You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

309 lines
8.6 KiB

/**
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legales
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*
* @license Public Domain / GPL v2+
*/
#include "md5.h"
#include <string.h>
void MD5::reverse_u32(UINT8 *buf, int n_u32)
{
UINT8 tmp;
if (m_big_endian)
{
// change { 4, 3, 2, 1 } => { 1, 2, 3, 4 }
while (n_u32-- > 0)
{
tmp = buf[0];
buf[0] = buf[3];
buf[3] = tmp;
tmp = buf[1];
buf[1] = buf[2];
buf[2] = tmp;
buf += 4;
}
}
else
{
// change { 4, 3, 2, 1 } => { 3, 4, 1, 2 }
while (n_u32-- > 0)
{
tmp = buf[0];
buf[0] = buf[1];
buf[1] = tmp;
tmp = buf[2];
buf[2] = buf[3];
buf[3] = tmp;
buf += 4;
}
}
}
MD5::MD5()
{
m_buf[0] = 0x01020304;
/*
* Little endian = { 4, 3, 2, 1 }
* Big endian = { 1, 2, 3, 4 }
* PDP endian = { 3, 4, 1, 2 }
*
* The MD5 stuff is written for little endian.
*/
m_in8 = (UINT8 *)m_in32;
m_need_byteswap = *(UINT8 *)m_buf != 4;
m_big_endian = *(UINT8 *)m_buf == 1;
}
//! Start MD5 accumulation.
void MD5::Init()
{
m_buf[0] = 0x67452301;
m_buf[1] = 0xefcdab89;
m_buf[2] = 0x98badcfe;
m_buf[3] = 0x10325476;
m_bits[0] = 0;
m_bits[1] = 0;
}
//! Update context to reflect the concatenation of another buffer full of bytes.
void MD5::Update(const void *data, UINT32 len)
{
const UINT8 *buf = (const UINT8 *)data;
UINT32 t = m_bits[0]; // Update bitcount
if ((m_bits[0] = t + ((UINT32)len << 3)) < t)
{
m_bits[1]++; // Carry from low to high
}
m_bits[1] += len >> 29;
t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data
// Handle any leading odd-sized chunks
if (t)
{
UINT8 *p = m_in8 + t;
t = 64 - t;
if (len < t)
{
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
buf += t;
len -= t;
}
// Process data in 64-byte chunks
while (len >= 64)
{
memcpy(m_in32, buf, 64);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
buf += 64; // TODO: possible creation of out-of-bounds pointer 64 beyond end of data
len -= 64;
}
// Save off any remaining bytes of data
memcpy(m_in32, buf, len); // TODO: possible access beyond array
} // MD5::Update
void MD5::Final(UINT8 digest[16])
{
// Compute number of bytes modulo 64
UINT32 count = (m_bits[0] >> 3) & 0x3F;
/*
* Set the first char of padding to 0x80. This is safe since there is always
* at least one byte free
*/
UINT8 *p = m_in8 + count;
*p++ = 0x80;
// Bytes of padding needed to make 64 bytes
count = 64 - 1 - count;
// Pad out to 56 modulo 64
if (count < 8)
{
// Two lots of padding: Pad the first block to 64 bytes
memset(p, 0, count);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
// Now fill the next block with 56 bytes
memset(m_in32, 0, 56);
}
else
{
// Pad block to 56 bytes
memset(p, 0, count - 8);
}
if (m_need_byteswap)
{
reverse_u32(m_in8, 14);
}
// Append length in bits and transform
memcpy(m_in8 + 56, &m_bits[0], 4);
memcpy(m_in8 + 60, &m_bits[1], 4);
Transform(m_buf, m_in32);
if (m_need_byteswap)
{
reverse_u32((UINT8 *)m_buf, 4);
}
memcpy(digest, m_buf, 16);
} // MD5::Final
// The four core functions - F1 is optimized somewhat
// #define F1(x, y, z) (x & y | ~x & z)
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f, w, x, y, z, data, s) \
((w) += f((x), (y), (z)) + (data), (w) = (w) << (s) | (w) >> (32 - (s)), (w) += (x))
void MD5::Transform(UINT32 buf[4], UINT32 in_data[16])
{
UINT32 a = buf[0];
UINT32 b = buf[1];
UINT32 c = buf[2];
UINT32 d = buf[3];
MD5STEP(F1, a, b, c, d, in_data[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in_data[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in_data[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in_data[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in_data[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in_data[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in_data[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in_data[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in_data[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in_data[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in_data[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in_data[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in_data[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in_data[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in_data[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in_data[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in_data[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in_data[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in_data[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in_data[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in_data[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in_data[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in_data[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in_data[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in_data[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in_data[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in_data[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in_data[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in_data[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in_data[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in_data[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in_data[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in_data[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in_data[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in_data[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in_data[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in_data[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in_data[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in_data[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in_data[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in_data[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in_data[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in_data[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in_data[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in_data[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in_data[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in_data[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in_data[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in_data[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in_data[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in_data[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in_data[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in_data[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in_data[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in_data[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in_data[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in_data[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in_data[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in_data[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in_data[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in_data[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in_data[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in_data[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in_data[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
} // MD5::Transform
void MD5::Calc(const void *data, UINT32 length, UINT8 digest[16])
{
MD5 md5;
md5.Init();
md5.Update(data, length);
md5.Final(digest);
}