if (lenInOut > (int)uc.length())
lenInOut = uc.length();
int rlen = lenInOut*max_bytes_per_char;
TQCString rstr(rlen+1);
char* cursor = rstr.data();
char* s=0;
int l = lenInOut;
int lout = 0;
for (int i=0; i<l; i++) {
QChar ch = uc[i];
if ( ch == QChar() ) {
// special
*cursor++ = 0;
} else if ( from_unicode_page[ch.row()] &&
from_unicode_page[ch.row()][ch.cell()] )
{
*cursor++ = from_unicode_page[ch.row()][ch.cell()];
lout++;
} else if ( from_unicode_page_multiByte &&
from_unicode_page_multiByte[ch.row()] &&
(s=from_unicode_page_multiByte[ch.row()][ch.cell()]) )
{
while (*s) {
*cursor++ = *s++;
lout++;
}
} else {
*cursor++ = unkn;
lout++;
}
}
*cursor = 0;
lenInOut = lout;
return rstr;
}
QByteArray convertFromUnicode(const QChar *charin, int len, ConverterState *state) const
{
return fromUnicode(charin, len);
}
QByteArray name() const
{
return qtio_name();
}
};
// QTextCodecFromIODDecoder::QTextCodecFromIODDecoder(const QTextCodecFromIOD* c) :
// codec(c)
// {
// mb = codec->to_unicode_multiByte;
// }
QString QTextCodecFromIODDecoder::convertToUnicode(const char* chars, int len, int *state)
{
const uchar* uchars = (const uchar*)chars;
QString result;
while (len--) {
QMultiByteUnicodeTable& t = mb[*uchars];
if ( t.multiByte ) {
// Chained multi-byte
mb = t.multiByte;
} else {
if ( t.unicode )
result += QChar(t.unicode);
mb=codec->to_unicode_multiByte;
}
uchars++;
}
return result;
}
#ifndef QT_NO_CODECS
// Cannot use <pre> or \code
/*!
Reads a POSIX2 charmap definition from \a iod.
The parser recognizes the following lines:
<font name="sans">
&nbsp;&nbsp;&lt;code_set_name&gt; <i>name</i></br>
&nbsp;&nbsp;&lt;escape_char&gt; <i>character</i></br>
&nbsp;&nbsp;% alias <i>alias</i></br>
&nbsp;&nbsp;CHARMAP</br>
&nbsp;&nbsp;&lt;<i>token</i>&gt; /x<i>hexbyte</i> &lt;U<i>unicode</i>&gt; ...</br>
&nbsp;&nbsp;&lt;<i>token</i>&gt; /d<i>decbyte</i> &lt;U<i>unicode</i>&gt; ...</br>
&nbsp;&nbsp;&lt;<i>token</i>&gt; /<i>octbyte</i> &lt;U<i>unicode</i>&gt; ...</br>
&nbsp;&nbsp;&lt;<i>token</i>&gt; /<i>any</i>/<i>any</i>... &lt;U<i>unicode</i>&gt; ...</br>
&nbsp;&nbsp;END CHARMAP</br>
</font>
The resulting QTextCodec is returned (and also added to the global
list of codecs). The name() of the result is taken from the
code_set_name.
Note that a codec constructed in this way uses much more memory
and is slower than a hand-written QTextCodec subclass, since
tables in code are kept in memory shared by all Qt applications.
\sa loadCharmapFile()
*/
QTextCodec* QTextCodec::loadCharmap(QIODevice* iod)
{
QTextCodecFromIOD* r = new QTextCodecFromIOD(iod);
if ( !r->ok() ) {
delete r;
r = 0;
}
return r;
}
/*!
A convenience function for loadCharmap() that loads the charmap
definition from the file \a filename.
*/
QTextCodec* QTextCodec::loadCharmapFile(QString filename)
{
QFile f(filename);
if (f.open(IO_ReadOnly)) {
QTextCodecFromIOD* r = new QTextCodecFromIOD(&f);
if ( !r->ok() )
delete r;
else
return r;
}
return 0;
}
/*!
Returns a value indicating how likely it is that this decoder is
appropriate for decoding some format that has the given name. The
name is compared with the \a hint.
A good match returns a positive number around the length of the
string. A bad match is negative.
The default implementation calls simpleHeuristicNameMatch() with
the name of the codec.
*/
int QTextCodec::heuristicNameMatch(const char* hint) const
{
return simpleHeuristicNameMatch(name(),hint);
}
/*!
A simple utility function for heuristicNameMatch(): it does some
very minor character-skipping so that almost-exact matches score
high. \a name is the text we're matching and \a hint is used for
the comparison.
*/
int QTextCodec::simpleHeuristicNameMatch(const char* name, const char* hint)
{
// if they're the same, return a perfect score.
if ( name && hint && *name && *hint && qstricmp( name, hint ) == 0 )
return qstrlen( hint );
// if the letters and numbers are the same, we have an "almost"
// perfect match.
QString h( lettersAndNumbers( hint ) );
QString n( lettersAndNumbers( name ) );
if ( h == n )
return qstrlen( hint )-1;
if ( h.stripWhiteSpace() == n.stripWhiteSpace() )
return qstrlen( hint )-2;
// could do some more here, but I don't think it's worth it
return 0;
}
#endif //QT_NO_CODECS
#endif // USE_QT4