You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/kdefx/kpixmap.cpp

390 lines
10 KiB

/*
* This file is part of the KDE libraries
* Copyright (C) 1998 Mark Donohoe <donohoe@kde.org>
* Stephan Kulow <coolo@kde.org>
*
* $Id$
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <tqpixmap.h>
#include <tqpainter.h>
#include <tqimage.h>
#include <tqbitmap.h>
#include <tqcolor.h>
#include <stdlib.h>
#include "kpixmap.h"
// Fast diffuse dither to 3x3x3 color cube
// Based on Qt's image conversion functions
static bool kdither_32_to_8( const TQImage *src, TQImage *dst )
{
// register QRgb *p;
uchar *b;
int y;
if ( !dst->create(src->width(), src->height(), 8, 256) ) {
qWarning("KPixmap: destination image not valid\n");
return false;
}
dst->setNumColors( 256 );
#define MAX_R 2
#define MAX_G 2
#define MAX_B 2
#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
int rc, gc, bc;
for ( rc=0; rc<=MAX_R; rc++ ) // build 2x2x2 color cube
for ( gc=0; gc<=MAX_G; gc++ )
for ( bc=0; bc<=MAX_B; bc++ ) {
dst->setColor( INDEXOF(rc,gc,bc),
tqRgb( rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B ) );
}
int sw = src->width();
int* line1[3];
int* line2[3];
int* pv[3];
line1[0] = new int[src->width()];
line2[0] = new int[src->width()];
line1[1] = new int[src->width()];
line2[1] = new int[src->width()];
line1[2] = new int[src->width()];
line2[2] = new int[src->width()];
pv[0] = new int[sw];
pv[1] = new int[sw];
pv[2] = new int[sw];
for ( y=0; y < src->height(); y++ ) {
// p = (QRgb *)src->scanLine(y);
b = dst->scanLine(y);
int endian = (TQImage::systemBitOrder() == TQImage::BigEndian);
int x;
uchar* q = src->scanLine(y);
uchar* q2 = src->scanLine(y+1 < src->height() ? y + 1 : 0);
for (int chan = 0; chan < 3; chan++) {
b = dst->scanLine(y);
int *l1 = (y&1) ? line2[chan] : line1[chan];
int *l2 = (y&1) ? line1[chan] : line2[chan];
if ( y == 0 ) {
for (int i=0; i<sw; i++)
l1[i] = q[i*4+chan+endian];
}
if ( y+1 < src->height() ) {
for (int i=0; i<sw; i++)
l2[i] = q2[i*4+chan+endian];
}
// Bi-directional error diffusion
if ( y&1 ) {
for (x=0; x<sw; x++) {
int pix = QMAX(QMIN(2, (l1[x] * 2 + 128)/ 255), 0);
int err = l1[x] - pix * 255 / 2;
pv[chan][x] = pix;
// Spread the error around...
if ( x+1<sw ) {
l1[x+1] += (err*7)>>4;
l2[x+1] += err>>4;
}
l2[x]+=(err*5)>>4;
if (x>1)
l2[x-1]+=(err*3)>>4;
}
} else {
for (x=sw; x-->0; ) {
int pix = QMAX(QMIN(2, (l1[x] * 2 + 128)/ 255), 0);
int err = l1[x] - pix * 255 / 2;
pv[chan][x] = pix;
// Spread the error around...
if ( x > 0 ) {
l1[x-1] += (err*7)>>4;
l2[x-1] += err>>4;
}
l2[x]+=(err*5)>>4;
if (x+1 < sw)
l2[x+1]+=(err*3)>>4;
}
}
}
if (!endian) {
for (x=0; x<sw; x++)
*b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
} else {
for (x=0; x<sw; x++)
*b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
}
}
delete [] line1[0];
delete [] line2[0];
delete [] line1[1];
delete [] line2[1];
delete [] line1[2];
delete [] line2[2];
delete [] pv[0];
delete [] pv[1];
delete [] pv[2];
#undef MAX_R
#undef MAX_G
#undef MAX_B
#undef INDEXOF
return true;
}
KPixmap::~KPixmap()
{
}
bool KPixmap::load( const TQString& fileName, const char *format,
int conversion_flags )
{
TQImageIO io( fileName, format );
bool result = io.read();
if ( result ) {
detach();
result = convertFromImage( io.image(), conversion_flags );
}
return result;
}
bool KPixmap::load( const TQString& fileName, const char *format,
ColorMode mode )
{
int conversion_flags = 0;
switch (mode) {
case Color:
conversion_flags |= ColorOnly;
break;
case Mono:
conversion_flags |= MonoOnly;
break;
case LowColor:
conversion_flags |= LowOnly;
break;
case WebColor:
conversion_flags |= WebOnly;
break;
default:
break;// Nothing.
}
return load( fileName, format, conversion_flags );
}
bool KPixmap::convertFromImage( const TQImage &img, ColorMode mode )
{
int conversion_flags = 0;
switch (mode) {
case Color:
conversion_flags |= ColorOnly;
break;
case Mono:
conversion_flags |= MonoOnly;
break;
case LowColor:
conversion_flags |= LowOnly;
break;
case WebColor:
conversion_flags |= WebOnly;
break;
default:
break; // Nothing.
}
return convertFromImage( img, conversion_flags );
}
bool KPixmap::convertFromImage( const TQImage &img, int conversion_flags )
{
if ( img.isNull() ) {
#if defined(CHECK_NULL)
qWarning( "KPixmap::convertFromImage: Cannot convert a null image" );
#endif
return false;
}
detach(); // detach other references
int dd = defaultDepth();
// If color mode not one of KPixmaps extra modes nothing to do
if ( ( conversion_flags & KColorMode_Mask ) != LowOnly &&
( conversion_flags & KColorMode_Mask ) != WebOnly ) {
return TQPixmap::convertFromImage ( img, conversion_flags );
}
// If the default pixmap depth is not 8bpp, KPixmap color modes have no
// effect. Ignore them and use AutoColor instead.
if ( dd > 8 ) {
if ( ( conversion_flags & KColorMode_Mask ) == LowOnly ||
( conversion_flags & KColorMode_Mask ) == WebOnly )
conversion_flags = (conversion_flags & ~KColorMode_Mask) | Auto;
return TQPixmap::convertFromImage ( img, conversion_flags );
}
if ( ( conversion_flags & KColorMode_Mask ) == LowOnly ) {
// Here we skimp a little on the possible conversion modes
// Don't offer ordered or threshold dither of RGB channels or
// diffuse or ordered dither of alpha channel. It hardly seems
// worth the effort for this specialized mode.
// If image uses icon palette don't dither it.
if( img.numColors() > 0 && img.numColors() <=40 ) {
if ( checkColorTable( img ) )
return TQPixmap::convertFromImage( img, TQPixmap::Auto );
}
TQBitmap tqmask;
bool isMask = false;
TQImage image = img.convertDepth(32);
TQImage tImage( image.width(), image.height(), 8, 256 );
if( img.hasAlphaBuffer() ) {
image.setAlphaBuffer( true );
tImage.setAlphaBuffer( true );
isMask = tqmask.convertFromImage( img.createAlphaMask() );
}
kdither_32_to_8( &image, &tImage );
if( TQPixmap::convertFromImage( tImage ) ) {
if ( isMask ) TQPixmap::setMask( tqmask );
return true;
} else
return false;
} else {
TQImage image = img.convertDepth( 32 );
image.setAlphaBuffer( img.hasAlphaBuffer() );
conversion_flags = (conversion_flags & ~ColorMode_Mask) | Auto;
return TQPixmap::convertFromImage ( image, conversion_flags );
}
}
static TQColor* kpixmap_iconPalette = 0;
bool KPixmap::checkColorTable( const TQImage &image )
{
int i = 0;
if (kpixmap_iconPalette == 0) {
kpixmap_iconPalette = new QColor[40];
// Standard palette
kpixmap_iconPalette[i++] = tqred;
kpixmap_iconPalette[i++] = tqgreen;
kpixmap_iconPalette[i++] = tqblue;
kpixmap_iconPalette[i++] = tqcyan;
kpixmap_iconPalette[i++] = tqmagenta;
kpixmap_iconPalette[i++] = tqyellow;
kpixmap_iconPalette[i++] = tqdarkRed;
kpixmap_iconPalette[i++] = tqdarkGreen;
kpixmap_iconPalette[i++] = tqdarkBlue;
kpixmap_iconPalette[i++] = tqdarkCyan;
kpixmap_iconPalette[i++] = tqdarkMagenta;
kpixmap_iconPalette[i++] = tqdarkYellow;
kpixmap_iconPalette[i++] = tqwhite;
kpixmap_iconPalette[i++] = tqlightGray;
kpixmap_iconPalette[i++] = tqgray;
kpixmap_iconPalette[i++] = tqdarkGray;
kpixmap_iconPalette[i++] = tqblack;
// Pastels
kpixmap_iconPalette[i++] = TQColor( 255, 192, 192 );
kpixmap_iconPalette[i++] = TQColor( 192, 255, 192 );
kpixmap_iconPalette[i++] = TQColor( 192, 192, 255 );
kpixmap_iconPalette[i++] = TQColor( 255, 255, 192 );
kpixmap_iconPalette[i++] = TQColor( 255, 192, 255 );
kpixmap_iconPalette[i++] = TQColor( 192, 255, 255 );
// Reds
kpixmap_iconPalette[i++] = TQColor( 64, 0, 0 );
kpixmap_iconPalette[i++] = TQColor( 192, 0, 0 );
// Oranges
kpixmap_iconPalette[i++] = TQColor( 255, 128, 0 );
kpixmap_iconPalette[i++] = TQColor( 192, 88, 0 );
kpixmap_iconPalette[i++] = TQColor( 255, 168, 88 );
kpixmap_iconPalette[i++] = TQColor( 255, 220, 168 );
// Blues
kpixmap_iconPalette[i++] = TQColor( 0, 0, 192 );
// Turquoise
kpixmap_iconPalette[i++] = TQColor( 0, 64, 64 );
kpixmap_iconPalette[i++] = TQColor( 0, 192, 192 );
// Yellows
kpixmap_iconPalette[i++] = TQColor( 64, 64, 0 );
kpixmap_iconPalette[i++] = TQColor( 192, 192, 0 );
// Greens
kpixmap_iconPalette[i++] = TQColor( 0, 64, 0 );
kpixmap_iconPalette[i++] = TQColor( 0, 192, 0 );
// Purples
kpixmap_iconPalette[i++] = TQColor( 192, 0, 192 );
// Greys
kpixmap_iconPalette[i++] = TQColor( 88, 88, 88 );
kpixmap_iconPalette[i++] = TQColor( 48, 48, 48 );
kpixmap_iconPalette[i++] = TQColor( 220, 220, 220 );
}
QRgb* ctable = image.tqcolorTable();
int ncols = image.numColors();
int j;
// Allow one failure which could be transparent background
int failures = 0;
for ( i=0; i<ncols; i++ ) {
for ( j=0; j<40; j++ ) {
if ( kpixmap_iconPalette[j].red() == tqRed( ctable[i] ) &&
kpixmap_iconPalette[j].green() == tqGreen( ctable[i] ) &&
kpixmap_iconPalette[j].blue() == tqBlue( ctable[i] ) ) {
break;
}
}
if ( j == 40 ) {
failures ++;
}
}
return ( failures <= 1 );
}
KPixmap::KPixmap(const TQPixmap& p)
: TQPixmap(p)
{
}