|
|
|
/**
|
|
|
|
This file is part of Kig, a KDE program for Interactive Geometry...
|
|
|
|
Copyright (C) 2002 Maurizio Paolini <paolini@dmf.unicatt.it>
|
|
|
|
Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
|
|
|
|
USA
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include "kigtransform.h"
|
|
|
|
|
|
|
|
#include "kignumerics.h"
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
#include <tdelocale.h>
|
|
|
|
#include <kdebug.h>
|
|
|
|
|
|
|
|
// Transformation getProjectiveTransformation ( int argsnum,
|
|
|
|
// Object *transforms[], bool& valid )
|
|
|
|
// {
|
|
|
|
// valid = true;
|
|
|
|
|
|
|
|
// assert ( argsnum > 0 );
|
|
|
|
// int argn = 0;
|
|
|
|
// Object* transform = transforms[argn++];
|
|
|
|
// if (transform->toVector())
|
|
|
|
// {
|
|
|
|
// // translation
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
// Vector* v = transform->toVector();
|
|
|
|
// Coordinate dir = v->getDir();
|
|
|
|
// return Transformation::translation( dir );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if (transform->toPoint())
|
|
|
|
// {
|
|
|
|
// // point reflection ( or is point symmetry the correct term ? )
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
// Point* p = transform->toPoint();
|
|
|
|
// return Transformation::pointReflection( p->getCoord() );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if (transform->toLine())
|
|
|
|
// {
|
|
|
|
// // line reflection ( or is it line symmetry ? )
|
|
|
|
// Line* line = transform->toLine();
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
// return Transformation::lineReflection( line->lineData() );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if (transform->toRay())
|
|
|
|
// {
|
|
|
|
// // domi: sorry, but what kind of transformation does this do ?
|
|
|
|
// // i'm guessing it's some sort of rotation, but i'm not
|
|
|
|
// // really sure..
|
|
|
|
// Ray* line = transform->toRay();
|
|
|
|
// Coordinate d = line->direction().normalize();
|
|
|
|
// Coordinate t = line->p1();
|
|
|
|
// double alpha = 0.1*M_PI/2; // a small angle for the DrawPrelim
|
|
|
|
// if (argn < argsnum)
|
|
|
|
// {
|
|
|
|
// Angle* angle = transforms[argn++]->toAngle();
|
|
|
|
// alpha = angle->size();
|
|
|
|
// }
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
// return Transformation::projectiveRotation( alpha, d, t );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if (transform->toAngle())
|
|
|
|
// {
|
|
|
|
// // rotation..
|
|
|
|
// Coordinate center = Coordinate( 0., 0. );
|
|
|
|
// if (argn < argsnum)
|
|
|
|
// {
|
|
|
|
// Object* arg = transforms[argn++];
|
|
|
|
// assert (arg->toPoint());
|
|
|
|
// center = arg->toPoint()->getCoord();
|
|
|
|
// }
|
|
|
|
// Angle* angle = transform->toAngle();
|
|
|
|
// double alpha = angle->size();
|
|
|
|
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
|
|
|
|
// return Transformation::rotation( alpha, center );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if (transform->toSegment()) // this is a scaling
|
|
|
|
// {
|
|
|
|
// Segment* segment = transform->toSegment();
|
|
|
|
// Coordinate p = segment->p2() - segment->p1();
|
|
|
|
// double s = p.length();
|
|
|
|
// if (argn < argsnum)
|
|
|
|
// {
|
|
|
|
// Object* arg = transforms[argn++];
|
|
|
|
// if (arg->toSegment()) // s is the length of the first segment
|
|
|
|
// // divided by the length of the second..
|
|
|
|
// {
|
|
|
|
// Segment* segment = arg->toSegment();
|
|
|
|
// Coordinate p = segment->p2() - segment->p1();
|
|
|
|
// s /= p.length();
|
|
|
|
// if (argn < argsnum) arg = transforms[argn++];
|
|
|
|
// }
|
|
|
|
// if (arg->toPoint()) // scaling w.r. to a point
|
|
|
|
// {
|
|
|
|
// Point* p = arg->toPoint();
|
|
|
|
// assert (argn == argsnum);
|
|
|
|
// return Transformation::scaling( s, p->getCoord() );
|
|
|
|
// }
|
|
|
|
// if (arg->toLine()) // scaling w.r. to a line
|
|
|
|
// {
|
|
|
|
// Line* line = arg->toLine();
|
|
|
|
// assert( argn == argsnum );
|
|
|
|
// return Transformation::scaling( s, line->lineData() );
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// return Transformation::scaling( s, Coordinate( 0., 0. ) );
|
|
|
|
// }
|
|
|
|
|
|
|
|
// valid = false;
|
|
|
|
// return Transformation::identity();
|
|
|
|
// }
|
|
|
|
|
|
|
|
// tWantArgsResult WantTransformation ( Objects::const_iterator& i,
|
|
|
|
// const Objects& os )
|
|
|
|
// {
|
|
|
|
// Object* o = *i++;
|
|
|
|
// if (o->toVector()) return tComplete;
|
|
|
|
// if (o->toPoint()) return tComplete;
|
|
|
|
// if (o->toLine()) return tComplete;
|
|
|
|
// if (o->toAngle())
|
|
|
|
// {
|
|
|
|
// if ( i == os.end() ) return tNotComplete;
|
|
|
|
// o = *i++;
|
|
|
|
// if (o->toPoint()) return tComplete;
|
|
|
|
// if (o->toLine()) return tComplete;
|
|
|
|
// return tNotGood;
|
|
|
|
// }
|
|
|
|
// if (o->toRay())
|
|
|
|
// {
|
|
|
|
// if ( i == os.end() ) return tNotComplete;
|
|
|
|
// o = *i++;
|
|
|
|
// if (o->toAngle()) return tComplete;
|
|
|
|
// return tNotGood;
|
|
|
|
// }
|
|
|
|
// if (o->toSegment())
|
|
|
|
// {
|
|
|
|
// if ( i == os.end() ) return tNotComplete;
|
|
|
|
// o = *i++;
|
|
|
|
// if ( o->toSegment() )
|
|
|
|
// {
|
|
|
|
// if ( i == os.end() ) return tNotComplete;
|
|
|
|
// o = *i++;
|
|
|
|
// }
|
|
|
|
// if (o->toPoint()) return tComplete;
|
|
|
|
// if (o->toLine()) return tComplete;
|
|
|
|
// return tNotGood;
|
|
|
|
// }
|
|
|
|
// return tNotGood;
|
|
|
|
// }
|
|
|
|
|
|
|
|
// TQString getTransformMessage ( const Objects& os, const Object *o )
|
|
|
|
// {
|
|
|
|
// int size = os.size();
|
|
|
|
// switch (size)
|
|
|
|
// {
|
|
|
|
// case 1:
|
|
|
|
// if (o->toVector()) return i18n("translate by this vector");
|
|
|
|
// if (o->toPoint()) return i18n("central symmetry by this point. You"
|
|
|
|
// " can obtain different transformations by clicking on lines (mirror),"
|
|
|
|
// " vectors (translation), angles (rotation), segments (scaling) and rays"
|
|
|
|
// " (projective transformation)");
|
|
|
|
// if (o->toLine()) return i18n("reflect in this line");
|
|
|
|
// if (o->toAngle()) return i18n("rotate by this angle");
|
|
|
|
// if (o->toSegment()) return i18n("scale using the length of this vector");
|
|
|
|
// if (o->toRay()) return i18n("a projective transformation in the direction"
|
|
|
|
// " indicated by this ray, it is a rotation in the projective plane"
|
|
|
|
// " about a point at infinity");
|
|
|
|
// return i18n("Use this transformation");
|
|
|
|
|
|
|
|
// case 2: // we ask for the first parameter of the transformation
|
|
|
|
// case 3:
|
|
|
|
// if (os[1]->toAngle())
|
|
|
|
// {
|
|
|
|
// if (o->toPoint()) return i18n("about this point");
|
|
|
|
// assert (false);
|
|
|
|
// }
|
|
|
|
// if (os[1]->toSegment())
|
|
|
|
// {
|
|
|
|
// if (o->toSegment())
|
|
|
|
// return i18n("relative to the length of this other vector");
|
|
|
|
// if (o->toPoint())
|
|
|
|
// return i18n("about this point");
|
|
|
|
// if (o->toLine())
|
|
|
|
// return i18n("about this line");
|
|
|
|
// }
|
|
|
|
// if (os[1]->toRay())
|
|
|
|
// {
|
|
|
|
// if (o->toAngle()) return i18n("rotate by this angle in the projective"
|
|
|
|
// " plane");
|
|
|
|
// }
|
|
|
|
// return i18n("Using this object");
|
|
|
|
|
|
|
|
// default: assert(false);
|
|
|
|
// }
|
|
|
|
|
|
|
|
// return i18n("Use this transformation");
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
|
|
/* domi: not necessary anymore, homotheticness is kept as a bool in
|
|
|
|
* the Transformation class..
|
|
|
|
* keeping it here, in case a need for it arises some time in the
|
|
|
|
* future...
|
|
|
|
* decide if the given transformation is homotetic
|
|
|
|
*/
|
|
|
|
// bool isHomoteticTransformation ( double transformation[3][3] )
|
|
|
|
// {
|
|
|
|
// if (transformation[0][1] != 0 || transformation[0][2] != 0) return (false);
|
|
|
|
// // test the orthogonality of the matrix 2x2 of second and third rows
|
|
|
|
// // and columns
|
|
|
|
// if (fabs(fabs(transformation[1][1]) -
|
|
|
|
// fabs(transformation[2][2])) > 1e-8) return (false);
|
|
|
|
// if (fabs(fabs(transformation[1][2]) -
|
|
|
|
// fabs(transformation[2][1])) > 1e-8) return (false);
|
|
|
|
|
|
|
|
// return transformation[1][2] * transformation[2][1] *
|
|
|
|
// transformation[1][1] * transformation[2][2] <= 0.;
|
|
|
|
// }
|
|
|
|
|
|
|
|
const Transformation Transformation::identity()
|
|
|
|
{
|
|
|
|
Transformation ret;
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
ret.mdata[i][j] = ( i == j ? 1 : 0 );
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::scalingOverPoint( double factor, const Coordinate& center )
|
|
|
|
{
|
|
|
|
Transformation ret;
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
ret.mdata[i][j] = ( i == j ? factor : 0 );
|
|
|
|
ret.mdata[0][0] = 1;
|
|
|
|
ret.mdata[1][0] = center.x - factor * center.x;
|
|
|
|
ret.mdata[2][0] = center.y - factor * center.y;
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::translation( const Coordinate& c )
|
|
|
|
{
|
|
|
|
Transformation ret = identity();
|
|
|
|
ret.mdata[1][0] = c.x;
|
|
|
|
ret.mdata[2][0] = c.y;
|
|
|
|
|
|
|
|
// this is already set in the identity() constructor, but just for
|
|
|
|
// clarity..
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::pointReflection( const Coordinate& c )
|
|
|
|
{
|
|
|
|
Transformation ret = scalingOverPoint( -1, c );
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation operator*( const Transformation& a, const Transformation& b )
|
|
|
|
{
|
|
|
|
// just multiply the two matrices..
|
|
|
|
Transformation ret;
|
|
|
|
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
{
|
|
|
|
ret.mdata[i][j] = 0;
|
|
|
|
for ( int k = 0; k < 3; ++k )
|
|
|
|
ret.mdata[i][j] += a.mdata[i][k] * b.mdata[k][j];
|
|
|
|
};
|
|
|
|
|
|
|
|
// combination of two homotheties is a homothety..
|
|
|
|
|
|
|
|
ret.mIsHomothety = a.mIsHomothety && b.mIsHomothety;
|
|
|
|
|
|
|
|
// combination of two affinities is affine..
|
|
|
|
|
|
|
|
ret.mIsAffine = a.mIsAffine && b.mIsAffine;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::lineReflection( const LineData& l )
|
|
|
|
{
|
|
|
|
Transformation ret = scalingOverLine( -1, l );
|
|
|
|
// a reflection is a homothety...
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::scalingOverLine( double factor, const LineData& l )
|
|
|
|
{
|
|
|
|
Transformation ret = identity();
|
|
|
|
|
|
|
|
Coordinate a = l.a;
|
|
|
|
Coordinate d = l.dir();
|
|
|
|
double dirnormsq = d.squareLength();
|
|
|
|
ret.mdata[1][1] = (d.x*d.x + factor*d.y*d.y)/dirnormsq;
|
|
|
|
ret.mdata[2][2] = (d.y*d.y + factor*d.x*d.x)/dirnormsq;
|
|
|
|
ret.mdata[1][2] = ret.mdata[2][1] = (d.x*d.y - factor*d.x*d.y)/dirnormsq;
|
|
|
|
|
|
|
|
ret.mdata[1][0] = a.x - ret.mdata[1][1]*a.x - ret.mdata[1][2]*a.y;
|
|
|
|
ret.mdata[2][0] = a.y - ret.mdata[2][1]*a.x - ret.mdata[2][2]*a.y;
|
|
|
|
|
|
|
|
// domi: is 1e-8 a good value ?
|
|
|
|
ret.mIsHomothety = ( fabs( factor - 1 ) < 1e-8 || fabs ( factor + 1 ) < 1e-8 );
|
|
|
|
ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::harmonicHomology(
|
|
|
|
const Coordinate& center, const LineData& axis )
|
|
|
|
{
|
|
|
|
// this is a well known projective transformation. We find it by first
|
|
|
|
// computing the homogeneous equation of the axis ax + by + cz = 0
|
|
|
|
// then a straightforward computation shows that the 3x3 matrix describing
|
|
|
|
// the transformation is of the form:
|
|
|
|
//
|
|
|
|
// (r . C) Id - 2 (C tensor r)
|
|
|
|
//
|
|
|
|
// where r = [c, a, b], C = [1, Cx, Cy], Cx and Cy are the coordinates of
|
|
|
|
// the center, '.' denotes the scalar product, Id is the identity matrix,
|
|
|
|
// 'tensor' is the tensor product producing a 3x3 matrix.
|
|
|
|
//
|
|
|
|
// note: here we decide to use coordinate '0' in place of the third coordinate
|
|
|
|
// in homogeneous notation; e.g. C = [1, cx, cy]
|
|
|
|
|
|
|
|
Coordinate pointa = axis.a;
|
|
|
|
Coordinate pointb = axis.b;
|
|
|
|
|
|
|
|
double a = pointa.y - pointb.y;
|
|
|
|
double b = pointb.x - pointa.x;
|
|
|
|
double c = pointa.x*pointb.y - pointa.y*pointb.x;
|
|
|
|
|
|
|
|
double cx = center.x;
|
|
|
|
double cy = center.y;
|
|
|
|
|
|
|
|
double scalprod = a*cx + b*cy + c;
|
|
|
|
scalprod *= 0.5;
|
|
|
|
Transformation ret;
|
|
|
|
|
|
|
|
ret.mdata[0][0] = c - scalprod;
|
|
|
|
ret.mdata[0][1] = a;
|
|
|
|
ret.mdata[0][2] = b;
|
|
|
|
|
|
|
|
ret.mdata[1][0] = c*cx;
|
|
|
|
ret.mdata[1][1] = a*cx - scalprod;
|
|
|
|
ret.mdata[1][2] = b*cx;
|
|
|
|
|
|
|
|
ret.mdata[2][0] = c*cy;
|
|
|
|
ret.mdata[2][1] = a*cy;
|
|
|
|
ret.mdata[2][2] = b*cy - scalprod;
|
|
|
|
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = false;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::affinityGI3P(
|
|
|
|
const std::vector<Coordinate>& FromPoints,
|
|
|
|
const std::vector<Coordinate>& ToPoints,
|
|
|
|
bool& valid )
|
|
|
|
{
|
|
|
|
// construct the (generically) unique affinity that transforms 3 given
|
|
|
|
// point into 3 other given points; i.e. it depends on the coordinates of
|
|
|
|
// a total of 6 points. This actually amounts in solving a 6x6 linear
|
|
|
|
// system to find the entries of a 2x2 linear transformation matrix T
|
|
|
|
// and of a translation vector t.
|
|
|
|
// If Pi denotes one of the starting points and Qi the corresponding
|
|
|
|
// final position we actually have to solve: Qi = t + T Pi, for i=1,2,3
|
|
|
|
// (each one is a vector equation, so that it really gives 2 equations).
|
|
|
|
// In our context T and t are used to build a 3x3 projective transformation
|
|
|
|
// as follows:
|
|
|
|
//
|
|
|
|
// [ 1 0 0 ]
|
|
|
|
// [ t1 T11 T12 ]
|
|
|
|
// [ t2 T21 T22 ]
|
|
|
|
//
|
|
|
|
// In order to take advantage of the two functions "GaussianElimination"
|
|
|
|
// and "BackwardSubstitution", which are specifically aimed at solving
|
|
|
|
// homogeneous underdetermined linear systems, we just add a further
|
|
|
|
// unknown m and solve for t + T Pi - m Qi = 0. Since our functions
|
|
|
|
// returns a nonzero solution we shall have a nonzero 'm' in the end and
|
|
|
|
// can build the 3x3 matrix as follows:
|
|
|
|
//
|
|
|
|
// [ m 0 0 ]
|
|
|
|
// [ t1 T11 T12 ]
|
|
|
|
// [ t2 T21 T22 ]
|
|
|
|
//
|
|
|
|
// we order the unknowns as follows: m, t1, t2, T11, T12, T21, T22
|
|
|
|
|
|
|
|
double row0[7], row1[7], row2[7], row3[7], row4[7], row5[7];
|
|
|
|
|
|
|
|
double *matrix[6] = {row0, row1, row2, row3, row4, row5};
|
|
|
|
|
|
|
|
double solution[7];
|
|
|
|
int scambio[7];
|
|
|
|
|
|
|
|
assert (FromPoints.size() == 3);
|
|
|
|
assert (ToPoints.size() == 3);
|
|
|
|
|
|
|
|
// fill in the matrix elements
|
|
|
|
for ( int i = 0; i < 6; i++ )
|
|
|
|
{
|
|
|
|
for ( int j = 0; j < 7; j++ )
|
|
|
|
{
|
|
|
|
matrix[i][j] = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for ( int i = 0; i < 3; i++ )
|
|
|
|
{
|
|
|
|
Coordinate p = FromPoints[i];
|
|
|
|
Coordinate q = ToPoints[i];
|
|
|
|
matrix[i][0] = -q.x;
|
|
|
|
matrix[i][1] = 1.0;
|
|
|
|
matrix[i][3] = p.x;
|
|
|
|
matrix[i][4] = p.y;
|
|
|
|
matrix[i+3][0] = -q.y;
|
|
|
|
matrix[i+3][2] = 1.0;
|
|
|
|
matrix[i+3][5] = p.x;
|
|
|
|
matrix[i+3][6] = p.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
Transformation ret;
|
|
|
|
valid = true;
|
|
|
|
if ( ! GaussianElimination( matrix, 6, 7, scambio ) )
|
|
|
|
{ valid = false; return ret; }
|
|
|
|
|
|
|
|
// fine della fase di eliminazione
|
|
|
|
BackwardSubstitution( matrix, 6, 7, scambio, solution );
|
|
|
|
|
|
|
|
// now we can build the 3x3 transformation matrix; remember that
|
|
|
|
// unknown 0 is the multiplicator 'm'
|
|
|
|
|
|
|
|
ret.mdata[0][0] = solution[0];
|
|
|
|
ret.mdata[0][1] = ret.mdata[0][2] = 0.0;
|
|
|
|
ret.mdata[1][0] = solution[1];
|
|
|
|
ret.mdata[2][0] = solution[2];
|
|
|
|
ret.mdata[1][1] = solution[3];
|
|
|
|
ret.mdata[1][2] = solution[4];
|
|
|
|
ret.mdata[2][1] = solution[5];
|
|
|
|
ret.mdata[2][2] = solution[6];
|
|
|
|
|
|
|
|
ret.mIsHomothety = false;
|
|
|
|
ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::projectivityGI4P(
|
|
|
|
const std::vector<Coordinate>& FromPoints,
|
|
|
|
const std::vector<Coordinate>& ToPoints,
|
|
|
|
bool& valid )
|
|
|
|
{
|
|
|
|
// construct the (generically) unique projectivity that transforms 4 given
|
|
|
|
// point into 4 other given points; i.e. it depends on the coordinates of
|
|
|
|
// a total of 8 points. This actually amounts in solving an underdetermined
|
|
|
|
// homogeneous linear system.
|
|
|
|
|
|
|
|
double
|
|
|
|
row0[13], row1[13], row2[13], row3[13], row4[13], row5[13], row6[13], row7[13],
|
|
|
|
row8[13], row9[13], row10[13], row11[13];
|
|
|
|
|
|
|
|
double *matrix[12] = {row0, row1, row2, row3, row4, row5, row6, row7,
|
|
|
|
row8, row9, row10, row11};
|
|
|
|
|
|
|
|
double solution[13];
|
|
|
|
int scambio[13];
|
|
|
|
|
|
|
|
assert (FromPoints.size() == 4);
|
|
|
|
assert (ToPoints.size() == 4);
|
|
|
|
|
|
|
|
// fill in the matrix elements
|
|
|
|
for ( int i = 0; i < 12; i++ )
|
|
|
|
{
|
|
|
|
for ( int j = 0; j < 13; j++ )
|
|
|
|
{
|
|
|
|
matrix[i][j] = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for ( int i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
Coordinate p = FromPoints[i];
|
|
|
|
Coordinate q = ToPoints[i];
|
|
|
|
matrix[i][0] = matrix[4+i][3] = matrix[8+i][6] = 1.0;
|
|
|
|
matrix[i][1] = matrix[4+i][4] = matrix[8+i][7] = p.x;
|
|
|
|
matrix[i][2] = matrix[4+i][5] = matrix[8+i][8] = p.y;
|
|
|
|
matrix[i][9+i] = -1.0;
|
|
|
|
matrix[4+i][9+i] = -q.x;
|
|
|
|
matrix[8+i][9+i] = -q.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
Transformation ret;
|
|
|
|
valid = true;
|
|
|
|
if ( ! GaussianElimination( matrix, 12, 13, scambio ) )
|
|
|
|
{ valid = false; return ret; }
|
|
|
|
|
|
|
|
// fine della fase di eliminazione
|
|
|
|
BackwardSubstitution( matrix, 12, 13, scambio, solution );
|
|
|
|
|
|
|
|
// now we can build the 3x3 transformation matrix; remember that
|
|
|
|
// unknowns from 9 to 13 are just multiplicators that we don't need here
|
|
|
|
|
|
|
|
int k = 0;
|
|
|
|
for ( int i = 0; i < 3; i++ )
|
|
|
|
{
|
|
|
|
for ( int j = 0; j < 3; j++ )
|
|
|
|
{
|
|
|
|
ret.mdata[i][j] = solution[k++];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = false;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::castShadow(
|
|
|
|
const Coordinate& lightsrc, const LineData& l )
|
|
|
|
{
|
|
|
|
// first deal with the line l, I need to find an appropriate reflection
|
|
|
|
// that transforms l onto the x-axis
|
|
|
|
|
|
|
|
Coordinate d = l.dir();
|
|
|
|
Coordinate a = l.a;
|
|
|
|
double k = d.length();
|
|
|
|
if ( d.x < 0 ) k *= -1; // for numerical stability
|
|
|
|
Coordinate w = d + Coordinate( k, 0 );
|
|
|
|
// w /= w.length();
|
|
|
|
// w defines a Householder transformation, but we don't need to normalize
|
|
|
|
// it here.
|
|
|
|
// warning: this w is the orthogonal of the w of the textbooks!
|
|
|
|
// this is fine for us since in this way it indicates the line direction
|
|
|
|
Coordinate ra = Coordinate ( a.x + w.y*a.y/(2*w.x), a.y/2 );
|
|
|
|
Transformation sym = lineReflection ( LineData( ra, ra + w ) );
|
|
|
|
|
|
|
|
// in the new coordinates the line is the x-axis
|
|
|
|
// I must transform the point
|
|
|
|
|
|
|
|
Coordinate modlightsrc = sym.apply ( lightsrc );
|
|
|
|
Transformation ret = identity();
|
|
|
|
// parameter t indicates the distance of the light source from
|
|
|
|
// the plane of the drawing. A negative value means that the light
|
|
|
|
// source is behind the plane.
|
|
|
|
double t = -1.0;
|
|
|
|
// double t = -modlightsrc.y; <-- this gives the old transformation!
|
|
|
|
double e = modlightsrc.y - t;
|
|
|
|
ret.mdata[0][0] = e;
|
|
|
|
ret.mdata[0][2] = -1;
|
|
|
|
ret.mdata[1][1] = e;
|
|
|
|
ret.mdata[1][2] = -modlightsrc.x;
|
|
|
|
ret.mdata[2][2] = -t;
|
|
|
|
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = false;
|
|
|
|
return sym*ret*sym;
|
|
|
|
// return translation( t )*ret*translation( -t );
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::projectiveRotation(
|
|
|
|
double alpha, const Coordinate& d, const Coordinate& t )
|
|
|
|
{
|
|
|
|
Transformation ret;
|
|
|
|
double cosalpha = cos( alpha );
|
|
|
|
double sinalpha = sin( alpha );
|
|
|
|
ret.mdata[0][0] = cosalpha;
|
|
|
|
ret.mdata[1][1] = cosalpha*d.x*d.x + d.y*d.y;
|
|
|
|
ret.mdata[0][1] = -sinalpha*d.x;
|
|
|
|
ret.mdata[1][0] = sinalpha*d.x;
|
|
|
|
ret.mdata[0][2] = -sinalpha*d.y;
|
|
|
|
ret.mdata[2][0] = sinalpha*d.y;
|
|
|
|
ret.mdata[1][2] = cosalpha*d.x*d.y - d.x*d.y;
|
|
|
|
ret.mdata[2][1] = cosalpha*d.x*d.y - d.x*d.y;
|
|
|
|
ret.mdata[2][2] = cosalpha*d.y*d.y + d.x*d.x;
|
|
|
|
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = false;
|
|
|
|
return translation( t )*ret*translation( -t );
|
|
|
|
}
|
|
|
|
|
|
|
|
const Coordinate Transformation::apply( const double x0,
|
|
|
|
const double x1,
|
|
|
|
const double x2) const
|
|
|
|
{
|
|
|
|
double phom[3] = {x0, x1, x2};
|
|
|
|
double rhom[3] = {0., 0., 0.};
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
|
|
{
|
|
|
|
rhom[i] += mdata[i][j]*phom[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rhom[0] == 0.)
|
|
|
|
return Coordinate::invalidCoord();
|
|
|
|
|
|
|
|
return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
const Coordinate Transformation::apply( const Coordinate& p ) const
|
|
|
|
{
|
|
|
|
return apply( 1., p.x, p.y );
|
|
|
|
// double phom[3] = {1., p.x, p.y};
|
|
|
|
// double rhom[3] = {0., 0., 0.};
|
|
|
|
//
|
|
|
|
// for (int i = 0; i < 3; i++)
|
|
|
|
// {
|
|
|
|
// for (int j = 0; j < 3; j++)
|
|
|
|
// {
|
|
|
|
// rhom[i] += mdata[i][j]*phom[j];
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// if (rhom[0] == 0.)
|
|
|
|
// return Coordinate::invalidCoord();
|
|
|
|
//
|
|
|
|
// return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
const Coordinate Transformation::apply0( const Coordinate& p ) const
|
|
|
|
{
|
|
|
|
return apply( 0., p.x, p.y );
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::rotation( double alpha, const Coordinate& center )
|
|
|
|
{
|
|
|
|
Transformation ret = identity();
|
|
|
|
|
|
|
|
double x = center.x;
|
|
|
|
double y = center.y;
|
|
|
|
|
|
|
|
double cosalpha = cos( alpha );
|
|
|
|
double sinalpha = sin( alpha );
|
|
|
|
|
|
|
|
ret.mdata[1][1] = ret.mdata[2][2] = cosalpha;
|
|
|
|
ret.mdata[1][2] = -sinalpha;
|
|
|
|
ret.mdata[2][1] = sinalpha;
|
|
|
|
ret.mdata[1][0] = x - ret.mdata[1][1]*x - ret.mdata[1][2]*y;
|
|
|
|
ret.mdata[2][0] = y - ret.mdata[2][1]*x - ret.mdata[2][2]*y;
|
|
|
|
|
|
|
|
// this is already set in the identity() constructor, but just for
|
|
|
|
// clarity..
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Transformation::isHomothetic() const
|
|
|
|
{
|
|
|
|
return mIsHomothety;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Transformation::isAffine() const
|
|
|
|
{
|
|
|
|
return mIsAffine;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
*mp:
|
|
|
|
* this function has the property that it changes sign if computed
|
|
|
|
* on two points that lie on either sides with respect to the critical
|
|
|
|
* line (this is the line that goes to the line at infinity).
|
|
|
|
* For affine transformations the result has always the same sign.
|
|
|
|
* NOTE: the result is *not* invariant under rescaling of all elements
|
|
|
|
* of the transformation matrix.
|
|
|
|
* The typical use is to determine whether a segment is transformed
|
|
|
|
* into a segment or a couple of half-lines.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double Transformation::getProjectiveIndicator( const Coordinate& c ) const
|
|
|
|
{
|
|
|
|
return mdata[0][0] + mdata[0][1]*c.x + mdata[0][2]*c.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
// assuming that this is an affine transformation, return its
|
|
|
|
// determinant. What is really important here is just the sign
|
|
|
|
// of the determinant.
|
|
|
|
double Transformation::getAffineDeterminant() const
|
|
|
|
{
|
|
|
|
return mdata[1][1]*mdata[2][2] - mdata[1][2]*mdata[2][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// this assumes that the 2x2 affine part of the matrix is of the
|
|
|
|
// form [ cos a, sin a; -sin a, cos a] or a multiple
|
|
|
|
double Transformation::getRotationAngle() const
|
|
|
|
{
|
|
|
|
return atan2( mdata[1][2], mdata[1][1] );
|
|
|
|
}
|
|
|
|
|
|
|
|
const Coordinate Transformation::apply2by2only( const Coordinate& p ) const
|
|
|
|
{
|
|
|
|
double x = p.x;
|
|
|
|
double y = p.y;
|
|
|
|
double nx = mdata[1][1]*x + mdata[1][2]*y;
|
|
|
|
double ny = mdata[2][1]*x + mdata[2][2]*y;
|
|
|
|
return Coordinate( nx, ny );
|
|
|
|
}
|
|
|
|
|
|
|
|
double Transformation::data( int r, int c ) const
|
|
|
|
{
|
|
|
|
return mdata[r][c];
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::inverse( bool& valid ) const
|
|
|
|
{
|
|
|
|
Transformation ret;
|
|
|
|
|
|
|
|
valid = Invert3by3matrix( mdata, ret.mdata );
|
|
|
|
|
|
|
|
// the inverse of a homothety is a homothety, same for affinities..
|
|
|
|
ret.mIsHomothety = mIsHomothety;
|
|
|
|
ret.mIsAffine = mIsAffine;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
Transformation::Transformation()
|
|
|
|
{
|
|
|
|
// this is the constructor used by the static Transformation
|
|
|
|
// creation functions, so mIsHomothety is in general false
|
|
|
|
mIsHomothety = mIsAffine = false;
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
mdata[i][j] = ( i == j ) ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
Transformation::~Transformation()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
double Transformation::apply( double length ) const
|
|
|
|
{
|
|
|
|
assert( isHomothetic() );
|
|
|
|
double det = mdata[1][1]*mdata[2][2] -
|
|
|
|
mdata[1][2]*mdata[2][1];
|
|
|
|
return sqrt( fabs( det ) ) * length;
|
|
|
|
}
|
|
|
|
|
|
|
|
Transformation::Transformation( double data[3][3], bool ishomothety )
|
|
|
|
: mIsHomothety( ishomothety )
|
|
|
|
{
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
mdata[i][j] = data[i][j];
|
|
|
|
|
|
|
|
//mp: a test for affinity is used to initialize mIsAffine...
|
|
|
|
mIsAffine = false;
|
|
|
|
if ( fabs(mdata[0][1]) + fabs(mdata[0][2]) < 1e-8 * fabs(mdata[0][0]) )
|
|
|
|
mIsAffine = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==( const Transformation& lhs, const Transformation& rhs )
|
|
|
|
{
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
|
|
for ( int j = 0; j < 3; ++j )
|
|
|
|
if ( lhs.data( i, j ) != rhs.data( i, j ) )
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Transformation Transformation::similitude(
|
|
|
|
const Coordinate& center, double theta, double factor )
|
|
|
|
{
|
|
|
|
//kdDebug() << k_funcinfo << "theta: " << theta << " factor: " << factor << endl;
|
|
|
|
Transformation ret;
|
|
|
|
ret.mIsHomothety = true;
|
|
|
|
double costheta = cos( theta );
|
|
|
|
double sintheta = sin( theta );
|
|
|
|
ret.mdata[0][0] = 1;
|
|
|
|
ret.mdata[0][1] = 0;
|
|
|
|
ret.mdata[0][2] = 0;
|
|
|
|
ret.mdata[1][0] = ( 1 - factor*costheta )*center.x + factor*sintheta*center.y;
|
|
|
|
ret.mdata[1][1] = factor*costheta;
|
|
|
|
ret.mdata[1][2] = -factor*sintheta;
|
|
|
|
ret.mdata[2][0] = -factor*sintheta*center.x + ( 1 - factor*costheta )*center.y;
|
|
|
|
ret.mdata[2][1] = factor*sintheta;
|
|
|
|
ret.mdata[2][2] = factor*costheta;
|
|
|
|
// fails for factor == infinity
|
|
|
|
//assert( ( ret.apply( center ) - center ).length() < 1e-5 );
|
|
|
|
ret.mIsHomothety = ret.mIsAffine = true;
|
|
|
|
return ret;
|
|
|
|
}
|