You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/kdecore/svgicons/ksvgiconpainter.cpp

2838 lines
66 KiB

/*
Copyright (C) 2002 Nikolas Zimmermann <wildfox@kde.org>
This file is part of the KDE project
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
aint with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <tqvaluevector.h>
#include <tqstringlist.h>
#include <tqwmatrix.h>
#include <tqregexp.h>
#include <tqimage.h>
#include <tqdict.h>
#include <tqmap.h>
#include <tqdom.h>
#include <math.h>
#include <kdebug.h>
#include <libart_lgpl/art_rgba.h>
#include <libart_lgpl/art_bpath.h>
#include <libart_lgpl/art_vpath.h>
#include <libart_lgpl/art_vpath_dash.h>
#include <libart_lgpl/art_affine.h>
#include <libart_lgpl/art_render_svp.h>
#include <libart_lgpl/art_svp.h>
#include <libart_lgpl/art_svp_vpath.h>
#include <libart_lgpl/art_svp_intersect.h>
#include <libart_lgpl/art_svp_vpath_stroke.h>
#include "ksvgiconpainter.h"
#define ART_END2 10
const double deg2rad = 0.017453292519943295769; // pi/180
class KSVGIconPainterHelper
{
public:
KSVGIconPainterHelper(int width, int height, KSVGIconPainter *painter)
{
m_painter = painter;
m_clipSVP = 0;
m_fillColor = Qt::black;
m_useFill = true;
m_useStroke = false;
m_useFillGradient = false;
m_useStrokeGradient = false;
m_worldMatrix = new TQWMatrix();
// Create new image with alpha support
m_image = new TQImage(width, height, 32);
m_image->setAlphaBuffer(true);
m_strokeWidth = 1.0;
m_strokeMiterLimit = 4;
m_dashOffset = 0;
m_dashes = "";
m_opacity = 0xff;
m_fillOpacity = 0xff;
m_strokeOpacity = 0xff;
m_fillRule = "nonzero";
m_width = width;
m_height = height;
m_rowstride = m_width * 4;
// Make internal libart rendering buffer transparent
m_buffer = art_new(art_u8, m_rowstride * m_height);
memset(m_buffer, 0, m_rowstride * m_height);
m_tempBuffer = 0;
}
~KSVGIconPainterHelper()
{
if(m_clipSVP)
art_svp_free(m_clipSVP);
art_free(m_buffer);
delete m_image;
delete m_worldMatrix;
for(TQMap<TQString, ArtGradientLinear *>::Iterator it = m_linearGradientMap.begin(); it != m_linearGradientMap.end(); ++it)
{
if (!it.data())
continue;
delete [] it.data()->stops;
delete it.data();
}
for(TQMap<TQString, ArtGradientRadial *>::Iterator it = m_radialGradientMap.begin(); it != m_radialGradientMap.end(); ++it)
{
if (!it.data())
continue;
delete [] it.data()->stops;
delete it.data();
}
}
ArtVpath *allocVPath(int number)
{
return art_new(ArtVpath, number);
}
ArtBpath *allocBPath(int number)
{
return art_new(ArtBpath, number);
}
void ensureSpace(TQMemArray<ArtBpath> &vec, int index)
{
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
}
void createBuffer()
{
m_tempBuffer = art_new(art_u8, m_rowstride * m_height);
memset(m_tempBuffer, 0, m_rowstride * m_height);
// Swap buffers, so we work with the new one internally...
art_u8 *temp = m_buffer;
m_buffer = m_tempBuffer;
m_tempBuffer = temp;
}
void mixBuffer(int opacity)
{
art_u8 *srcPixel = m_buffer;
art_u8 *dstPixel = m_tempBuffer;
for(int y = 0; y < m_height; y++)
{
for(int x = 0; x < m_width; x++)
{
art_u8 r, g, b, a;
a = srcPixel[4 * x + 3];
if(a)
{
r = srcPixel[4 * x];
g = srcPixel[4 * x + 1];
b = srcPixel[4 * x + 2];
int temp = a * opacity + 0x80;
a = (temp + (temp >> 8)) >> 8;
art_rgba_run_alpha(dstPixel + 4 * x, r, g, b, a, 1);
}
}
srcPixel += m_rowstride;
dstPixel += m_rowstride;
}
// Re-swap again...
art_u8 *temp = m_buffer;
m_buffer = m_tempBuffer;
m_tempBuffer = temp;
art_free(m_tempBuffer);
m_tempBuffer = 0;
}
Q_UINT32 toArtColor(const TQColor &color)
{
// Convert in a libart suitable form
TQString tempName = color.name();
const char *str = tempName.latin1();
int result = 0;
for(int i = 1; str[i]; i++)
{
int hexval;
if(str[i] >= '0' && str[i] <= '9')
hexval = str[i] - '0';
else if (str[i] >= 'A' && str[i] <= 'F')
hexval = str[i] - 'A' + 10;
else if (str[i] >= 'a' && str[i] <= 'f')
hexval = str[i] - 'a' + 10;
else
break;
result = (result << 4) + hexval;
}
return result;
}
void drawSVP(ArtSVP *svp, Q_UINT32 rgb, int opacity)
{
if(!svp)
return;
ArtRender *render = art_render_new(0, 0, m_width, m_height, m_buffer, m_rowstride, 3, 8, ART_ALPHA_SEPARATE, 0);
art_render_svp(render, svp);
art_render_mask_solid(render, (opacity << 8) + opacity + (opacity >> 7));
ArtPixMaxDepth color[3];
color[0] = ART_PIX_MAX_FROM_8(rgb >> 16);
color[1] = ART_PIX_MAX_FROM_8((rgb >> 8) & 0xff);
color[2] = ART_PIX_MAX_FROM_8(rgb & 0xff);
art_render_image_solid(render, color);
art_render_invoke(render);
}
void drawBPath(ArtBpath *bpath)
{
double affine[6];
affine[0] = m_worldMatrix->m11();
affine[1] = m_worldMatrix->m12();
affine[2] = m_worldMatrix->m21();
affine[3] = m_worldMatrix->m22();
affine[4] = m_worldMatrix->dx();
affine[5] = m_worldMatrix->dy();
ArtBpath *temp = art_bpath_affine_transform(bpath, affine);
ArtVpath *vec = art_bez_path_to_vec(temp, 0.25);
art_free(temp);
drawPathInternal(vec, affine);
}
void drawVPath(ArtVpath *vec)
{
double affine[6];
affine[0] = m_worldMatrix->m11();
affine[1] = m_worldMatrix->m12();
affine[2] = m_worldMatrix->m21();
affine[3] = m_worldMatrix->m22();
affine[4] = m_worldMatrix->dx();
affine[5] = m_worldMatrix->dy();
ArtVpath *temp = art_vpath_affine_transform(vec, affine);
art_free(vec);
vec = temp;
drawPathInternal(vec, affine);
}
void drawPathInternal(ArtVpath *vec, double *affine)
{
ArtSVP *svp;
ArtSVP *fillSVP = 0, *strokeSVP = 0;
Q_UINT32 fillColor = 0, strokeColor = 0;
// Filling
{
int index = -1;
TQValueVector<int> toCorrect;
while(vec[++index].code != ART_END)
{
if(vec[index].code == ART_END2)
{
vec[index].code = ART_LINETO;
toCorrect.push_back(index);
}
}
fillColor = toArtColor(m_fillColor);
ArtSvpWriter *swr;
ArtSVP *temp;
temp = art_svp_from_vpath(vec);
if(m_fillRule == "evenodd")
swr = art_svp_writer_rewind_new(ART_WIND_RULE_ODDEVEN);
else
swr = art_svp_writer_rewind_new(ART_WIND_RULE_NONZERO);
art_svp_intersector(temp, swr);
svp = art_svp_writer_rewind_reap(swr);
fillSVP = svp;
art_svp_free(temp);
TQValueVector<int>::iterator it;
for(it = toCorrect.begin(); it != toCorrect.end(); ++it)
vec[(*it)].code = (ArtPathcode)ART_END2;
}
// There seems to be a problem when stroke width is zero, this is a quick
// fix (Rob).
if(m_strokeWidth <= 0)
m_useStroke = m_useStrokeGradient = false;
// Stroking
if(m_useStroke || m_useStrokeGradient)
{
strokeColor = toArtColor(m_strokeColor);
double ratio = art_affine_expansion(affine);
double strokeWidth = m_strokeWidth * ratio;
ArtPathStrokeJoinType joinStyle = ART_PATH_STROKE_JOIN_MITER;
ArtPathStrokeCapType capStyle = ART_PATH_STROKE_CAP_BUTT;
if(m_joinStyle == "miter")
joinStyle = ART_PATH_STROKE_JOIN_MITER;
else if(m_joinStyle == "round")
joinStyle = ART_PATH_STROKE_JOIN_ROUND;
else if(m_joinStyle == "bevel")
joinStyle = ART_PATH_STROKE_JOIN_BEVEL;
if(m_capStyle == "butt")
capStyle = ART_PATH_STROKE_CAP_BUTT;
else if(m_capStyle == "round")
capStyle = ART_PATH_STROKE_CAP_ROUND;
else if(m_capStyle == "square")
capStyle = ART_PATH_STROKE_CAP_SQUARE;
if(m_dashes.length() > 0)
{
TQRegExp reg("[, ]");
TQStringList dashList = TQStringList::split(reg, m_dashes);
double *dashes = new double[dashList.count()];
for(unsigned int i = 0; i < dashList.count(); i++)
dashes[i] = m_painter->toPixel(dashList[i], true);
ArtVpathDash dash;
dash.offset = m_dashOffset;
dash.n_dash = dashList.count();
dash.dash = dashes;
ArtVpath *vec2 = art_vpath_dash(vec, &dash);
art_free(vec);
delete[] dashes;
vec = vec2;
}
svp = art_svp_vpath_stroke(vec, joinStyle, capStyle, strokeWidth, m_strokeMiterLimit, 0.25);
strokeSVP = svp;
}
// Apply opacity
int fillOpacity = static_cast<int>(m_fillOpacity);
int strokeOpacity = static_cast<int>(m_strokeOpacity);
int opacity = static_cast<int>(m_opacity);
// Needed hack, to support both transparent
// paths and transparent gradients
if(fillOpacity == strokeOpacity && fillOpacity == opacity && !m_useFillGradient && !m_useStrokeGradient)
opacity = 255;
if(fillOpacity != 255)
{
int temp = fillOpacity * opacity + 0x80;
fillOpacity = (temp + (temp >> 8)) >> 8;
}
if(strokeOpacity != 255)
{
int temp = strokeOpacity * opacity + 0x80;
strokeOpacity = (temp + (temp >> 8)) >> 8;
}
// Create temporary buffer if necessary
bool tempDone = false;
if(m_opacity != 0xff)
{
tempDone = true;
createBuffer();
}
// Apply Gradients on fill/stroke
if(m_useFillGradient)
applyGradient(fillSVP, true);
else if(m_useFill)
drawSVP(fillSVP, fillColor, fillOpacity);
if(m_useStrokeGradient)
applyGradient(strokeSVP, false);
else if(m_useStroke)
drawSVP(strokeSVP, strokeColor, strokeOpacity);
// Mix in temporary buffer, if possible
if(tempDone)
mixBuffer(opacity);
if(m_clipSVP)
{
art_svp_free(m_clipSVP);
m_clipSVP = 0;
}
if(fillSVP)
art_svp_free(fillSVP);
if(strokeSVP)
art_svp_free(strokeSVP);
// Reset opacity values
m_opacity = 255.0;
m_fillOpacity = 255.0;
m_strokeOpacity = 255.0;
art_free(vec);
}
void applyLinearGradient(ArtSVP *svp, const TQString &ref)
{
ArtGradientLinear *linear = m_linearGradientMap[ref];
if(linear)
{
TQDomElement element = m_linearGradientElementMap[linear];
double x1, y1, x2, y2;
if(element.hasAttribute("x1"))
x1 = m_painter->toPixel(element.attribute("x1"), true);
else
x1 = 0;
if(element.hasAttribute("y1"))
y1 = m_painter->toPixel(element.attribute("y1"), false);
else
y1 = 0;
if(element.hasAttribute("x2"))
x2 = m_painter->toPixel(element.attribute("x2"), true);
else
x2 = 100;
if(element.hasAttribute("y2"))
y2 = m_painter->toPixel(element.attribute("y2"), false);
else
y2 = 0;
// Adjust to gradientTransform
TQWMatrix m = m_painter->parseTransform(element.attribute("gradientTransform"));
m.map(x1, y1, &x1, &y1);
m.map(x2, y2, &x2, &y2);
double x1n = x1 * m_worldMatrix->m11() + y1 * m_worldMatrix->m21() + m_worldMatrix->dx();
double y1n = x1 * m_worldMatrix->m12() + y1 * m_worldMatrix->m22() + m_worldMatrix->dy();
double x2n = x2 * m_worldMatrix->m11() + y2 * m_worldMatrix->m21() + m_worldMatrix->dx();
double y2n = x2 * m_worldMatrix->m12() + y2 * m_worldMatrix->m22() + m_worldMatrix->dy();
double dx = x2n - x1n;
double dy = y2n - y1n;
double scale = 1.0 / (dx * dx + dy * dy);
linear->a = dx * scale;
linear->b = dy * scale;
linear->c = -(x1n * linear->a + y1n * linear->b);
ArtRender *render = art_render_new(0, 0, m_width, m_height, m_buffer, m_rowstride, 3, 8, ART_ALPHA_SEPARATE, 0);
art_render_svp(render, svp);
art_render_gradient_linear(render, linear, ART_FILTER_HYPER);
art_render_invoke(render);
}
}
void applyRadialGradient(ArtSVP *svp, const TQString &ref)
{
ArtGradientRadial *radial = m_radialGradientMap[ref];
if(radial)
{
TQDomElement element = m_radialGradientElementMap[radial];
double cx, cy, r, fx, fy;
if(element.hasAttribute("cx"))
cx = m_painter->toPixel(element.attribute("cx"), true);
else
cx = 50;
if(element.hasAttribute("cy"))
cy = m_painter->toPixel(element.attribute("cy"), false);
else
cy = 50;
if(element.hasAttribute("r"))
r = m_painter->toPixel(element.attribute("r"), true);
else
r = 50;
if(element.hasAttribute("fx"))
fx = m_painter->toPixel(element.attribute("fx"), false);
else
fx = cx;
if(element.hasAttribute("fy"))
fy = m_painter->toPixel(element.attribute("fy"), false);
else
fy = cy;
radial->affine[0] = m_worldMatrix->m11();
radial->affine[1] = m_worldMatrix->m12();
radial->affine[2] = m_worldMatrix->m21();
radial->affine[3] = m_worldMatrix->m22();
radial->affine[4] = m_worldMatrix->dx();
radial->affine[5] = m_worldMatrix->dy();
radial->fx = (fx - cx) / r;
radial->fy = (fy - cy) / r;
double aff1[6], aff2[6], gradTransform[6];
// Respect gradientTransform
TQWMatrix m = m_painter->parseTransform(element.attribute("gradientTransform"));
gradTransform[0] = m.m11();
gradTransform[1] = m.m12();
gradTransform[2] = m.m21();
gradTransform[3] = m.m22();
gradTransform[4] = m.dx();
gradTransform[5] = m.dy();
art_affine_scale(aff1, r, r);
art_affine_translate(aff2, cx, cy);
art_affine_multiply(aff1, aff1, aff2);
art_affine_multiply(aff1, aff1, gradTransform);
art_affine_multiply(aff1, aff1, radial->affine);
art_affine_invert(radial->affine, aff1);
ArtRender *render = art_render_new(0, 0, m_width, m_height, m_buffer, m_rowstride, 3, 8, ART_ALPHA_SEPARATE, 0);
art_render_svp(render, svp);
art_render_gradient_radial(render, radial, ART_FILTER_HYPER);
art_render_invoke(render);
}
}
void applyGradient(ArtSVP *svp, const TQString &ref)
{
ArtGradientLinear *linear = m_linearGradientMap[ref];
if(linear)
{
TQDomElement element = m_linearGradientElementMap[linear];
if(!element.hasAttribute("xlink:href"))
{
applyLinearGradient(svp, ref);
return;
}
else
{
ArtGradientLinear *linear = m_linearGradientMap[element.attribute("xlink:href").mid(1)];
TQDomElement newElement = m_linearGradientElementMap[linear];
// Saved 'old' attributes
TQDict<TQString> refattrs;
refattrs.setAutoDelete(true);
for(unsigned int i = 0; i < newElement.attributes().length(); ++i)
refattrs.insert(newElement.attributes().item(i).nodeName(), new TQString(newElement.attributes().item(i).nodeValue()));
// Copy attributes
if(!newElement.isNull())
{
TQDomNamedNodeMap attr = element.attributes();
for(unsigned int i = 0; i < attr.length(); i++)
{
TQString name = attr.item(i).nodeName();
if(name != "xlink:href" && name != "id")
newElement.setAttribute(name, attr.item(i).nodeValue());
}
}
applyGradient(svp, element.attribute("xlink:href").mid(1));
// Restore attributes
TQDictIterator<TQString> itr(refattrs);
for(; itr.current(); ++itr)
newElement.setAttribute(itr.currentKey(), *(itr.current()));
return;
}
}
ArtGradientRadial *radial = m_radialGradientMap[ref];
if(radial)
{
TQDomElement element = m_radialGradientElementMap[radial];
if(!element.hasAttribute("xlink:href"))
{
applyRadialGradient(svp, ref);
return;
}
else
{
ArtGradientRadial *radial = m_radialGradientMap[element.attribute("xlink:href").mid(1)];
TQDomElement newElement = m_radialGradientElementMap[radial];
// Saved 'old' attributes
TQDict<TQString> refattrs;
refattrs.setAutoDelete(true);
for(unsigned int i = 0; i < newElement.attributes().length(); ++i)
refattrs.insert(newElement.attributes().item(i).nodeName(), new TQString(newElement.attributes().item(i).nodeValue()));
// Copy attributes
if(!newElement.isNull())
{
TQDomNamedNodeMap attr = element.attributes();
for(unsigned int i = 0; i < attr.length(); i++)
{
TQString name = attr.item(i).nodeName();
if(name != "xlink:href" && name != "id")
newElement.setAttribute(name, attr.item(i).nodeValue());
}
}
applyGradient(svp, element.attribute("xlink:href").mid(1));
// Restore attributes
TQDictIterator<TQString> itr(refattrs);
for(; itr.current(); ++itr)
newElement.setAttribute(itr.currentKey(), *(itr.current()));
return;
}
}
}
void applyGradient(ArtSVP *svp, bool fill)
{
TQString ref;
if(fill)
{
m_useFillGradient = false;
ref = m_fillGradientReference;
}
else
{
m_useStrokeGradient = false;
ref = m_strokeGradientReference;
}
applyGradient(svp, ref);
}
void blit()
{
unsigned char *line = m_buffer;
for(int y = 0; y < m_height; y++)
{
QRgb *sl = reinterpret_cast<QRgb *>(m_image->scanLine(y));
for(int x = 0; x < m_width; x++)
sl[x] = qRgba(line[x * 4], line[x * 4 + 1], line[x * 4 + 2], line[x * 4 + 3]);
line += m_rowstride;
}
}
void calculateArc(bool relative, TQMemArray<ArtBpath> &vec, int &index, double &curx, double &cury, double angle, double x, double y, double r1, double r2, bool largeArcFlag, bool sweepFlag)
{
double sin_th, cos_th;
double a00, a01, a10, a11;
double x0, y0, x1, y1, xc, yc;
double d, sfactor, sfactor_sq;
double th0, th1, th_arc;
int i, n_segs;
sin_th = sin(angle * (M_PI / 180.0));
cos_th = cos(angle * (M_PI / 180.0));
double dx;
if(!relative)
dx = (curx - x) / 2.0;
else
dx = -x / 2.0;
double dy;
if(!relative)
dy = (cury - y) / 2.0;
else
dy = -y / 2.0;
double _x1 = cos_th * dx + sin_th * dy;
double _y1 = -sin_th * dx + cos_th * dy;
double Pr1 = r1 * r1;
double Pr2 = r2 * r2;
double Px = _x1 * _x1;
double Py = _y1 * _y1;
// Spec : check if radii are large enough
double check = Px / Pr1 + Py / Pr2;
if(check > 1)
{
r1 = r1 * sqrt(check);
r2 = r2 * sqrt(check);
}
a00 = cos_th / r1;
a01 = sin_th / r1;
a10 = -sin_th / r2;
a11 = cos_th / r2;
x0 = a00 * curx + a01 * cury;
y0 = a10 * curx + a11 * cury;
if(!relative)
x1 = a00 * x + a01 * y;
else
x1 = a00 * (curx + x) + a01 * (cury + y);
if(!relative)
y1 = a10 * x + a11 * y;
else
y1 = a10 * (curx + x) + a11 * (cury + y);
/* (x0, y0) is current point in transformed coordinate space.
(x1, y1) is new point in transformed coordinate space.
The arc fits a unit-radius circle in this space.
*/
d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0);
sfactor_sq = 1.0 / d - 0.25;
if(sfactor_sq < 0)
sfactor_sq = 0;
sfactor = sqrt(sfactor_sq);
if(sweepFlag == largeArcFlag)
sfactor = -sfactor;
xc = 0.5 * (x0 + x1) - sfactor * (y1 - y0);
yc = 0.5 * (y0 + y1) + sfactor * (x1 - x0);
/* (xc, yc) is center of the circle. */
th0 = atan2(y0 - yc, x0 - xc);
th1 = atan2(y1 - yc, x1 - xc);
th_arc = th1 - th0;
if(th_arc < 0 && sweepFlag)
th_arc += 2 * M_PI;
else if(th_arc > 0 && !sweepFlag)
th_arc -= 2 * M_PI;
n_segs = (int) (int) ceil(fabs(th_arc / (M_PI * 0.5 + 0.001)));
for(i = 0; i < n_segs; i++)
{
index++;
ensureSpace(vec, index);
{
double sin_th, cos_th;
double a00, a01, a10, a11;
double x1, y1, x2, y2, x3, y3;
double t;
double th_half;
double _th0 = th0 + i * th_arc / n_segs;
double _th1 = th0 + (i + 1) * th_arc / n_segs;
sin_th = sin(angle * (M_PI / 180.0));
cos_th = cos(angle * (M_PI / 180.0));
/* inverse transform compared with rsvg_path_arc */
a00 = cos_th * r1;
a01 = -sin_th * r2;
a10 = sin_th * r1;
a11 = cos_th * r2;
th_half = 0.5 * (_th1 - _th0);
t = (8.0 / 3.0) * sin(th_half * 0.5) * sin(th_half * 0.5) / sin(th_half);
x1 = xc + cos(_th0) - t * sin(_th0);
y1 = yc + sin(_th0) + t * cos(_th0);
x3 = xc + cos(_th1);
y3 = yc + sin(_th1);
x2 = x3 + t * sin(_th1);
y2 = y3 - t * cos(_th1);
ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = a00 * x1 + a01 * y1;
vec[index].y1 = a10 * x1 + a11 * y1;
vec[index].x2 = a00 * x2 + a01 * y2;
vec[index].y2 = a10 * x2 + a11 * y2;
vec[index].x3 = a00 * x3 + a01 * y3;
vec[index].y3 = a10 * x3 + a11 * y3;
}
}
if(!relative)
curx = x;
else
curx += x;
if(!relative)
cury = y;
else
cury += y;
}
// For any docs, see the libart library
static void art_vpath_render_bez(ArtVpath **p_vpath, int *pn, int *pn_max,
double x0, double y0,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double flatness)
{
double x3_0, y3_0, z3_0_dot, z1_dot, z2_dot;
double z1_perp, z2_perp, max_perp_sq;
double x_m, y_m, xa1, ya1, xa2, ya2, xb1, yb1, xb2, yb2;
x3_0 = x3 - x0;
y3_0 = y3 - y0;
z3_0_dot = x3_0 * x3_0 + y3_0 * y3_0;
if (z3_0_dot < 0.001)
goto nosubdivide;
max_perp_sq = flatness * flatness * z3_0_dot;
z1_perp = (y1 - y0) * x3_0 - (x1 - x0) * y3_0;
if (z1_perp * z1_perp > max_perp_sq)
goto subdivide;
z2_perp = (y3 - y2) * x3_0 - (x3 - x2) * y3_0;
if (z2_perp * z2_perp > max_perp_sq)
goto subdivide;
z1_dot = (x1 - x0) * x3_0 + (y1 - y0) * y3_0;
if (z1_dot < 0 && z1_dot * z1_dot > max_perp_sq)
goto subdivide;
z2_dot = (x3 - x2) * x3_0 + (y3 - y2) * y3_0;
if (z2_dot < 0 && z2_dot * z2_dot > max_perp_sq)
goto subdivide;
if (z1_dot + z1_dot > z3_0_dot)
goto subdivide;
if (z2_dot + z2_dot > z3_0_dot)
goto subdivide;
nosubdivide:
art_vpath_add_point (p_vpath, pn, pn_max, ART_LINETO, x3, y3);
return;
subdivide:
xa1 = (x0 + x1) * 0.5;
ya1 = (y0 + y1) * 0.5;
xa2 = (x0 + 2 * x1 + x2) * 0.25;
ya2 = (y0 + 2 * y1 + y2) * 0.25;
xb1 = (x1 + 2 * x2 + x3) * 0.25;
yb1 = (y1 + 2 * y2 + y3) * 0.25;
xb2 = (x2 + x3) * 0.5;
yb2 = (y2 + y3) * 0.5;
x_m = (xa2 + xb1) * 0.5;
y_m = (ya2 + yb1) * 0.5;
art_vpath_render_bez (p_vpath, pn, pn_max, x0, y0, xa1, ya1, xa2, ya2, x_m, y_m, flatness);
art_vpath_render_bez (p_vpath, pn, pn_max, x_m, y_m, xb1, yb1, xb2, yb2, x3, y3, flatness);
}
ArtVpath *art_bez_path_to_vec(const ArtBpath *bez, double flatness)
{
ArtVpath *vec;
int vec_n, vec_n_max;
int bez_index;
double x, y;
vec_n = 0;
vec_n_max = (1 << 4);
vec = art_new (ArtVpath, vec_n_max);
x = 0;
y = 0;
bez_index = 0;
do
{
if(vec_n >= vec_n_max)
art_expand (vec, ArtVpath, vec_n_max);
switch (bez[bez_index].code)
{
case ART_MOVETO_OPEN:
case ART_MOVETO:
case ART_LINETO:
x = bez[bez_index].x3;
y = bez[bez_index].y3;
vec[vec_n].code = bez[bez_index].code;
vec[vec_n].x = x;
vec[vec_n].y = y;
vec_n++;
break;
case ART_END:
vec[vec_n].code = ART_END;
vec[vec_n].x = 0;
vec[vec_n].y = 0;
vec_n++;
break;
case ART_END2:
vec[vec_n].code = (ArtPathcode)ART_END2;
vec[vec_n].x = bez[bez_index].x3;
vec[vec_n].y = bez[bez_index].y3;
vec_n++;
break;
case ART_CURVETO:
art_vpath_render_bez (&vec, &vec_n, &vec_n_max,
x, y,
bez[bez_index].x1, bez[bez_index].y1,
bez[bez_index].x2, bez[bez_index].y2,
bez[bez_index].x3, bez[bez_index].y3,
flatness);
x = bez[bez_index].x3;
y = bez[bez_index].y3;
break;
}
}
while (bez[bez_index++].code != ART_END);
return vec;
}
static void art_rgb_affine_run(int *p_x0, int *p_x1, int y,
int src_width, int src_height,
const double affine[6])
{
int x0, x1;
double z;
double x_intercept;
int xi;
x0 = *p_x0;
x1 = *p_x1;
if (affine[0] > 1e-6)
{
z = affine[2] * (y + 0.5) + affine[4];
x_intercept = -z / affine[0];
xi = (int) (int) ceil (x_intercept + 1e-6 - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = (-z + src_width) / affine[0];
xi = (int) ceil (x_intercept - 1e-6 - 0.5);
if (xi < x1)
x1 = xi;
}
else if (affine[0] < -1e-6)
{
z = affine[2] * (y + 0.5) + affine[4];
x_intercept = (-z + src_width) / affine[0];
xi = (int) ceil (x_intercept + 1e-6 - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = -z / affine[0];
xi = (int) ceil (x_intercept - 1e-6 - 0.5);
if (xi < x1)
x1 = xi;
}
else
{
z = affine[2] * (y + 0.5) + affine[4];
if (z < 0 || z >= src_width)
{
*p_x1 = *p_x0;
return;
}
}
if (affine[1] > 1e-6)
{
z = affine[3] * (y + 0.5) + affine[5];
x_intercept = -z / affine[1];
xi = (int) ceil (x_intercept + 1e-6 - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = (-z + src_height) / affine[1];
xi = (int) ceil (x_intercept - 1e-6 - 0.5);
if (xi < x1)
x1 = xi;
}
else if (affine[1] < -1e-6)
{
z = affine[3] * (y + 0.5) + affine[5];
x_intercept = (-z + src_height) / affine[1];
xi = (int) ceil (x_intercept + 1e-6 - 0.5);
if (xi > x0)
x0 = xi;
x_intercept = -z / affine[1];
xi = (int) ceil (x_intercept - 1e-6 - 0.5);
if (xi < x1)
x1 = xi;
}
else
{
z = affine[3] * (y + 0.5) + affine[5];
if (z < 0 || z >= src_height)
{
*p_x1 = *p_x0;
return;
}
}
*p_x0 = x0;
*p_x1 = x1;
}
// Slightly modified version to support RGBA buffers, copied from gnome-print
static void art_rgba_rgba_affine(art_u8 *dst,
int x0, int y0, int x1, int y1, int dst_rowstride,
const art_u8 *src,
int src_width, int src_height, int src_rowstride,
const double affine[6])
{
int x, y;
double inv[6];
art_u8 *dst_p, *dst_linestart;
const art_u8 *src_p;
ArtPoint pt, src_pt;
int src_x, src_y;
int alpha;
art_u8 bg_r, bg_g, bg_b, bg_a, cr, cg, cb;
art_u8 fg_r, fg_g, fg_b;
int tmp;
int run_x0, run_x1;
dst_linestart = dst;
art_affine_invert (inv, affine);
for (y = y0; y < y1; y++)
{
pt.y = y + 0.5;
run_x0 = x0;
run_x1 = x1;
art_rgb_affine_run (&run_x0, &run_x1, y, src_width, src_height,
inv);
dst_p = dst_linestart + (run_x0 - x0) * 4;
for (x = run_x0; x < run_x1; x++)
{
pt.x = x + 0.5;
art_affine_point (&src_pt, &pt, inv);
src_x = (int) floor (src_pt.x);
src_y = (int) floor (src_pt.y);
src_p = src + (src_y * src_rowstride) + src_x * 4;
if (src_x >= 0 && src_x < src_width &&
src_y >= 0 && src_y < src_height)
{
alpha = src_p[3];
if (alpha)
{
if (alpha == 255)
{
dst_p[0] = src_p[0];
dst_p[1] = src_p[1];
dst_p[2] = src_p[2];
dst_p[3] = 255;
}
else
{
bg_r = dst_p[0];
bg_g = dst_p[1];
bg_b = dst_p[2];
bg_a = dst_p[3];
cr = (bg_r * bg_a + 0x80) >> 8;
cg = (bg_g * bg_g + 0x80) >> 8;
cb = (bg_b * bg_b + 0x80) >> 8;
tmp = (src_p[0] - bg_r) * alpha;
fg_r = bg_r + ((tmp + (tmp >> 8) + 0x80) >> 8);
tmp = (src_p[1] - bg_g) * alpha;
fg_g = bg_g + ((tmp + (tmp >> 8) + 0x80) >> 8);
tmp = (src_p[2] - bg_b) * alpha;
fg_b = bg_b + ((tmp + (tmp >> 8) + 0x80) >> 8);
dst_p[0] = fg_r;
dst_p[1] = fg_g;
dst_p[2] = fg_b;
dst_p[3] = bg_a + (((255 - bg_a) * alpha + 0x80) >> 8);
}
}
} else { dst_p[0] = 255; dst_p[1] = 0; dst_p[2] = 0; dst_p[3] = 255;}
dst_p += 4;
}
dst_linestart += dst_rowstride;
}
}
private:
friend class KSVGIconPainter;
ArtSVP *m_clipSVP;
TQImage *m_image;
TQWMatrix *m_worldMatrix;
TQString m_fillRule;
TQString m_joinStyle;
TQString m_capStyle;
int m_strokeMiterLimit;
TQString m_dashes;
unsigned short m_dashOffset;
TQColor m_fillColor;
TQColor m_strokeColor;
art_u8 *m_buffer;
art_u8 *m_tempBuffer;
int m_width;
int m_height;
int m_rowstride;
double m_opacity;
double m_fillOpacity;
double m_strokeOpacity;
bool m_useFill;
bool m_useStroke;
bool m_useFillGradient;
bool m_useStrokeGradient;
TQString m_fillGradientReference;
TQString m_strokeGradientReference;
TQMap<TQString, ArtGradientLinear *> m_linearGradientMap;
TQMap<ArtGradientLinear *, TQDomElement> m_linearGradientElementMap;
TQMap<TQString, ArtGradientRadial *> m_radialGradientMap;
TQMap<ArtGradientRadial *, TQDomElement> m_radialGradientElementMap;
KSVGIconPainter *m_painter;
double m_strokeWidth;
};
struct KSVGIconPainter::Private
{
KSVGIconPainterHelper *helper;
int drawWidth;
int drawHeight;
};
KSVGIconPainter::KSVGIconPainter(int width, int height) : d(new Private())
{
d->helper = new KSVGIconPainterHelper(width, height, this);
d->drawWidth = width;
d->drawHeight = height;
}
KSVGIconPainter::~KSVGIconPainter()
{
delete d->helper;
delete d;
}
void KSVGIconPainter::setDrawWidth(int dwidth)
{
d->drawWidth = dwidth;
}
void KSVGIconPainter::setDrawHeight(int dheight)
{
d->drawHeight = dheight;
}
void KSVGIconPainter::finish()
{
d->helper->blit();
}
TQImage *KSVGIconPainter::image()
{
return new TQImage(*d->helper->m_image);
}
TQWMatrix *KSVGIconPainter::worldMatrix()
{
return d->helper->m_worldMatrix;
}
void KSVGIconPainter::setWorldMatrix(TQWMatrix *matrix)
{
if(d->helper->m_worldMatrix)
delete d->helper->m_worldMatrix;
d->helper->m_worldMatrix = matrix;
}
void KSVGIconPainter::setStrokeWidth(double width)
{
d->helper->m_strokeWidth = width;
}
void KSVGIconPainter::setStrokeMiterLimit(const TQString &miter)
{
d->helper->m_strokeMiterLimit = miter.toInt();
}
void KSVGIconPainter::setStrokeDashOffset(const TQString &dashOffset)
{
d->helper->m_dashOffset = dashOffset.toUInt();
}
void KSVGIconPainter::setStrokeDashArray(const TQString &dashes)
{
d->helper->m_dashes = dashes;
}
void KSVGIconPainter::setCapStyle(const TQString &cap)
{
d->helper->m_capStyle = cap;
}
void KSVGIconPainter::setJoinStyle(const TQString &join)
{
d->helper->m_joinStyle = join;
}
void KSVGIconPainter::setStrokeColor(const TQString &stroke)
{
if(stroke.startsWith("url"))
{
d->helper->m_useStroke = false;
d->helper->m_useStrokeGradient = true;
TQString url = stroke;
unsigned int start = url.find("#") + 1;
unsigned int end = url.findRev(")");
d->helper->m_strokeGradientReference = url.mid(start, end - start);
}
else
{
d->helper->m_strokeColor = parseColor(stroke);
d->helper->m_useStrokeGradient = false;
d->helper->m_strokeGradientReference = TQString::null;
if(stroke.stripWhiteSpace().lower() != "none")
setUseStroke(true);
else
setUseStroke(false);
}
}
void KSVGIconPainter::setFillColor(const TQString &fill)
{
if(fill.startsWith("url"))
{
d->helper->m_useFill = false;
d->helper->m_useFillGradient = true;
TQString url = fill;
unsigned int start = url.find("#") + 1;
unsigned int end = url.findRev(")");
d->helper->m_fillGradientReference = url.mid(start, end - start);
}
else
{
d->helper->m_fillColor = parseColor(fill);
d->helper->m_useFillGradient = false;
d->helper->m_fillGradientReference = TQString::null;
if(fill.stripWhiteSpace().lower() != "none")
setUseFill(true);
else
setUseFill(false);
}
}
void KSVGIconPainter::setFillRule(const TQString &fillRule)
{
d->helper->m_fillRule = fillRule;
}
Q_UINT32 KSVGIconPainter::parseOpacity(const TQString &data)
{
int opacity = 255;
if(!data.isEmpty())
{
double temp;
if(data.contains("%"))
{
TQString tempString = data.left(data.length() - 1);
temp = double(255 * tempString.toDouble()) / 100.0;
}
else
temp = data.toDouble();
opacity = (int) floor(temp * 255 + 0.5);
}
return opacity;
}
void KSVGIconPainter::setFillOpacity(const TQString &fillOpacity)
{
d->helper->m_fillOpacity = parseOpacity(fillOpacity);
}
void KSVGIconPainter::setStrokeOpacity(const TQString &strokeOpacity)
{
d->helper->m_strokeOpacity = parseOpacity(strokeOpacity);
}
void KSVGIconPainter::setOpacity(const TQString &opacity)
{
d->helper->m_opacity = parseOpacity(opacity);
}
void KSVGIconPainter::setUseFill(bool fill)
{
d->helper->m_useFill = fill;
}
void KSVGIconPainter::setUseStroke(bool stroke)
{
d->helper->m_useStroke = stroke;
}
void KSVGIconPainter::setClippingRect(int x, int y, int w, int h)
{
ArtVpath *vec = d->helper->allocVPath(6);
vec[0].code = ART_MOVETO;
vec[0].x = x;
vec[0].y = y;
vec[1].code = ART_LINETO;
vec[1].x = x;
vec[1].y = y + h;
vec[2].code = ART_LINETO;
vec[2].x = x + w;
vec[2].y = y + h;
vec[3].code = ART_LINETO;
vec[3].x = x + w;
vec[3].y = y;
vec[4].code = ART_LINETO;
vec[4].x = x;
vec[4].y = y;
vec[5].code = ART_END;
if(d->helper->m_clipSVP)
art_svp_free(d->helper->m_clipSVP);
d->helper->m_clipSVP = art_svp_from_vpath(vec);
art_free(vec);
}
void KSVGIconPainter::drawRectangle(double x, double y, double w, double h, double rx, double ry)
{
if((int) rx != 0 && (int) ry != 0)
{
ArtVpath *res;
ArtBpath *vec = d->helper->allocBPath(10);
int i = 0;
if(rx > w / 2)
rx = w / 2;
if(ry > h / 2)
ry = h / 2;
vec[i].code = ART_MOVETO_OPEN;
vec[i].x3 = x + rx;
vec[i].y3 = y;
i++;
vec[i].code = ART_CURVETO;
vec[i].x1 = x + rx * (1 - 0.552);
vec[i].y1 = y;
vec[i].x2 = x;
vec[i].y2 = y + ry * (1 - 0.552);
vec[i].x3 = x;
vec[i].y3 = y + ry;
i++;
if(ry < h / 2)
{
vec[i].code = ART_LINETO;
vec[i].x3 = x;
vec[i].y3 = y + h - ry;
i++;
}
vec[i].code = ART_CURVETO;
vec[i].x1 = x;
vec[i].y1 = y + h - ry * (1 - 0.552);
vec[i].x2 = x + rx * (1 - 0.552);
vec[i].y2 = y + h;
vec[i].x3 = x + rx;
vec[i].y3 = y + h;
i++;
if(rx < w / 2)
{
vec[i].code = ART_LINETO;
vec[i].x3 = x + w - rx;
vec[i].y3 = y + h;
i++;
}
vec[i].code = ART_CURVETO;
vec[i].x1 = x + w - rx * (1 - 0.552);
vec[i].y1 = y + h;
vec[i].x2 = x + w;
vec[i].y2 = y + h - ry * (1 - 0.552);
vec[i].x3 = x + w;
vec[i].y3 = y + h - ry;
i++;
if(ry < h / 2)
{
vec[i].code = ART_LINETO;
vec[i].x3 = x + w;
vec[i].y3 = y + ry;
i++;
}
vec[i].code = ART_CURVETO;
vec[i].x1 = x + w;
vec[i].y1 = y + ry * (1 - 0.552);
vec[i].x2 = x + w - rx * (1 - 0.552);
vec[i].y2 = y;
vec[i].x3 = x + w - rx;
vec[i].y3 = y;
i++;
if(rx < w / 2)
{
vec[i].code = ART_LINETO;
vec[i].x3 = x + rx;
vec[i].y3 = y;
i++;
}
vec[i].code = ART_END;
res = d->helper->art_bez_path_to_vec(vec, 0.25);
art_free(vec);
d->helper->drawVPath(res);
}
else
{
ArtVpath *vec = d->helper->allocVPath(6);
vec[0].code = ART_MOVETO;
vec[0].x = x;
vec[0].y = y;
vec[1].code = ART_LINETO;
vec[1].x = x;
vec[1].y = y + h;
vec[2].code = ART_LINETO;
vec[2].x = x + w;
vec[2].y = y + h;
vec[3].code = ART_LINETO;
vec[3].x = x + w;
vec[3].y = y;
vec[4].code = ART_LINETO;
vec[4].x = x;
vec[4].y = y;
vec[5].code = ART_END;
d->helper->drawVPath(vec);
}
}
void KSVGIconPainter::drawEllipse(double cx, double cy, double rx, double ry)
{
ArtBpath *temp;
temp = d->helper->allocBPath(6);
double x1, y1, x2, y2, x3, y3;
double len = 0.55228474983079356;
double cos4[] = {1.0, 0.0, -1.0, 0.0, 1.0};
double sin4[] = {0.0, 1.0, 0.0, -1.0, 0.0};
int i = 0;
temp[i].code = ART_MOVETO;
temp[i].x3 = cx + rx;
temp[i].y3 = cy;
i++;
while(i < 5)
{
x1 = cos4[i-1] + len * cos4[i];
y1 = sin4[i-1] + len * sin4[i];
x2 = cos4[i] + len * cos4[i-1];
y2 = sin4[i] + len * sin4[i-1];
x3 = cos4[i];
y3 = sin4[i];
temp[i].code = ART_CURVETO;
temp[i].x1 = cx + x1 * rx;
temp[i].y1 = cy + y1 * ry;
temp[i].x2 = cx + x2 * rx;
temp[i].y2 = cy + y2 * ry;
temp[i].x3 = cx + x3 * rx;
temp[i].y3 = cy + y3 * ry;
i++;
}
temp[i].code = ART_END;
d->helper->drawBPath(temp);
art_free(temp);
}
void KSVGIconPainter::drawLine(double x1, double y1, double x2, double y2)
{
ArtVpath *vec;
vec = d->helper->allocVPath(3);
vec[0].code = ART_MOVETO_OPEN;
vec[0].x = x1;
vec[0].y = y1;
vec[1].code = ART_LINETO;
vec[1].x = x2;
vec[1].y = y2;
vec[2].code = ART_END;
d->helper->drawVPath(vec);
}
void KSVGIconPainter::drawPolyline(TQPointArray polyArray, int points)
{
if(polyArray.point(0).x() == -1 || polyArray.point(0).y() == -1)
return;
ArtVpath *polyline;
if(points == -1)
points = polyArray.count();
polyline = d->helper->allocVPath(3 + points);
polyline[0].code = ART_MOVETO;
polyline[0].x = polyArray.point(0).x();
polyline[0].y = polyArray.point(0).y();
int index;
for(index = 1; index < points; index++)
{
TQPoint point = polyArray.point(index);
polyline[index].code = ART_LINETO;
polyline[index].x = point.x();
polyline[index].y = point.y();
}
if(d->helper->m_useFill) // if the polyline must be filled, inform libart that it should not be closed.
{
polyline[index].code = (ArtPathcode)ART_END2;
polyline[index].x = polyArray.point(0).x();
polyline[index++].y = polyArray.point(0).y();
}
polyline[index].code = ART_END;
d->helper->drawVPath(polyline);
}
void KSVGIconPainter::drawPolygon(TQPointArray polyArray)
{
ArtVpath *polygon;
polygon = d->helper->allocVPath(3 + polyArray.count());
polygon[0].code = ART_MOVETO;
polygon[0].x = polyArray.point(0).x();
polygon[0].y = polyArray.point(0).y();
unsigned int index;
for(index = 1; index < polyArray.count(); index++)
{
TQPoint point = polyArray.point(index);
polygon[index].code = ART_LINETO;
polygon[index].x = point.x();
polygon[index].y = point.y();
}
polygon[index].code = ART_LINETO;
polygon[index].x = polyArray.point(0).x();
polygon[index].y = polyArray.point(0).y();
index++;
polygon[index].code = ART_END;
d->helper->drawVPath(polygon);
}
// Path parsing tool
// parses the coord into number and forwards to the next token
static const char *getCoord(const char *ptr, double &number)
{
int integer, exponent;
double decimal, frac;
int sign, expsign;
exponent = 0;
integer = 0;
frac = 1.0;
decimal = 0;
sign = 1;
expsign = 1;
// read the sign
if(*ptr == '+')
ptr++;
else if(*ptr == '-')
{
ptr++;
sign = -1;
}
// read the integer part
while(*ptr != '\0' && *ptr >= '0' && *ptr <= '9')
integer = (integer * 10) + *(ptr++) - '0';
if(*ptr == '.') // read the decimals
{
ptr++;
while(*ptr != '\0' && *ptr >= '0' && *ptr <= '9')
decimal += (*(ptr++) - '0') * (frac *= 0.1);
}
if(*ptr == 'e' || *ptr == 'E') // read the exponent part
{
ptr++;
// read the sign of the exponent
if(*ptr == '+')
ptr++;
else if(*ptr == '-')
{
ptr++;
expsign = -1;
}
exponent = 0;
while(*ptr != '\0' && *ptr >= '0' && *ptr <= '9')
{
exponent *= 10;
exponent += *ptr - '0';
ptr++;
}
}
number = integer + decimal;
number *= sign * pow(10.0, expsign * exponent);
// skip the following space
if(*ptr == ' ')
ptr++;
return ptr;
}
void KSVGIconPainter::drawPath(const TQString &data, bool filled)
{
if (!data.isEmpty())
{
TQString value = data;
TQMemArray<ArtBpath> vec;
int index = -1;
double curx = 0.0, cury = 0.0, contrlx = 0.0, contrly = 0.0, xc, yc;
unsigned int lastCommand = 0;
TQString _d = value.replace(",", " ");
_d = _d.simplifyWhiteSpace();
const char *ptr = _d.latin1();
const char *end = _d.latin1() + _d.length() + 1;
double tox, toy, x1, y1, x2, y2, rx, ry, angle;
bool largeArc, sweep;
char command = *(ptr++);
while(ptr < end)
{
if(*ptr == ' ')
ptr++;
switch(command)
{
case 'm':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
if(index != -1 && lastCommand != 'z')
{
// Find last subpath
int find = -1;
for(int i = index; i >= 0; i--)
{
if(vec[i].code == ART_MOVETO_OPEN || vec[i].code == ART_MOVETO)
{
find = i;
break;
}
}
index++;
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
vec[index].code = (ArtPathcode)ART_END2;
vec[index].x3 = vec[find].x3;
vec[index].y3 = vec[find].y3;
}
curx += tox;
cury += toy;
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = (index == 0) ? ART_MOVETO : ART_MOVETO_OPEN;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'm';
break;
case 'M':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
if(index != -1 && lastCommand != 'z')
{
// Find last subpath
int find = -1;
for(int i = index; i >= 0; i--)
{
if(vec[i].code == ART_MOVETO_OPEN || vec[i].code == ART_MOVETO)
{
find = i;
break;
}
}
index++;
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
vec[index].code = (ArtPathcode)ART_END2;
vec[index].x3 = vec[find].x3;
vec[index].y3 = vec[find].y3;
}
curx = tox;
cury = toy;
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = (index == 0) ? ART_MOVETO : ART_MOVETO_OPEN;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'M';
break;
case 'l':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = curx + tox;
vec[index].y3 = cury + toy;
curx += tox;
cury += toy;
lastCommand = 'l';
break;
case 'L':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = tox;
vec[index].y3 = toy;
curx = tox;
cury = toy;
lastCommand = 'L';
break;
case 'h':
ptr = getCoord(ptr, tox);
index++;
curx += tox;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'h';
break;
case 'H':
ptr = getCoord(ptr, tox);
index++;
curx = tox;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'H';
break;
case 'v':
ptr = getCoord(ptr, toy);
index++;
cury += toy;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'v';
break;
case 'V':
ptr = getCoord(ptr, toy);
index++;
cury = toy;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = curx;
vec[index].y3 = cury;
lastCommand = 'V';
break;
case 'c':
ptr = getCoord(ptr, x1);
ptr = getCoord(ptr, y1);
ptr = getCoord(ptr, x2);
ptr = getCoord(ptr, y2);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = curx + x1;
vec[index].y1 = cury + y1;
vec[index].x2 = curx + x2;
vec[index].y2 = cury + y2;
vec[index].x3 = curx + tox;
vec[index].y3 = cury + toy;
curx += tox;
cury += toy;
contrlx = vec[index].x2;
contrly = vec[index].y2;
lastCommand = 'c';
break;
case 'C':
ptr = getCoord(ptr, x1);
ptr = getCoord(ptr, y1);
ptr = getCoord(ptr, x2);
ptr = getCoord(ptr, y2);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = x1;
vec[index].y1 = y1;
vec[index].x2 = x2;
vec[index].y2 = y2;
vec[index].x3 = tox;
vec[index].y3 = toy;
curx = vec[index].x3;
cury = vec[index].y3;
contrlx = vec[index].x2;
contrly = vec[index].y2;
lastCommand = 'C';
break;
case 's':
ptr = getCoord(ptr, x2);
ptr = getCoord(ptr, y2);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = 2 * curx - contrlx;
vec[index].y1 = 2 * cury - contrly;
vec[index].x2 = curx + x2;
vec[index].y2 = cury + y2;
vec[index].x3 = curx + tox;
vec[index].y3 = cury + toy;
curx += tox;
cury += toy;
contrlx = vec[index].x2;
contrly = vec[index].y2;
lastCommand = 's';
break;
case 'S':
ptr = getCoord(ptr, x2);
ptr = getCoord(ptr, y2);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = 2 * curx - contrlx;
vec[index].y1 = 2 * cury - contrly;
vec[index].x2 = x2;
vec[index].y2 = y2;
vec[index].x3 = tox;
vec[index].y3 = toy;
curx = vec[index].x3;
cury = vec[index].y3;
contrlx = vec[index].x2;
contrly = vec[index].y2;
lastCommand = 'S';
break;
case 'q':
ptr = getCoord(ptr, x1);
ptr = getCoord(ptr, y1);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = (curx + 2 * (x1 + curx)) * (1.0 / 3.0);
vec[index].y1 = (cury + 2 * (y1 + cury)) * (1.0 / 3.0);
vec[index].x2 = ((curx + tox) + 2 * (x1 + curx)) * (1.0 / 3.0);
vec[index].y2 = ((cury + toy) + 2 * (y1 + cury)) * (1.0 / 3.0);
vec[index].x3 = curx + tox;
vec[index].y3 = cury + toy;
contrlx = curx + x1;
contrly = cury + y1;
curx += tox;
cury += toy;
lastCommand = 'q';
break;
case 'Q':
ptr = getCoord(ptr, x1);
ptr = getCoord(ptr, y1);
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
index++;
d->helper->ensureSpace(vec, index);
// TODO : if this fails make it more like QuadraticRel
vec[index].code = ART_CURVETO;
vec[index].x1 = (curx + 2 * x1) * (1.0 / 3.0);
vec[index].y1 = (cury + 2 * y1) * (1.0 / 3.0);
vec[index].x2 = (tox + 2 * x1) * (1.0 / 3.0);
vec[index].y2 = (toy + 2 * y1) * (1.0 / 3.0);
vec[index].x3 = tox;
vec[index].y3 = toy;
curx = vec[index].x3;
cury = vec[index].y3;
contrlx = vec[index].x2;
contrly = vec[index].y2;
lastCommand = 'Q';
break;
case 't':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
xc = 2 * curx - contrlx;
yc = 2 * cury - contrly;
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = (curx + 2 * xc) * (1.0 / 3.0);
vec[index].y1 = (cury + 2 * yc) * (1.0 / 3.0);
vec[index].x2 = ((curx + tox) + 2 * xc) * (1.0 / 3.0);
vec[index].y2 = ((cury + toy) + 2 * yc) * (1.0 / 3.0);
vec[index].x3 = curx + tox;
vec[index].y3 = cury + toy;
curx += tox;
cury += toy;
contrlx = xc;
contrly = yc;
lastCommand = 't';
break;
case 'T':
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
xc = 2 * curx - contrlx;
yc = 2 * cury - contrly;
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_CURVETO;
vec[index].x1 = (curx + 2 * xc) * (1.0 / 3.0);
vec[index].y1 = (cury + 2 * yc) * (1.0 / 3.0);
vec[index].x2 = (tox + 2 * xc) * (1.0 / 3.0);
vec[index].y2 = (toy + 2 * yc) * (1.0 / 3.0);
vec[index].x3 = tox;
vec[index].y3 = toy;
curx = tox;
cury = toy;
contrlx = xc;
contrly = yc;
lastCommand = 'T';
break;
case 'z':
case 'Z':
int find;
find = -1;
for(int i = index; i >= 0; i--)
{
if(vec[i].code == ART_MOVETO_OPEN || vec[i].code == ART_MOVETO)
{
find = i;
break;
}
}
if(find != -1)
{
if(vec[find].x3 != curx || vec[find].y3 != cury)
{
index++;
d->helper->ensureSpace(vec, index);
vec[index].code = ART_LINETO;
vec[index].x3 = vec[find].x3;
vec[index].y3 = vec[find].y3;
}
}
// reset for next (sub)path
curx = vec[find].x3;
cury = vec[find].y3;
lastCommand = 'z';
break;
case 'a':
ptr = getCoord(ptr, rx);
ptr = getCoord(ptr, ry);
ptr = getCoord(ptr, angle);
ptr = getCoord(ptr, tox);
largeArc = tox == 1;
ptr = getCoord(ptr, tox);
sweep = tox == 1;
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
// Spec: radii are nonnegative numbers
rx = fabs(rx);
ry = fabs(ry);
d->helper->calculateArc(true, vec, index, curx, cury, angle, tox, toy, rx, ry, largeArc, sweep);
lastCommand = 'a';
break;
case 'A':
ptr = getCoord(ptr, rx);
ptr = getCoord(ptr, ry);
ptr = getCoord(ptr, angle);
ptr = getCoord(ptr, tox);
largeArc = tox == 1;
ptr = getCoord(ptr, tox);
sweep = tox == 1;
ptr = getCoord(ptr, tox);
ptr = getCoord(ptr, toy);
// Spec: radii are nonnegative numbers
rx = fabs(rx);
ry = fabs(ry);
d->helper->calculateArc(false, vec, index, curx, cury, angle, tox, toy, rx, ry, largeArc, sweep);
lastCommand = 'A';
break;
}
if(*ptr == '+' || *ptr == '-' || (*ptr >= '0' && *ptr <= '9'))
{
// there are still coords in this command
if(command == 'M')
command = 'L';
else if(command == 'm')
command = 'l';
}
else
command = *(ptr++);
// Detect reflection points
if(lastCommand != 'C' && lastCommand != 'c' &&
lastCommand != 'S' && lastCommand != 's' &&
lastCommand != 'Q' && lastCommand != 'q' &&
lastCommand != 'T' && lastCommand != 't')
{
contrlx = curx;
contrly = cury;
}
}
// Find last subpath
int find = -1;
for(int i = index; i >= 0; i--)
{
if(vec[i].code == ART_MOVETO_OPEN || vec[i].code == ART_MOVETO)
{
find = i;
break;
}
}
// Fix a problem where the .svg file used doubles as values... (sofico.svg)
if(curx != vec[find].x3 && cury != vec[find].y3)
{
if((int) curx == (int) vec[find].x3 && (int) cury == (int) vec[find].y3)
{
index++;
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
vec[index].code = ART_LINETO;
vec[index].x3 = vec[find].x3;
vec[index].y3 = vec[find].y3;
curx = vec[find].x3;
cury = vec[find].y3;
}
}
// Handle filled paths that are not closed explicitly
if(filled)
{
if((int) curx != (int) vec[find].x3 || (int) cury != (int) vec[find].y3)
{
index++;
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
vec[index].code = (ArtPathcode)ART_END2;
vec[index].x3 = vec[find].x3;
vec[index].y3 = vec[find].y3;
curx = vec[find].x3;
cury = vec[find].y3;
}
}
// Close
index++;
if(vec.size() == (unsigned int) index)
vec.resize(index + 1);
vec[index].code = ART_END;
// There are pure-moveto paths which reference paint servers *bah*
// Do NOT render them
bool render = false;
for(int i = index; i >= 0; i--)
{
if(vec[i].code != ART_MOVETO_OPEN && vec[i].code != ART_MOVETO && !(vec[i].code >= ART_END))
{
render = true;
break;
}
}
if(render)
d->helper->drawBPath(vec.data());
}
}
void KSVGIconPainter::drawImage(double x, double y, TQImage &image)
{
if(image.depth() != 32)
image = image.convertDepth(32);
double affine[6];
affine[0] = d->helper->m_worldMatrix->m11();
affine[1] = d->helper->m_worldMatrix->m12();
affine[2] = d->helper->m_worldMatrix->m21();
affine[3] = d->helper->m_worldMatrix->m22();
// use the world matrix to convert the coordinates
d->helper->m_worldMatrix->map(x, y, &affine[4], &affine[5]);
d->helper->art_rgba_rgba_affine(d->helper->m_buffer, 0, 0, d->helper->m_width, d->helper->m_height,
d->helper->m_rowstride, image.bits(), image.width(), image.height(),
image.width() * 4, affine);
}
TQColor KSVGIconPainter::parseColor(const TQString &param)
{
if(param.stripWhiteSpace().startsWith("#"))
{
TQColor color;
color.setNamedColor(param.stripWhiteSpace());
return color;
}
else if(param.stripWhiteSpace().startsWith("rgb("))
{
TQString parse = param.stripWhiteSpace();
TQStringList colors = TQStringList::split(',', parse);
TQString r = colors[0].right((colors[0].length() - 4));
TQString g = colors[1];
TQString b = colors[2].left((colors[2].length() - 1));
if(r.contains("%"))
{
r = r.left(r.length() - 1);
r = TQString::number(int((double(255 * r.toDouble()) / 100.0)));
}
if(g.contains("%"))
{
g = g.left(g.length() - 1);
g = TQString::number(int((double(255 * g.toDouble()) / 100.0)));
}
if(b.contains("%"))
{
b = b.left(b.length() - 1);
b = TQString::number(int((double(255 * b.toDouble()) / 100.0)));
}
return TQColor(r.toInt(), g.toInt(), b.toInt());
}
else
{
TQString rgbColor = param.stripWhiteSpace();
if(rgbColor == "aliceblue")
return TQColor(240, 248, 255);
else if(rgbColor == "antiquewhite")
return TQColor(250, 235, 215);
else if(rgbColor == "aqua")
return TQColor(0, 255, 255);
else if(rgbColor == "aquamarine")
return TQColor(127, 255, 212);
else if(rgbColor == "azure")
return TQColor(240, 255, 255);
else if(rgbColor == "beige")
return TQColor(245, 245, 220);
else if(rgbColor == "bisque")
return TQColor(255, 228, 196);
else if(rgbColor == "black")
return TQColor(0, 0, 0);
else if(rgbColor == "blanchedalmond")
return TQColor(255, 235, 205);
else if(rgbColor == "blue")
return TQColor(0, 0, 255);
else if(rgbColor == "blueviolet")
return TQColor(138, 43, 226);
else if(rgbColor == "brown")
return TQColor(165, 42, 42);
else if(rgbColor == "burlywood")
return TQColor(222, 184, 135);
else if(rgbColor == "cadetblue")
return TQColor(95, 158, 160);
else if(rgbColor == "chartreuse")
return TQColor(127, 255, 0);
else if(rgbColor == "chocolate")
return TQColor(210, 105, 30);
else if(rgbColor == "coral")
return TQColor(255, 127, 80);
else if(rgbColor == "cornflowerblue")
return TQColor(100, 149, 237);
else if(rgbColor == "cornsilk")
return TQColor(255, 248, 220);
else if(rgbColor == "crimson")
return TQColor(220, 20, 60);
else if(rgbColor == "cyan")
return TQColor(0, 255, 255);
else if(rgbColor == "darkblue")
return TQColor(0, 0, 139);
else if(rgbColor == "darkcyan")
return TQColor(0, 139, 139);
else if(rgbColor == "darkgoldenrod")
return TQColor(184, 134, 11);
else if(rgbColor == "darkgray")
return TQColor(169, 169, 169);
else if(rgbColor == "darkgrey")
return TQColor(169, 169, 169);
else if(rgbColor == "darkgreen")
return TQColor(0, 100, 0);
else if(rgbColor == "darkkhaki")
return TQColor(189, 183, 107);
else if(rgbColor == "darkmagenta")
return TQColor(139, 0, 139);
else if(rgbColor == "darkolivegreen")
return TQColor(85, 107, 47);
else if(rgbColor == "darkorange")
return TQColor(255, 140, 0);
else if(rgbColor == "darkorchid")
return TQColor(153, 50, 204);
else if(rgbColor == "darkred")
return TQColor(139, 0, 0);
else if(rgbColor == "darksalmon")
return TQColor(233, 150, 122);
else if(rgbColor == "darkseagreen")
return TQColor(143, 188, 143);
else if(rgbColor == "darkslateblue")
return TQColor(72, 61, 139);
else if(rgbColor == "darkslategray")
return TQColor(47, 79, 79);
else if(rgbColor == "darkslategrey")
return TQColor(47, 79, 79);
else if(rgbColor == "darkturquoise")
return TQColor(0, 206, 209);
else if(rgbColor == "darkviolet")
return TQColor(148, 0, 211);
else if(rgbColor == "deeppink")
return TQColor(255, 20, 147);
else if(rgbColor == "deepskyblue")
return TQColor(0, 191, 255);
else if(rgbColor == "dimgray")
return TQColor(105, 105, 105);
else if(rgbColor == "dimgrey")
return TQColor(105, 105, 105);
else if(rgbColor == "dodgerblue")
return TQColor(30, 144, 255);
else if(rgbColor == "firebrick")
return TQColor(178, 34, 34);
else if(rgbColor == "floralwhite")
return TQColor(255, 250, 240);
else if(rgbColor == "forestgreen")
return TQColor(34, 139, 34);
else if(rgbColor == "fuchsia")
return TQColor(255, 0, 255);
else if(rgbColor == "gainsboro")
return TQColor(220, 220, 220);
else if(rgbColor == "ghostwhite")
return TQColor(248, 248, 255);
else if(rgbColor == "gold")
return TQColor(255, 215, 0);
else if(rgbColor == "goldenrod")
return TQColor(218, 165, 32);
else if(rgbColor == "gray")
return TQColor(128, 128, 128);
else if(rgbColor == "grey")
return TQColor(128, 128, 128);
else if(rgbColor == "green")
return TQColor(0, 128, 0);
else if(rgbColor == "greenyellow")
return TQColor(173, 255, 47);
else if(rgbColor == "honeydew")
return TQColor(240, 255, 240);
else if(rgbColor == "hotpink")
return TQColor(255, 105, 180);
else if(rgbColor == "indianred")
return TQColor(205, 92, 92);
else if(rgbColor == "indigo")
return TQColor(75, 0, 130);
else if(rgbColor == "ivory")
return TQColor(255, 255, 240);
else if(rgbColor == "khaki")
return TQColor(240, 230, 140);
else if(rgbColor == "lavender")
return TQColor(230, 230, 250);
else if(rgbColor == "lavenderblush")
return TQColor(255, 240, 245);
else if(rgbColor == "lawngreen")
return TQColor(124, 252, 0);
else if(rgbColor == "lemonchiffon")
return TQColor(255, 250, 205);
else if(rgbColor == "lightblue")
return TQColor(173, 216, 230);
else if(rgbColor == "lightcoral")
return TQColor(240, 128, 128);
else if(rgbColor == "lightcyan")
return TQColor(224, 255, 255);
else if(rgbColor == "lightgoldenrodyellow")
return TQColor(250, 250, 210);
else if(rgbColor == "lightgray")
return TQColor(211, 211, 211);
else if(rgbColor == "lightgrey")
return TQColor(211, 211, 211);
else if(rgbColor == "lightgreen")
return TQColor(144, 238, 144);
else if(rgbColor == "lightpink")
return TQColor(255, 182, 193);
else if(rgbColor == "lightsalmon")
return TQColor(255, 160, 122);
else if(rgbColor == "lightseagreen")
return TQColor(32, 178, 170);
else if(rgbColor == "lightskyblue")
return TQColor(135, 206, 250);
else if(rgbColor == "lightslategray")
return TQColor(119, 136, 153);
else if(rgbColor == "lightslategrey")
return TQColor(119, 136, 153);
else if(rgbColor == "lightsteelblue")
return TQColor(176, 196, 222);
else if(rgbColor == "lightyellow")
return TQColor(255, 255, 224);
else if(rgbColor == "lime")
return TQColor(0, 255, 0);
else if(rgbColor == "limegreen")
return TQColor(50, 205, 50);
else if(rgbColor == "linen")
return TQColor(250, 240, 230);
else if(rgbColor == "magenta")
return TQColor(255, 0, 255);
else if(rgbColor == "maroon")
return TQColor(128, 0, 0);
else if(rgbColor == "mediumaquamarine")
return TQColor(102, 205, 170);
else if(rgbColor == "mediumblue")
return TQColor(0, 0, 205);
else if(rgbColor == "mediumorchid")
return TQColor(186, 85, 211);
else if(rgbColor == "mediumpurple")
return TQColor(147, 112, 219);
else if(rgbColor == "mediumseagreen")
return TQColor(60, 179, 113);
else if(rgbColor == "mediumslateblue")
return TQColor(123, 104, 238);
else if(rgbColor == "mediumspringgreen")
return TQColor(0, 250, 154);
else if(rgbColor == "mediumturquoise")
return TQColor(72, 209, 204);
else if(rgbColor == "mediumvioletred")
return TQColor(199, 21, 133);
else if(rgbColor == "midnightblue")
return TQColor(25, 25, 112);
else if(rgbColor == "mintcream")
return TQColor(245, 255, 250);
else if(rgbColor == "mistyrose")
return TQColor(255, 228, 225);
else if(rgbColor == "moccasin")
return TQColor(255, 228, 181);
else if(rgbColor == "navajowhite")
return TQColor(255, 222, 173);
else if(rgbColor == "navy")
return TQColor(0, 0, 128);
else if(rgbColor == "oldlace")
return TQColor(253, 245, 230);
else if(rgbColor == "olive")
return TQColor(128, 128, 0);
else if(rgbColor == "olivedrab")
return TQColor(107, 142, 35);
else if(rgbColor == "orange")
return TQColor(255, 165, 0);
else if(rgbColor == "orangered")
return TQColor(255, 69, 0);
else if(rgbColor == "orchid")
return TQColor(218, 112, 214);
else if(rgbColor == "palegoldenrod")
return TQColor(238, 232, 170);
else if(rgbColor == "palegreen")
return TQColor(152, 251, 152);
else if(rgbColor == "paleturquoise")
return TQColor(175, 238, 238);
else if(rgbColor == "palevioletred")
return TQColor(219, 112, 147);
else if(rgbColor == "papayawhip")
return TQColor(255, 239, 213);
else if(rgbColor == "peachpuff")
return TQColor(255, 218, 185);
else if(rgbColor == "peru")
return TQColor(205, 133, 63);
else if(rgbColor == "pink")
return TQColor(255, 192, 203);
else if(rgbColor == "plum")
return TQColor(221, 160, 221);
else if(rgbColor == "powderblue")
return TQColor(176, 224, 230);
else if(rgbColor == "purple")
return TQColor(128, 0, 128);
else if(rgbColor == "red")
return TQColor(255, 0, 0);
else if(rgbColor == "rosybrown")
return TQColor(188, 143, 143);
else if(rgbColor == "royalblue")
return TQColor(65, 105, 225);
else if(rgbColor == "saddlebrown")
return TQColor(139, 69, 19);
else if(rgbColor == "salmon")
return TQColor(250, 128, 114);
else if(rgbColor == "sandybrown")
return TQColor(244, 164, 96);
else if(rgbColor == "seagreen")
return TQColor(46, 139, 87);
else if(rgbColor == "seashell")
return TQColor(255, 245, 238);
else if(rgbColor == "sienna")
return TQColor(160, 82, 45);
else if(rgbColor == "silver")
return TQColor(192, 192, 192);
else if(rgbColor == "skyblue")
return TQColor(135, 206, 235);
else if(rgbColor == "slateblue")
return TQColor(106, 90, 205);
else if(rgbColor == "slategray")
return TQColor(112, 128, 144);
else if(rgbColor == "slategrey")
return TQColor(112, 128, 144);
else if(rgbColor == "snow")
return TQColor(255, 250, 250);
else if(rgbColor == "springgreen")
return TQColor(0, 255, 127);
else if(rgbColor == "steelblue")
return TQColor(70, 130, 180);
else if(rgbColor == "tan")
return TQColor(210, 180, 140);
else if(rgbColor == "teal")
return TQColor(0, 128, 128);
else if(rgbColor == "thistle")
return TQColor(216, 191, 216);
else if(rgbColor == "tomato")
return TQColor(255, 99, 71);
else if(rgbColor == "turquoise")
return TQColor(64, 224, 208);
else if(rgbColor == "violet")
return TQColor(238, 130, 238);
else if(rgbColor == "wheat")
return TQColor(245, 222, 179);
else if(rgbColor == "white")
return TQColor(255, 255, 255);
else if(rgbColor == "whitesmoke")
return TQColor(245, 245, 245);
else if(rgbColor == "yellow")
return TQColor(255, 255, 0);
else if(rgbColor == "yellowgreen")
return TQColor(154, 205, 50);
}
return TQColor();
}
double KSVGIconPainter::dpi()
{
return 90.0; // TODO: make modal?
}
double KSVGIconPainter::toPixel(const TQString &s, bool hmode)
{
if(s.isEmpty())
return 0.0;
TQString check = s;
double ret = 0.0;
double value = 0;
const char *start = check.latin1();
const char *end = getCoord(start, value);
if(uint(end - start) < check.length())
{
if(check.endsWith("px"))
ret = value;
else if(check.endsWith("cm"))
ret = (value / 2.54) * dpi();
else if(check.endsWith("pc"))
ret = (value / 6.0) * dpi();
else if(check.endsWith("mm"))
ret = (value / 25.4) * dpi();
else if(check.endsWith("in"))
ret = value * dpi();
else if(check.endsWith("pt"))
ret = (value / 72.0) * dpi();
else if(check.endsWith("%"))
{
ret = value / 100.0;
if(hmode)
ret *= d->drawWidth;
else
ret *= d->drawHeight;
}
else if(check.endsWith("em"))
{
ret = value * 10.0; // TODO make this depend on actual font size
}
}
else
ret = value;
return ret;
}
ArtGradientLinear *KSVGIconPainter::linearGradient(const TQString &id)
{
return d->helper->m_linearGradientMap[id];
}
void KSVGIconPainter::addLinearGradient(const TQString &id, ArtGradientLinear *gradient)
{
d->helper->m_linearGradientMap.insert(id, gradient);
}
TQDomElement KSVGIconPainter::linearGradientElement(ArtGradientLinear *linear)
{
return d->helper->m_linearGradientElementMap[linear];
}
void KSVGIconPainter::addLinearGradientElement(ArtGradientLinear *gradient, TQDomElement element)
{
d->helper->m_linearGradientElementMap.insert(gradient, element);
}
ArtGradientRadial *KSVGIconPainter::radialGradient(const TQString &id)
{
return d->helper->m_radialGradientMap[id];
}
void KSVGIconPainter::addRadialGradient(const TQString &id, ArtGradientRadial *gradient)
{
d->helper->m_radialGradientMap.insert(id, gradient);
}
TQDomElement KSVGIconPainter::radialGradientElement(ArtGradientRadial *radial)
{
return d->helper->m_radialGradientElementMap[radial];
}
void KSVGIconPainter::addRadialGradientElement(ArtGradientRadial *gradient, TQDomElement element)
{
d->helper->m_radialGradientElementMap.insert(gradient, element);
}
Q_UINT32 KSVGIconPainter::toArtColor(const TQColor &color)
{
return d->helper->toArtColor(color);
}
TQWMatrix KSVGIconPainter::parseTransform(const TQString &transform)
{
TQWMatrix result;
// Split string for handling 1 transform statement at a time
TQStringList subtransforms = TQStringList::split(')', transform);
TQStringList::ConstIterator it = subtransforms.begin();
TQStringList::ConstIterator end = subtransforms.end();
for(; it != end; ++it)
{
TQStringList subtransform = TQStringList::split('(', (*it));
subtransform[0] = subtransform[0].stripWhiteSpace().lower();
subtransform[1] = subtransform[1].simplifyWhiteSpace();
TQRegExp reg("([-]?\\d*\\.?\\d+(?:e[-]?\\d+)?)");
int pos = 0;
TQStringList params;
while(pos >= 0)
{
pos = reg.search(subtransform[1], pos);
if(pos != -1)
{
params += reg.cap(1);
pos += reg.matchedLength();
}
}
if(subtransform[0].startsWith(";") || subtransform[0].startsWith(","))
subtransform[0] = subtransform[0].right(subtransform[0].length() - 1);
if(subtransform[0] == "rotate")
{
if(params.count() == 3)
{
double x = params[1].toDouble();
double y = params[2].toDouble();
result.translate(x, y);
result.rotate(params[0].toDouble());
result.translate(-x, -y);
}
else
result.rotate(params[0].toDouble());
}
else if(subtransform[0] == "translate")
{
if(params.count() == 2)
result.translate(params[0].toDouble(), params[1].toDouble());
else // Spec : if only one param given, assume 2nd param to be 0
result.translate(params[0].toDouble() , 0);
}
else if(subtransform[0] == "scale")
{
if(params.count() == 2)
result.scale(params[0].toDouble(), params[1].toDouble());
else // Spec : if only one param given, assume uniform scaling
result.scale(params[0].toDouble(), params[0].toDouble());
}
else if(subtransform[0] == "skewx")
result.shear(tan(params[0].toDouble() * deg2rad), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(tan(params[0].toDouble() * deg2rad), 0.0F);
else if(subtransform[0] == "skewy")
result.shear(0.0F, tan(params[0].toDouble() * deg2rad));
else if(subtransform[0] == "matrix")
{
if(params.count() >= 6)
{
result.setMatrix(params[0].toDouble(), params[1].toDouble(), params[2].toDouble(), params[3].toDouble(), params[4].toDouble(), params[5].toDouble());
}
}
}
return result;
}