|
|
|
/**
|
|
|
|
This file is part of Kig, a KDE program for Interactive Geometry...
|
|
|
|
Copyright (C) 2002 Maurizio Paolini <paolini@dmf.unicatt.it>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
|
|
|
|
USA
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include "kignumerics.h"
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* compute one of the roots of a cubic polynomial
|
|
|
|
* if xmin << 0 or xmax >> 0 then autocompute a bound for all the
|
|
|
|
* roots
|
|
|
|
*/
|
|
|
|
|
|
|
|
double calcCubicRoot ( double xmin, double xmax, double a,
|
|
|
|
double b, double c, double d, int root, bool& valid, int& numroots )
|
|
|
|
{
|
|
|
|
// renormalize: positive a and infinity norm = 1
|
|
|
|
|
|
|
|
double infnorm = fabs(a);
|
|
|
|
if ( infnorm < fabs(b) ) infnorm = fabs(b);
|
|
|
|
if ( infnorm < fabs(c) ) infnorm = fabs(c);
|
|
|
|
if ( infnorm < fabs(d) ) infnorm = fabs(d);
|
|
|
|
if ( a < 0 ) infnorm = -infnorm;
|
|
|
|
a /= infnorm;
|
|
|
|
b /= infnorm;
|
|
|
|
c /= infnorm;
|
|
|
|
d /= infnorm;
|
|
|
|
|
|
|
|
const double small = 1e-7;
|
|
|
|
valid = false;
|
|
|
|
if ( fabs(a) < small )
|
|
|
|
{
|
|
|
|
if ( fabs(b) < small )
|
|
|
|
{
|
|
|
|
if ( fabs(c) < small )
|
|
|
|
{ // degree = 0;
|
|
|
|
numroots = 0;
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
// degree = 1
|
|
|
|
double rootval = -d/c;
|
|
|
|
numroots = 1;
|
|
|
|
if ( rootval < xmin || xmax < rootval ) numroots--;
|
|
|
|
if ( root > numroots ) return 0.0;
|
|
|
|
valid = true;
|
|
|
|
return rootval;
|
|
|
|
}
|
|
|
|
// degree = 2
|
|
|
|
if ( b < 0 ) { b = -b; c = -c; d = -d; }
|
|
|
|
double discrim = c*c - 4*b*d;
|
|
|
|
numroots = 2;
|
|
|
|
if ( discrim < 0 )
|
|
|
|
{
|
|
|
|
numroots = 0;
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
discrim = sqrt(discrim)/(2*fabs(b));
|
|
|
|
double rootmiddle = -c/(2*b);
|
|
|
|
if ( rootmiddle - discrim < xmin ) numroots--;
|
|
|
|
if ( rootmiddle + discrim > xmax ) numroots--;
|
|
|
|
if ( rootmiddle + discrim < xmin ) numroots--;
|
|
|
|
if ( rootmiddle - discrim > xmax ) numroots--;
|
|
|
|
if ( root > numroots ) return 0.0;
|
|
|
|
valid = true;
|
|
|
|
if ( root == 2 || rootmiddle - discrim < xmin ) return rootmiddle + discrim;
|
|
|
|
return rootmiddle - discrim;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( xmin < -1e8 || xmax > 1e8 )
|
|
|
|
{
|
|
|
|
|
|
|
|
// compute a bound for all the real roots:
|
|
|
|
|
|
|
|
xmax = fabs(d/a);
|
|
|
|
if ( fabs(c/a) + 1 > xmax ) xmax = fabs(c/a) + 1;
|
|
|
|
if ( fabs(b/a) + 1 > xmax ) xmax = fabs(b/a) + 1;
|
|
|
|
xmin = -xmax;
|
|
|
|
}
|
|
|
|
|
|
|
|
// computing the coefficients of the Sturm sequence
|
|
|
|
double p1a = 2*b*b - 6*a*c;
|
|
|
|
double p1b = b*c - 9*a*d;
|
|
|
|
double p0a = c*p1a*p1a + p1b*(3*a*p1b - 2*b*p1a);
|
|
|
|
|
|
|
|
int varbottom = calcCubicVariations (xmin, a, b, c, d, p1a, p1b, p0a);
|
|
|
|
int vartop = calcCubicVariations (xmax, a, b, c, d, p1a, p1b, p0a);
|
|
|
|
numroots = vartop - varbottom;
|
|
|
|
valid = false;
|
|
|
|
if (root <= varbottom || root > vartop ) return 0.0;
|
|
|
|
|
|
|
|
valid = true;
|
|
|
|
|
|
|
|
// now use bisection to separate the required root
|
|
|
|
double dx = (xmax - xmin)/2;
|
|
|
|
while ( vartop - varbottom > 1 )
|
|
|
|
{
|
|
|
|
if ( fabs( dx ) < 1e-8 ) return (xmin + xmax)/2;
|
|
|
|
double xmiddle = xmin + dx;
|
|
|
|
int varmiddle = calcCubicVariations (xmiddle, a, b, c, d, p1a, p1b, p0a);
|
|
|
|
if ( varmiddle < root ) // I am below
|
|
|
|
{
|
|
|
|
xmin = xmiddle;
|
|
|
|
varbottom = varmiddle;
|
|
|
|
} else {
|
|
|
|
xmax = xmiddle;
|
|
|
|
vartop = varmiddle;
|
|
|
|
}
|
|
|
|
dx /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* now [xmin, xmax] enclose a single root, try using Newton
|
|
|
|
*/
|
|
|
|
if ( vartop - varbottom == 1 )
|
|
|
|
{
|
|
|
|
double fval1 = a; // double check...
|
|
|
|
double fval2 = a;
|
|
|
|
fval1 = b + xmin*fval1;
|
|
|
|
fval2 = b + xmax*fval2;
|
|
|
|
fval1 = c + xmin*fval1;
|
|
|
|
fval2 = c + xmax*fval2;
|
|
|
|
fval1 = d + xmin*fval1;
|
|
|
|
fval2 = d + xmax*fval2;
|
|
|
|
assert ( fval1 * fval2 <= 0 );
|
|
|
|
return calcCubicRootwithNewton ( xmin, xmax, a, b, c, d, 1e-8 );
|
|
|
|
}
|
|
|
|
else // probably a double root here!
|
|
|
|
return ( xmin + xmax )/2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* computation of the number of sign changes in the sturm sequence for
|
|
|
|
* a third degree polynomial at x. This number counts the number of
|
|
|
|
* roots of the polynomial on the left of point x.
|
|
|
|
*
|
|
|
|
* a, b, c, d: coefficients of the third degree polynomial (a*x^3 + ...)
|
|
|
|
*
|
|
|
|
* the second degree polynomial in the sturm sequence is just minus the
|
|
|
|
* derivative, so we don't need to compute it.
|
|
|
|
*
|
|
|
|
* p1a*x + p1b: is the third (first degree) polynomial in the sturm sequence.
|
|
|
|
*
|
|
|
|
* p0a: is the (constant) fourth polynomial of the sturm sequence.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int calcCubicVariations (double x, double a, double b, double c,
|
|
|
|
double d, double p1a, double p1b, double p0a)
|
|
|
|
{
|
|
|
|
double fval, fpval;
|
|
|
|
fval = fpval = a;
|
|
|
|
fval = b + x*fval;
|
|
|
|
fpval = fval + x*fpval;
|
|
|
|
fval = c + x*fval;
|
|
|
|
fpval = fval + x*fpval;
|
|
|
|
fval = d + x*fval;
|
|
|
|
|
|
|
|
double f1val = p1a*x + p1b;
|
|
|
|
|
|
|
|
bool f3pos = fval >= 0;
|
|
|
|
bool f2pos = fpval <= 0;
|
|
|
|
bool f1pos = f1val >= 0;
|
|
|
|
bool f0pos = p0a >= 0;
|
|
|
|
|
|
|
|
int variations = 0;
|
|
|
|
if ( f3pos != f2pos ) variations++;
|
|
|
|
if ( f2pos != f1pos ) variations++;
|
|
|
|
if ( f1pos != f0pos ) variations++;
|
|
|
|
return variations;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* use newton to solve a third degree equation with already isolated
|
|
|
|
* root
|
|
|
|
*/
|
|
|
|
|
|
|
|
inline void calcCubicDerivatives ( double x, double a, double b, double c,
|
|
|
|
double d, double& fval, double& fpval, double& fppval )
|
|
|
|
{
|
|
|
|
fval = fpval = fppval = a;
|
|
|
|
fval = b + x*fval;
|
|
|
|
fpval = fval + x*fpval;
|
|
|
|
fppval = fpval + x*fppval; // this is really half the second derivative
|
|
|
|
fval = c + x*fval;
|
|
|
|
fpval = fval + x*fpval;
|
|
|
|
fval = d + x*fval;
|
|
|
|
}
|
|
|
|
|
|
|
|
double calcCubicRootwithNewton ( double xmin, double xmax, double a,
|
|
|
|
double b, double c, double d, double tol )
|
|
|
|
{
|
|
|
|
double fval, fpval, fppval;
|
|
|
|
|
|
|
|
double fval1, fval2, fpval1, fpval2, fppval1, fppval2;
|
|
|
|
calcCubicDerivatives ( xmin, a, b, c, d, fval1, fpval1, fppval1 );
|
|
|
|
calcCubicDerivatives ( xmax, a, b, c, d, fval2, fpval2, fppval2 );
|
|
|
|
assert ( fval1 * fval2 <= 0 );
|
|
|
|
|
|
|
|
assert ( xmax > xmin );
|
|
|
|
while ( xmax - xmin > tol )
|
|
|
|
{
|
|
|
|
// compute the values of function, derivative and second derivative:
|
|
|
|
assert ( fval1 * fval2 <= 0 );
|
|
|
|
if ( fppval1 * fppval2 < 0 || fpval1 * fpval2 < 0 )
|
|
|
|
{
|
|
|
|
double xmiddle = (xmin + xmax)/2;
|
|
|
|
calcCubicDerivatives ( xmiddle, a, b, c, d, fval, fpval, fppval );
|
|
|
|
if ( fval1*fval <= 0 )
|
|
|
|
{
|
|
|
|
xmax = xmiddle;
|
|
|
|
fval2 = fval;
|
|
|
|
fpval2 = fpval;
|
|
|
|
fppval2 = fppval;
|
|
|
|
} else {
|
|
|
|
xmin = xmiddle;
|
|
|
|
fval1 = fval;
|
|
|
|
fpval1 = fpval;
|
|
|
|
fppval1 = fppval;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
// now we have first and second derivative of constant sign, we
|
|
|
|
// can start with Newton from the Fourier point.
|
|
|
|
double x = xmin;
|
|
|
|
if ( fval2*fppval2 > 0 ) x = xmax;
|
|
|
|
double p = 1.0;
|
|
|
|
int iterations = 0;
|
|
|
|
while ( fabs(p) > tol && iterations++ < 100 )
|
|
|
|
{
|
|
|
|
calcCubicDerivatives ( x, a, b, c, d, fval, fpval, fppval );
|
|
|
|
p = fval/fpval;
|
|
|
|
x -= p;
|
|
|
|
}
|
|
|
|
if( iterations >= 100 )
|
|
|
|
{
|
|
|
|
// Newton scheme did not converge..
|
|
|
|
// we should end up with an invalid Coordinate
|
|
|
|
return double_inf;
|
|
|
|
};
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// we cannot apply Newton, (perhaps we are at an inflection point)
|
|
|
|
|
|
|
|
return (xmin + xmax)/2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function computes the LU factorization of a mxn matrix, with
|
|
|
|
* m typically less then n. This is done with complete pivoting; the
|
|
|
|
* exchanges in columns are recorded in the integer vector "exchange"
|
|
|
|
*/
|
|
|
|
bool GaussianElimination( double *matrix[], int numrows,
|
|
|
|
int numcols, int exchange[] )
|
|
|
|
{
|
|
|
|
// start gaussian elimination
|
|
|
|
for ( int k = 0; k < numrows; ++k )
|
|
|
|
{
|
|
|
|
// ricerca elemento di modulo massimo
|
|
|
|
double maxval = -double_inf;
|
|
|
|
int imax = k;
|
|
|
|
int jmax = k;
|
|
|
|
for( int i = k; i < numrows; ++i )
|
|
|
|
{
|
|
|
|
for( int j = k; j < numcols; ++j )
|
|
|
|
{
|
|
|
|
if (fabs(matrix[i][j]) > maxval)
|
|
|
|
{
|
|
|
|
maxval = fabs(matrix[i][j]);
|
|
|
|
imax = i;
|
|
|
|
jmax = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// row exchange
|
|
|
|
if ( imax != k )
|
|
|
|
for( int j = k; j < numcols; ++j )
|
|
|
|
{
|
|
|
|
double t = matrix[k][j];
|
|
|
|
matrix[k][j] = matrix[imax][j];
|
|
|
|
matrix[imax][j] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
// column exchange
|
|
|
|
if ( jmax != k )
|
|
|
|
for( int i = 0; i < numrows; ++i )
|
|
|
|
{
|
|
|
|
double t = matrix[i][k];
|
|
|
|
matrix[i][k] = matrix[i][jmax];
|
|
|
|
matrix[i][jmax] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
// remember this column exchange at step k
|
|
|
|
exchange[k] = jmax;
|
|
|
|
|
|
|
|
// we can't usefully eliminate a singular matrix..
|
|
|
|
if ( maxval == 0. ) return false;
|
|
|
|
|
|
|
|
// ciclo sulle righe
|
|
|
|
for( int i = k+1; i < numrows; ++i)
|
|
|
|
{
|
|
|
|
double mik = matrix[i][k]/matrix[k][k];
|
|
|
|
matrix[i][k] = mik; //ricorda il moltiplicatore... (not necessary)
|
|
|
|
// ciclo sulle colonne
|
|
|
|
for( int j = k+1; j < numcols; ++j )
|
|
|
|
{
|
|
|
|
matrix[i][j] -= mik*matrix[k][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* solve an undetermined homogeneous triangular system. the matrix is nonzero
|
|
|
|
* on its diagonal. The last unknown(s) are chosen to be 1. The
|
|
|
|
* vector "exchange" contains exchanges to be performed on the
|
|
|
|
* final solution components.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void BackwardSubstitution( double *matrix[], int numrows, int numcols,
|
|
|
|
int exchange[], double solution[] )
|
|
|
|
{
|
|
|
|
// the system is homogeneous and underdetermined, the last unknown(s)
|
|
|
|
// are chosen = 1
|
|
|
|
for ( int j = numrows; j < numcols; ++j )
|
|
|
|
{
|
|
|
|
solution[j] = 1.0; // other choices are possible here
|
|
|
|
};
|
|
|
|
|
|
|
|
for( int k = numrows - 1; k >= 0; --k )
|
|
|
|
{
|
|
|
|
// backward substitution
|
|
|
|
solution[k] = 0.0;
|
|
|
|
for ( int j = k+1; j < numcols; ++j)
|
|
|
|
{
|
|
|
|
solution[k] -= matrix[k][j]*solution[j];
|
|
|
|
}
|
|
|
|
solution[k] /= matrix[k][k];
|
|
|
|
}
|
|
|
|
|
|
|
|
// ultima fase: riordinamento incognite
|
|
|
|
|
|
|
|
for( int k = numrows - 1; k >= 0; --k )
|
|
|
|
{
|
|
|
|
int jmax = exchange[k];
|
|
|
|
double t = solution[k];
|
|
|
|
solution[k] = solution[jmax];
|
|
|
|
solution[jmax] = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Invert3by3matrix ( const double m[3][3], double inv[3][3] )
|
|
|
|
{
|
|
|
|
double det = m[0][0]*(m[1][1]*m[2][2] - m[1][2]*m[2][1]) -
|
|
|
|
m[0][1]*(m[1][0]*m[2][2] - m[1][2]*m[2][0]) +
|
|
|
|
m[0][2]*(m[1][0]*m[2][1] - m[1][1]*m[2][0]);
|
|
|
|
if (det == 0) return false;
|
|
|
|
|
|
|
|
for (int i=0; i < 3; i++)
|
|
|
|
{
|
|
|
|
for (int j=0; j < 3; j++)
|
|
|
|
{
|
|
|
|
int i1 = (i+1)%3;
|
|
|
|
int i2 = (i+2)%3;
|
|
|
|
int j1 = (j+1)%3;
|
|
|
|
int j2 = (j+2)%3;
|
|
|
|
inv[j][i] = (m[i1][j1]*m[i2][j2] - m[i1][j2]*m[i2][j1])/det;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|