|
|
|
// Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
|
|
|
|
|
|
|
|
// This program is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU General Public License
|
|
|
|
// as published by the Free Software Foundation; either version 2
|
|
|
|
// of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
|
|
// along with this program; if not, write to the Free Software
|
|
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
|
|
// 02110-1301, USA.
|
|
|
|
|
|
|
|
#include "conic_imp.h"
|
|
|
|
|
|
|
|
#include "bogus_imp.h"
|
|
|
|
#include "point_imp.h"
|
|
|
|
|
|
|
|
#include "../misc/kigpainter.h"
|
|
|
|
#include "../misc/common.h"
|
|
|
|
#include "../misc/coordinate_system.h"
|
|
|
|
|
|
|
|
#include "../kig/kig_document.h"
|
|
|
|
#include "../kig/kig_view.h"
|
|
|
|
|
|
|
|
#include <klocale.h>
|
|
|
|
|
|
|
|
ObjectImp* ConicImp::transform( const Transformation& t ) const
|
|
|
|
{
|
|
|
|
bool valid = true;
|
|
|
|
ConicCartesianData d = calcConicTransformation( cartesianData(), t, valid );
|
|
|
|
if ( ! valid ) return new InvalidImp;
|
|
|
|
else return new ConicImpCart( d );
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConicImp::draw( KigPainter& p ) const
|
|
|
|
{
|
|
|
|
p.drawCurve( this );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::valid() const
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::contains( const Coordinate& o, int width, const KigWidget& w ) const
|
|
|
|
{
|
|
|
|
return internalContainsPoint( o, w.screenInfo().normalMiss( width ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::inRect( const Rect&, int, const KigWidget& ) const
|
|
|
|
{
|
|
|
|
// TODO
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint ConicImp::numberOfProperties() const
|
|
|
|
{
|
|
|
|
return Parent::numberOfProperties() + 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
const QCStringList ConicImp::propertiesInternalNames() const
|
|
|
|
{
|
|
|
|
QCStringList l = Parent::propertiesInternalNames();
|
|
|
|
l << "type";
|
|
|
|
l << "first-focus";
|
|
|
|
l << "second-focus";
|
|
|
|
l << "cartesian-equation";
|
|
|
|
l << "polar-equation";
|
|
|
|
assert( l.size() == ConicImp::numberOfProperties() );
|
|
|
|
return l;
|
|
|
|
}
|
|
|
|
|
|
|
|
const QCStringList ConicImp::properties() const
|
|
|
|
{
|
|
|
|
QCStringList l = Parent::properties();
|
|
|
|
l << I18N_NOOP( "Conic Type" );
|
|
|
|
l << I18N_NOOP( "First Focus" );
|
|
|
|
l << I18N_NOOP( "Second Focus" );
|
|
|
|
l << I18N_NOOP( "Cartesian Equation" );
|
|
|
|
l << I18N_NOOP( "Polar Equation" );
|
|
|
|
assert( l.size() == ConicImp::numberOfProperties() );
|
|
|
|
return l;
|
|
|
|
}
|
|
|
|
|
|
|
|
const ObjectImpType* ConicImp::impRequirementForProperty( uint which ) const
|
|
|
|
{
|
|
|
|
if ( which < Parent::numberOfProperties() )
|
|
|
|
return Parent::impRequirementForProperty( which );
|
|
|
|
else return ConicImp::stype();
|
|
|
|
}
|
|
|
|
|
|
|
|
const char* ConicImp::iconForProperty( uint which ) const
|
|
|
|
{
|
|
|
|
int pnum = 0;
|
|
|
|
if ( which < Parent::numberOfProperties() )
|
|
|
|
return Parent::iconForProperty( which );
|
|
|
|
if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return "kig_text"; // conic type string
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return ""; // focus1
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return ""; // focus2
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return "kig_text"; // cartesian equation string
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return "kig_text"; // polar equation string
|
|
|
|
else assert( false );
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
ObjectImp* ConicImp::property( uint which, const KigDocument& w ) const
|
|
|
|
{
|
|
|
|
int pnum = 0;
|
|
|
|
|
|
|
|
if ( which < Parent::numberOfProperties() )
|
|
|
|
return Parent::property( which, w );
|
|
|
|
if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return new StringImp( conicTypeString() );
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return new PointImp( focus1() );
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return new PointImp( focus2() );
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return new StringImp( cartesianEquationString( w ) );
|
|
|
|
else if ( which == Parent::numberOfProperties() + pnum++ )
|
|
|
|
return new StringImp( polarEquationString( w ) );
|
|
|
|
else assert( false );
|
|
|
|
return new InvalidImp;
|
|
|
|
}
|
|
|
|
|
|
|
|
double ConicImp::getParam( const Coordinate& p, const KigDocument& ) const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
Coordinate tmp = p - d.focus1;
|
|
|
|
double l = tmp.length();
|
|
|
|
double theta = atan2(tmp.y, tmp.x);
|
|
|
|
double costheta = cos(theta);
|
|
|
|
double sintheta = sin(theta);
|
|
|
|
double ecosthetamtheta0 = costheta*d.ecostheta0 + sintheta*d.esintheta0;
|
|
|
|
double esinthetamtheta0 = sintheta*d.ecostheta0 - costheta*d.esintheta0;
|
|
|
|
double oneplus = 1.0 + d.ecostheta0*d.ecostheta0 + d.esintheta0*d.esintheta0;
|
|
|
|
double fact = esinthetamtheta0*(1.0 - ecosthetamtheta0)/(oneplus - 2*ecosthetamtheta0);
|
|
|
|
// fact is sin(a)*cos(a) where a is the angle between the ray from the first
|
|
|
|
// focus and the normal to the conic. We need it in order to adjust the
|
|
|
|
// angle according to the projection onto the conic of our point
|
|
|
|
double rho1 = d.pdimen / (1 - ecosthetamtheta0);
|
|
|
|
double rho2 = - d.pdimen / (1 + ecosthetamtheta0);
|
|
|
|
if (fabs(rho1 - l) < fabs(rho2 - l))
|
|
|
|
{
|
|
|
|
theta += (rho1 - l)*fact/rho1;
|
|
|
|
return fmod(theta / ( 2 * M_PI ) + 1, 1);
|
|
|
|
} else {
|
|
|
|
theta += (rho2 - l)*fact/rho2;
|
|
|
|
return fmod(theta / ( 2 * M_PI ) + 0.5, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const Coordinate ConicImp::getPoint( double p, const KigDocument& ) const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
|
|
|
|
double costheta = cos(p * 2 * M_PI);
|
|
|
|
double sintheta = sin(p * 2 * M_PI);
|
|
|
|
double rho = d.pdimen / (1 - costheta* d.ecostheta0 - sintheta* d.esintheta0);
|
|
|
|
return d.focus1 + Coordinate (costheta, sintheta) * rho;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ConicImp::conicType() const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
double ec = d.ecostheta0;
|
|
|
|
double es = d.esintheta0;
|
|
|
|
double esquare = ec*ec + es*es;
|
|
|
|
const double parabolamiss = 1e-3; // don't know what a good value could be
|
|
|
|
|
|
|
|
if (esquare < 1.0 - parabolamiss) return 1;
|
|
|
|
if (esquare > 1.0 + parabolamiss) return -1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString ConicImp::conicTypeString() const
|
|
|
|
{
|
|
|
|
switch (conicType())
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
return i18n("Ellipse");
|
|
|
|
case -1:
|
|
|
|
return i18n("Hyperbola");
|
|
|
|
case 0:
|
|
|
|
return i18n("Parabola");
|
|
|
|
default:
|
|
|
|
assert( false );
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString ConicImp::cartesianEquationString( const KigDocument& ) const
|
|
|
|
{
|
|
|
|
TQString ret = i18n( "%1 x² + %2 y² + %3 xy + %4 x + %5 y + %6 = 0" );
|
|
|
|
ConicCartesianData data = cartesianData();
|
|
|
|
ret = ret.arg( data.coeffs[0], 0, 'g', 3 );
|
|
|
|
ret = ret.arg( data.coeffs[1], 0, 'g', 3 );
|
|
|
|
ret = ret.arg( data.coeffs[2], 0, 'g', 3 );
|
|
|
|
ret = ret.arg( data.coeffs[3], 0, 'g', 3 );
|
|
|
|
ret = ret.arg( data.coeffs[4], 0, 'g', 3 );
|
|
|
|
ret = ret.arg( data.coeffs[5], 0, 'g', 3 );
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
TQString ConicImp::polarEquationString( const KigDocument& w ) const
|
|
|
|
{
|
|
|
|
TQString ret = i18n( "rho = %1/(1 + %2 cos theta + %3 sin theta)\n [centered at %4]" );
|
|
|
|
const ConicPolarData data = polarData();
|
|
|
|
|
|
|
|
ret = ret.arg( data.pdimen, 0, 'g', 3 );
|
|
|
|
ret = ret.arg( -data.ecostheta0, 0, 'g', 3 );
|
|
|
|
ret = ret.arg( -data.esintheta0, 0, 'g', 3 );
|
|
|
|
|
|
|
|
ret = ret.arg( w.coordinateSystem().fromScreen( data.focus1, w ) );
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
const ConicCartesianData ConicImp::cartesianData() const
|
|
|
|
{
|
|
|
|
return ConicCartesianData( polarData() );
|
|
|
|
}
|
|
|
|
|
|
|
|
Coordinate ConicImp::focus1() const
|
|
|
|
{
|
|
|
|
return polarData().focus1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Coordinate ConicImp::focus2() const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
double ec = d.ecostheta0;
|
|
|
|
double es = d.esintheta0;
|
|
|
|
|
|
|
|
double fact = 2*d.pdimen/(1 - ec*ec - es*es);
|
|
|
|
|
|
|
|
return d.focus1 + fact*Coordinate(ec, es);
|
|
|
|
}
|
|
|
|
|
|
|
|
const ConicPolarData ConicImpCart::polarData() const
|
|
|
|
{
|
|
|
|
return mpolardata;
|
|
|
|
}
|
|
|
|
|
|
|
|
const ConicCartesianData ConicImpCart::cartesianData() const
|
|
|
|
{
|
|
|
|
return mcartdata;
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpCart::ConicImpCart( const ConicCartesianData& data )
|
|
|
|
: ConicImp(), mcartdata( data ), mpolardata( data )
|
|
|
|
{
|
|
|
|
assert( data.valid() );
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpPolar::ConicImpPolar( const ConicPolarData& data )
|
|
|
|
: ConicImp(), mdata( data )
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpPolar::~ConicImpPolar()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
const ConicPolarData ConicImpPolar::polarData() const
|
|
|
|
{
|
|
|
|
return mdata;
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpCart* ConicImpCart::copy() const
|
|
|
|
{
|
|
|
|
return new ConicImpCart( mcartdata );
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpPolar* ConicImpPolar::copy() const
|
|
|
|
{
|
|
|
|
return new ConicImpPolar( mdata );
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImp::ConicImp()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImp::~ConicImp()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
ConicImpCart::~ConicImpCart()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConicImp::visit( ObjectImpVisitor* vtor ) const
|
|
|
|
{
|
|
|
|
vtor->visit( this );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::equals( const ObjectImp& rhs ) const
|
|
|
|
{
|
|
|
|
return rhs.inherits( ConicImp::stype() ) &&
|
|
|
|
static_cast<const ConicImp&>( rhs ).polarData() == polarData();
|
|
|
|
}
|
|
|
|
|
|
|
|
const ObjectImpType* ConicImp::stype()
|
|
|
|
{
|
|
|
|
static const ObjectImpType t(
|
|
|
|
Parent::stype(), "conic",
|
|
|
|
I18N_NOOP( "conic" ),
|
|
|
|
I18N_NOOP( "Select this conic" ),
|
|
|
|
I18N_NOOP( "Select conic %1" ),
|
|
|
|
I18N_NOOP( "Remove a Conic" ),
|
|
|
|
I18N_NOOP( "Add a Conic" ),
|
|
|
|
I18N_NOOP( "Move a Conic" ),
|
|
|
|
I18N_NOOP( "Attach to this conic" ),
|
|
|
|
I18N_NOOP( "Show a Conic" ),
|
|
|
|
I18N_NOOP( "Hide a Conic" )
|
|
|
|
);
|
|
|
|
return &t;
|
|
|
|
}
|
|
|
|
|
|
|
|
const ObjectImpType* ConicImp::type() const
|
|
|
|
{
|
|
|
|
return ConicImp::stype();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::containsPoint( const Coordinate& p, const KigDocument& ) const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
|
|
|
|
// the threshold is relative to the size of the conic (mp)
|
|
|
|
return internalContainsPoint( p, test_threshold*d.pdimen );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::internalContainsPoint( const Coordinate& p, double threshold ) const
|
|
|
|
{
|
|
|
|
const ConicPolarData d = polarData();
|
|
|
|
|
|
|
|
Coordinate focus1 = d.focus1;
|
|
|
|
double ecostheta0 = d.ecostheta0;
|
|
|
|
double esintheta0 = d.esintheta0;
|
|
|
|
double pdimen = d.pdimen;
|
|
|
|
|
|
|
|
Coordinate pos = p - focus1;
|
|
|
|
double len = pos.length();
|
|
|
|
double costheta = pos.x / len;
|
|
|
|
double sintheta = pos.y / len;
|
|
|
|
|
|
|
|
double ecosthetamtheta0 = costheta*ecostheta0 + sintheta*esintheta0;
|
|
|
|
double rho = pdimen / (1.0 - ecosthetamtheta0);
|
|
|
|
|
|
|
|
double oneplus = 1.0 + ecostheta0*ecostheta0 + esintheta0*esintheta0;
|
|
|
|
|
|
|
|
// fact is the cosine of the angle between the ray from the first focus
|
|
|
|
// and the normal to the conic, so that we compute the real distance
|
|
|
|
|
|
|
|
double fact = (1.0 - ecosthetamtheta0)/sqrt(oneplus - 2*ecosthetamtheta0);
|
|
|
|
if ( fabs((len - rho)*fact) <= threshold ) return true;
|
|
|
|
rho = - pdimen / ( 1.0 + ecosthetamtheta0 );
|
|
|
|
fact = (1.0 + ecosthetamtheta0)/sqrt(oneplus + 2*ecosthetamtheta0);
|
|
|
|
return fabs(( len - rho )*fact) <= threshold;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ConicImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
|
|
|
|
{
|
|
|
|
if ( which < Parent::numberOfProperties() )
|
|
|
|
return Parent::isPropertyDefinedOnOrThroughThisImp( which );
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
Rect ConicImp::surroundingRect() const
|
|
|
|
{
|
|
|
|
// it's prolly possible to calculate this ( in the case that the
|
|
|
|
// conic is limited in size ), but for now we don't.
|
|
|
|
|
|
|
|
return Rect::invalidRect();
|
|
|
|
}
|