You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

530 lines
12 KiB

/*
* Lib(X)SVF - A library for implementing SVF and XSVF JTAG players
*
* Copyright (C) 2012 Timothy Pearson <kb9vqf@pearsoncomputing.net>
* Copyright (C) 2009 RIEGL Research ForschungsGmbH
* Copyright (C) 2009 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "libxsvf.h"
#include <sys/time.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
/** BEGIN: Low-Level I/O Implementation **/
// Raspberry PI GPIO driver
// TMS: 18
// TDI: 23
// TDO: 24
// TCK: 25
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#define BCM2708_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
int mem_fd;
char *gpio_mem, *gpio_map;
char *spi0_mem, *spi0_map;
// I/O access
volatile unsigned *gpio;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0
#define GPLEV0 *(gpio+13)
static void io_setup(void)
{
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
printf("can't open /dev/mem \n");
exit (-1);
}
/* mmap GPIO */
// Allocate MAP block
if ((gpio_mem = malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL) {
printf("allocation error \n");
exit (-1);
}
// Make sure pointer is on 4K boundary
if ((unsigned long)gpio_mem % PAGE_SIZE) {
gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);
}
// Now map it
gpio_map = (unsigned char *)mmap(
(caddr_t)gpio_mem,
BLOCK_SIZE,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FIXED,
mem_fd,
GPIO_BASE
);
if ((long)gpio_map < 0) {
printf("mmap error %d\n", (int)gpio_map);
exit (-1);
}
// Always use volatile pointer!
gpio = (volatile unsigned *)gpio_map;
// Set GPIO pins 18, 23, 25 to output
INP_GPIO(18); // must use INP_GPIO before we can use OUT_GPIO
INP_GPIO(23); // must use INP_GPIO before we can use OUT_GPIO
INP_GPIO(25); // must use INP_GPIO before we can use OUT_GPIO
OUT_GPIO(18); // output
OUT_GPIO(23); // output
INP_GPIO(24); // input
OUT_GPIO(25); // output
}
static void io_shutdown(void)
{
INP_GPIO(18);
INP_GPIO(23);
INP_GPIO(24);
INP_GPIO(25);
}
static void io_tms(int val)
{
if (val) {
GPIO_SET = 1<<18;
}
else {
GPIO_CLR = 1<<18;
}
}
static void io_tdi(int val)
{
if (val) {
GPIO_SET = 1<<23;
}
else {
GPIO_CLR = 1<<23;
}
}
static void io_tck(int val)
{
if (val) {
GPIO_SET = 1<<25;
}
else {
GPIO_CLR = 1<<25;
}
// usleep(1);
}
static void io_sck(int val)
{
/* not available */
}
static void io_trst(int val)
{
/* not available */
}
static int io_tdo()
{
return (GPLEV0 & (1<<24)) ? 1 : 0;
}
/** END: Low-Level I/O Implementation **/
struct udata_s {
FILE *f;
int verbose;
int clockcount;
int bitcount_tdi;
int bitcount_tdo;
int retval_i;
int retval[256];
};
static int h_setup(struct libxsvf_host *h)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 2) {
fprintf(stderr, "[SETUP]\n");
fflush(stderr);
}
io_setup();
return 0;
}
static int h_shutdown(struct libxsvf_host *h)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 2) {
fprintf(stderr, "[SHUTDOWN]\n");
fflush(stderr);
}
io_shutdown();
return 0;
}
static void h_udelay(struct libxsvf_host *h, long usecs, int tms, long num_tck)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 3) {
fprintf(stderr, "[DELAY:%ld, TMS:%d, NUM_TCK:%ld]\n", usecs, tms, num_tck);
fflush(stderr);
}
if (num_tck > 0) {
struct timeval tv1, tv2;
gettimeofday(&tv1, NULL);
io_tms(tms);
while (num_tck > 0) {
io_tck(0);
io_tck(1);
num_tck--;
}
gettimeofday(&tv2, NULL);
if (tv2.tv_sec > tv1.tv_sec) {
usecs -= (1000000 - tv1.tv_usec) + (tv2.tv_sec - tv1.tv_sec - 1) * 1000000;
tv1.tv_usec = 0;
}
usecs -= tv2.tv_usec - tv1.tv_usec;
if (u->verbose >= 3) {
fprintf(stderr, "[DELAY_AFTER_TCK:%ld]\n", usecs > 0 ? usecs : 0);
fflush(stderr);
}
}
if (usecs > 0) {
usleep(usecs);
}
}
static int h_getbyte(struct libxsvf_host *h)
{
struct udata_s *u = h->user_data;
return fgetc(u->f);
}
static int h_pulse_tck(struct libxsvf_host *h, int tms, int tdi, int tdo, int rmask, int sync)
{
struct udata_s *u = h->user_data;
io_tms(tms);
if (tdi >= 0) {
u->bitcount_tdi++;
io_tdi(tdi);
}
io_tck(0);
io_tck(1);
int line_tdo = io_tdo();
int rc = line_tdo >= 0 ? line_tdo : 0;
if (rmask == 1 && u->retval_i < 256)
u->retval[u->retval_i++] = line_tdo;
if (tdo >= 0 && line_tdo >= 0) {
u->bitcount_tdo++;
if (tdo != line_tdo)
rc = -1;
}
if (u->verbose >= 4) {
fprintf(stderr, "[TMS:%d, TDI:%d, TDO_ARG:%d, TDO_LINE:%d, RMASK:%d, RC:%d]\n", tms, tdi, tdo, line_tdo, rmask, rc);
}
u->clockcount++;
return rc;
}
static void h_pulse_sck(struct libxsvf_host *h)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 4) {
fprintf(stderr, "[SCK]\n");
}
io_sck(0);
io_sck(1);
}
static void h_set_trst(struct libxsvf_host *h, int v)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 4) {
fprintf(stderr, "[TRST:%d]\n", v);
}
io_trst(v);
}
static int h_set_frequency(struct libxsvf_host *h, int v)
{
fprintf(stderr, "WARNING: Setting JTAG clock frequency to %d ignored!\n", v);
return 0;
}
static void h_report_tapstate(struct libxsvf_host *h)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 3) {
fprintf(stderr, "[%s]\n", libxsvf_state2str(h->tap_state));
}
}
static void h_report_device(struct libxsvf_host *h, unsigned long idcode)
{
// struct udata_s *u = h->user_data;
printf("idcode=0x%08lx, revision=0x%01lx, part=0x%04lx, manufactor=0x%03lx\n", idcode,
(idcode >> 28) & 0xf, (idcode >> 12) & 0xffff, (idcode >> 1) & 0x7ff);
}
static void h_report_status(struct libxsvf_host *h, const char *message)
{
struct udata_s *u = h->user_data;
if (u->verbose >= 2) {
fprintf(stderr, "[STATUS] %s\n", message);
}
}
static void h_report_error(struct libxsvf_host *h, const char *file, int line, const char *message)
{
fprintf(stderr, "[%s:%d] %s\n", file, line, message);
}
static int realloc_maxsize[LIBXSVF_MEM_NUM];
static void *h_realloc(struct libxsvf_host *h, void *ptr, int size, enum libxsvf_mem which)
{
struct udata_s *u = h->user_data;
if (size > realloc_maxsize[which])
realloc_maxsize[which] = size;
if (u->verbose >= 3) {
fprintf(stderr, "[REALLOC:%s:%d]\n", libxsvf_mem2str(which), size);
}
return realloc(ptr, size);
}
static struct udata_s u;
static struct libxsvf_host h = {
.udelay = h_udelay,
.setup = h_setup,
.shutdown = h_shutdown,
.getbyte = h_getbyte,
.pulse_tck = h_pulse_tck,
.pulse_sck = h_pulse_sck,
.set_trst = h_set_trst,
.set_frequency = h_set_frequency,
.report_tapstate = h_report_tapstate,
.report_device = h_report_device,
.report_status = h_report_status,
.report_error = h_report_error,
.realloc = h_realloc,
.user_data = &u
};
const char *progname;
static void copyleft()
{
static int already_printed = 0;
if (already_printed)
return;
fprintf(stderr, "xsvftool-gpio, part of Lib(X)SVF (http://www.clifford.at/libxsvf/).\n");
fprintf(stderr, "Copyright (C) 2009 RIEGL Research ForschungsGmbH\n");
fprintf(stderr, "Copyright (C) 2009 Clifford Wolf <clifford@clifford.at>\n");
fprintf(stderr, "Lib(X)SVF is free software licensed under the ISC license.\n");
already_printed = 1;
}
static void help()
{
copyleft();
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -r funcname ] [ -v ... ] [ -L | -B ] { -s svf-file | -x xsvf-file | -c } ...\n", progname);
fprintf(stderr, "\n");
fprintf(stderr, " -r funcname\n");
fprintf(stderr, " Dump C-code for pseudo-allocator based on example files\n");
fprintf(stderr, "\n");
fprintf(stderr, " -v, -vv, -vvv, -vvvv\n");
fprintf(stderr, " Verbose, more verbose and even more verbose\n");
fprintf(stderr, "\n");
fprintf(stderr, " -L, -B\n");
fprintf(stderr, " Print RMASK bits as hex value (little or big endian)\n");
fprintf(stderr, "\n");
fprintf(stderr, " -s svf-file\n");
fprintf(stderr, " Play the specified SVF file\n");
fprintf(stderr, "\n");
fprintf(stderr, " -x xsvf-file\n");
fprintf(stderr, " Play the specified XSVF file\n");
fprintf(stderr, "\n");
fprintf(stderr, " -c\n");
fprintf(stderr, " List devices in JTAG chain\n");
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv)
{
int rc = 0;
int gotaction = 0;
int hex_mode = 0;
const char *realloc_name = NULL;
int opt, i, j;
progname = argc >= 1 ? argv[0] : "xvsftool";
while ((opt = getopt(argc, argv, "r:vLBx:s:c")) != -1)
{
switch (opt)
{
case 'r':
realloc_name = optarg;
break;
case 'v':
copyleft();
u.verbose++;
break;
case 'x':
case 's':
gotaction = 1;
if (u.verbose)
fprintf(stderr, "Playing %s file `%s'.\n", opt == 's' ? "SVF" : "XSVF", optarg);
if (!strcmp(optarg, "-"))
u.f = stdin;
else
u.f = fopen(optarg, "rb");
if (u.f == NULL) {
fprintf(stderr, "Can't open %s file `%s': %s\n", opt == 's' ? "SVF" : "XSVF", optarg, strerror(errno));
rc = 1;
break;
}
if (libxsvf_play(&h, opt == 's' ? LIBXSVF_MODE_SVF : LIBXSVF_MODE_XSVF) < 0) {
fprintf(stderr, "Error while playing %s file `%s'.\n", opt == 's' ? "SVF" : "XSVF", optarg);
rc = 1;
}
if (strcmp(optarg, "-"))
fclose(u.f);
break;
case 'c':
gotaction = 1;
if (libxsvf_play(&h, LIBXSVF_MODE_SCAN) < 0) {
fprintf(stderr, "Error while scanning JTAG chain.\n");
rc = 1;
}
break;
case 'L':
hex_mode = 1;
break;
case 'B':
hex_mode = 2;
break;
default:
help();
break;
}
}
if (!gotaction)
help();
if (u.verbose) {
fprintf(stderr, "Total number of clock cycles: %d\n", u.clockcount);
fprintf(stderr, "Number of significant TDI bits: %d\n", u.bitcount_tdi);
fprintf(stderr, "Number of significant TDO bits: %d\n", u.bitcount_tdo);
if (rc == 0) {
fprintf(stderr, "Finished without errors.\n");
} else {
fprintf(stderr, "Finished with errors!\n");
}
}
if (u.retval_i) {
if (hex_mode) {
printf("0x");
for (i=0; i < u.retval_i; i+=4) {
int val = 0;
for (j=i; j<i+4; j++)
val = val << 1 | u.retval[hex_mode > 1 ? j : u.retval_i - j - 1];
printf("%x", val);
}
} else {
printf("%d rmask bits:", u.retval_i);
for (i=0; i < u.retval_i; i++)
printf(" %d", u.retval[i]);
}
printf("\n");
}
if (realloc_name) {
int num = 0;
for (i = 0; i < LIBXSVF_MEM_NUM; i++) {
if (realloc_maxsize[i] > 0)
num = i+1;
}
printf("void *%s(void *h, void *ptr, int size, int which) {\n", realloc_name);
for (i = 0; i < num; i++) {
if (realloc_maxsize[i] > 0)
printf("\tstatic unsigned char buf_%s[%d];\n", libxsvf_mem2str(i), realloc_maxsize[i]);
}
printf("\tstatic unsigned char *buflist[%d] = {", num);
for (i = 0; i < num; i++) {
if (realloc_maxsize[i] > 0)
printf("%sbuf_%s", i ? ", " : " ", libxsvf_mem2str(i));
else
printf("%s(void*)0", i ? ", " : " ");
}
printf(" };\n\tstatic int sizelist[%d] = {", num);
for (i = 0; i < num; i++) {
if (realloc_maxsize[i] > 0)
printf("%ssizeof(buf_%s)", i ? ", " : " ", libxsvf_mem2str(i));
else
printf("%s0", i ? ", " : " ");
}
printf(" };\n");
printf("\treturn which < %d && size <= sizelist[which] ? buflist[which] : (void*)0;\n", num);
printf("};\n");
}
return rc;
}