You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/tdeio/misc/tdentlm/tdentlm.cpp

390 lines
12 KiB

/* This file is part of the KDE libraries
Copyright (c) 2004 Szombathelyi Gy<EFBFBD>gy <gyurco@freemail.hu>
The implementation is based on the documentation and sample code
at http://davenport.sourceforge.net/ntlm.html
The DES encryption functions are from libntlm
at http://josefsson.org/libntlm/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License version 2 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <tqdatetime.h>
#include <kapplication.h>
#include <kswap.h>
#include <kmdcodec.h>
#include <kdebug.h>
#include "des.h"
#include "tdentlm.h"
TQString KNTLM::getString( const TQByteArray &buf, const SecBuf &secbuf, bool unicode )
{
//watch for buffer overflows
TQ_UINT32 offset;
TQ_UINT16 len;
offset = KFromToLittleEndian((TQ_UINT32)secbuf.offset);
len = KFromToLittleEndian(secbuf.len);
if ( offset > buf.size() ||
offset + len > buf.size() ) return TQString::null;
TQString str;
const char *c = buf.data() + offset;
if ( unicode ) {
str = UnicodeLE2TQString( (TQChar*) c, len >> 1 );
} else {
str = TQString::fromLatin1( c, len );
}
return str;
}
TQByteArray KNTLM::getBuf( const TQByteArray &buf, const SecBuf &secbuf )
{
TQByteArray ret;
TQ_UINT32 offset;
TQ_UINT16 len;
offset = KFromToLittleEndian((TQ_UINT32)secbuf.offset);
len = KFromToLittleEndian(secbuf.len);
//watch for buffer overflows
if ( offset > buf.size() ||
offset + len > buf.size() ) return ret;
ret.duplicate( buf.data() + offset, buf.size() );
return ret;
}
void KNTLM::addString( TQByteArray &buf, SecBuf &secbuf, const TQString &str, bool unicode )
{
TQByteArray tmp;
if ( unicode ) {
tmp = QString2UnicodeLE( str );
addBuf( buf, secbuf, tmp );
} else {
const char *c;
c = str.latin1();
tmp.setRawData( c, str.length() );
addBuf( buf, secbuf, tmp );
tmp.resetRawData( c, str.length() );
}
}
void KNTLM::addBuf( TQByteArray &buf, SecBuf &secbuf, TQByteArray &data )
{
TQ_UINT32 offset;
TQ_UINT16 len, maxlen;
offset = (buf.size() + 1) & 0xfffffffe;
len = data.size();
maxlen = data.size();
secbuf.offset = KFromToLittleEndian((TQ_UINT32)offset);
secbuf.len = KFromToLittleEndian(len);
secbuf.maxlen = KFromToLittleEndian(maxlen);
buf.resize( offset + len );
memcpy( buf.data() + offset, data.data(), data.size() );
}
bool KNTLM::getNegotiate( TQByteArray &negotiate, const TQString &domain, const TQString &workstation, TQ_UINT32 flags )
{
TQByteArray rbuf( sizeof(Negotiate) );
rbuf.fill( 0 );
memcpy( rbuf.data(), "NTLMSSP", 8 );
((Negotiate*) rbuf.data())->msgType = KFromToLittleEndian( (TQ_UINT32)1 );
if ( !domain.isEmpty() ) {
flags |= Negotiate_Domain_Supplied;
addString( rbuf, ((Negotiate*) rbuf.data())->domain, domain );
}
if ( !workstation.isEmpty() ) {
flags |= Negotiate_WS_Supplied;
addString( rbuf, ((Negotiate*) rbuf.data())->domain, workstation );
}
((Negotiate*) rbuf.data())->flags = KFromToLittleEndian( flags );
negotiate = rbuf;
return true;
}
bool KNTLM::getAuth( TQByteArray &auth, const TQByteArray &challenge, const TQString &user,
const TQString &password, const TQString &domain, const TQString &workstation,
bool forceNTLM, bool forceNTLMv2 )
{
TQByteArray rbuf( sizeof(Auth) );
Challenge *ch = (Challenge *) challenge.data();
TQByteArray response;
uint chsize = challenge.size();
bool unicode = false;
TQString dom;
//challenge structure too small
if ( chsize < 32 ) return false;
unicode = KFromToLittleEndian(ch->flags) & Negotiate_Unicode;
if ( domain.isEmpty() )
dom = getString( challenge, ch->targetName, unicode );
else
dom = domain;
rbuf.fill( 0 );
memcpy( rbuf.data(), "NTLMSSP", 8 );
((Auth*) rbuf.data())->msgType = KFromToLittleEndian( (TQ_UINT32)3 );
((Auth*) rbuf.data())->flags = ch->flags;
TQByteArray targetInfo = getBuf( challenge, ch->targetInfo );
// if ( forceNTLMv2 || (!targetInfo.isEmpty() && (KFromToLittleEndian(ch->flags) & Negotiate_Target_Info)) /* may support NTLMv2 */ ) {
// if ( KFromToLittleEndian(ch->flags) & Negotiate_NTLM ) {
// if ( targetInfo.isEmpty() ) return false;
// response = getNTLMv2Response( dom, user, password, targetInfo, ch->challengeData );
// addBuf( rbuf, ((Auth*) rbuf.data())->ntResponse, response );
// } else {
// if ( !forceNTLM ) {
// response = getLMv2Response( dom, user, password, ch->challengeData );
// addBuf( rbuf, ((Auth*) rbuf.data())->lmResponse, response );
// } else
// return false;
// }
// } else { //if no targetinfo structure and NTLMv2 or LMv2 not forced, try the older methods
response = getNTLMResponse( password, ch->challengeData );
addBuf( rbuf, ((Auth*) rbuf.data())->ntResponse, response );
response = getLMResponse( password, ch->challengeData );
addBuf( rbuf, ((Auth*) rbuf.data())->lmResponse, response );
// }
if ( !dom.isEmpty() )
addString( rbuf, ((Auth*) rbuf.data())->domain, dom, unicode );
addString( rbuf, ((Auth*) rbuf.data())->user, user, unicode );
if ( !workstation.isEmpty() )
addString( rbuf, ((Auth*) rbuf.data())->workstation, workstation, unicode );
auth = rbuf;
return true;
}
TQByteArray KNTLM::getLMResponse( const TQString &password, const unsigned char *challenge )
{
TQByteArray hash, answer;
hash = lmHash( password );
hash.resize( 21 );
memset( hash.data() + 16, 0, 5 );
answer = lmResponse( hash, challenge );
hash.fill( 0 );
return answer;
}
TQByteArray KNTLM::lmHash( const TQString &password )
{
TQByteArray keyBytes( 14 );
TQByteArray hash( 16 );
DES_KEY ks;
const char *magic = "KGS!@#$%";
keyBytes.fill( 0 );
strncpy( keyBytes.data(), password.upper().latin1(), 14 );
convertKey( (unsigned char*) keyBytes.data(), &ks );
ntlm_des_ecb_encrypt( magic, 8, &ks, (unsigned char*) hash.data() );
convertKey( (unsigned char*) keyBytes.data() + 7, &ks );
ntlm_des_ecb_encrypt( magic, 8, &ks, (unsigned char*) hash.data() + 8 );
keyBytes.fill( 0 );
memset( &ks, 0, sizeof (ks) );
return hash;
}
TQByteArray KNTLM::lmResponse( const TQByteArray &hash, const unsigned char *challenge )
{
DES_KEY ks;
TQByteArray answer( 24 );
convertKey( (unsigned char*) hash.data(), &ks );
ntlm_des_ecb_encrypt( challenge, 8, &ks, (unsigned char*) answer.data() );
convertKey( (unsigned char*) hash.data() + 7, &ks );
ntlm_des_ecb_encrypt( challenge, 8, &ks, (unsigned char*) answer.data() + 8 );
convertKey( (unsigned char*) hash.data() + 14, &ks );
ntlm_des_ecb_encrypt( challenge, 8, &ks, (unsigned char*) answer.data() + 16 );
memset( &ks, 0, sizeof (ks) );
return answer;
}
TQByteArray KNTLM::getNTLMResponse( const TQString &password, const unsigned char *challenge )
{
TQByteArray hash, answer;
hash = ntlmHash( password );
hash.resize( 21 );
memset( hash.data() + 16, 0, 5 );
answer = lmResponse( hash, challenge );
hash.fill( 0 );
return answer;
}
TQByteArray KNTLM::ntlmHash( const TQString &password )
{
KMD4::Digest digest;
TQByteArray ret, unicode;
unicode = QString2UnicodeLE( password );
KMD4 md4( unicode );
md4.rawDigest( digest );
ret.duplicate( (const char*) digest, sizeof( digest ) );
return ret;
}
TQByteArray KNTLM::getNTLMv2Response( const TQString &target, const TQString &user,
const TQString &password, const TQByteArray &targetInformation,
const unsigned char *challenge )
{
TQByteArray hash = ntlmv2Hash( target, user, password );
TQByteArray blob = createBlob( targetInformation );
return lmv2Response( hash, blob, challenge );
}
TQByteArray KNTLM::getLMv2Response( const TQString &target, const TQString &user,
const TQString &password, const unsigned char *challenge )
{
TQByteArray hash = ntlmv2Hash( target, user, password );
TQByteArray clientChallenge( 8 );
for ( uint i = 0; i<8; i++ ) {
clientChallenge.data()[i] = TDEApplication::random() % 0xff;
}
return lmv2Response( hash, clientChallenge, challenge );
}
TQByteArray KNTLM::ntlmv2Hash( const TQString &target, const TQString &user, const TQString &password )
{
TQByteArray hash1 = ntlmHash( password );
TQByteArray key, ret;
TQString id = user.upper() + target.upper();
key = QString2UnicodeLE( id );
ret = hmacMD5( key, hash1 );
return ret;
}
TQByteArray KNTLM::lmv2Response( const TQByteArray &hash,
const TQByteArray &clientData, const unsigned char *challenge )
{
TQByteArray data( 8 + clientData.size() );
memcpy( data.data(), challenge, 8 );
memcpy( data.data() + 8, clientData.data(), clientData.size() );
TQByteArray mac = hmacMD5( data, hash );
mac.resize( 16 + clientData.size() );
memcpy( mac.data() + 16, clientData.data(), clientData.size() );
return mac;
}
TQByteArray KNTLM::createBlob( const TQByteArray &targetinfo )
{
TQByteArray blob( sizeof(Blob) + 4 + targetinfo.size() );
blob.fill( 0 );
Blob *bl = (Blob *) blob.data();
bl->signature = KFromToBigEndian( (TQ_UINT32) 0x01010000 );
TQ_UINT64 now = TQDateTime::currentDateTime().toTime_t();
now += (TQ_UINT64)3600*(TQ_UINT64)24*(TQ_UINT64)134774;
now *= (TQ_UINT64)10000000;
bl->timestamp = KFromToLittleEndian( now );
for ( uint i = 0; i<8; i++ ) {
bl->challenge[i] = TDEApplication::random() % 0xff;
}
memcpy( blob.data() + sizeof(Blob), targetinfo.data(), targetinfo.size() );
return blob;
}
TQByteArray KNTLM::hmacMD5( const TQByteArray &data, const TQByteArray &key )
{
TQ_UINT8 ipad[64], opad[64];
KMD5::Digest digest;
TQByteArray ret;
memset( ipad, 0x36, sizeof(ipad) );
memset( opad, 0x5c, sizeof(opad) );
for ( int i = key.size()-1; i >= 0; i-- ) {
ipad[i] ^= key[i];
opad[i] ^= key[i];
}
TQByteArray content( data.size()+64 );
memcpy( content.data(), ipad, 64 );
memcpy( content.data() + 64, data.data(), data.size() );
KMD5 md5( content );
md5.rawDigest( digest );
content.resize( sizeof(digest) + 64 );
memcpy( content.data(), opad, 64 );
memcpy( content.data() + 64, digest, sizeof(digest) );
md5.reset();
md5.update( content );
md5.rawDigest( digest );
ret.duplicate( (const char*) digest, sizeof( digest ) );
return ret;
}
/*
* turns a 56 bit key into the 64 bit, odd parity key and sets the key.
* The key schedule ks is also set.
*/
void KNTLM::convertKey( unsigned char *key_56, void* ks )
{
unsigned char key[8];
key[0] = key_56[0];
key[1] = ((key_56[0] << 7) & 0xFF) | (key_56[1] >> 1);
key[2] = ((key_56[1] << 6) & 0xFF) | (key_56[2] >> 2);
key[3] = ((key_56[2] << 5) & 0xFF) | (key_56[3] >> 3);
key[4] = ((key_56[3] << 4) & 0xFF) | (key_56[4] >> 4);
key[5] = ((key_56[4] << 3) & 0xFF) | (key_56[5] >> 5);
key[6] = ((key_56[5] << 2) & 0xFF) | (key_56[6] >> 6);
key[7] = (key_56[6] << 1) & 0xFF;
for ( uint i=0; i<8; i++ ) {
unsigned char b = key[i];
bool needsParity = (((b>>7) ^ (b>>6) ^ (b>>5) ^ (b>>4) ^ (b>>3) ^ (b>>2) ^ (b>>1)) & 0x01) == 0;
if ( needsParity )
key[i] |= 0x01;
else
key[i] &= 0xfe;
}
ntlm_des_set_key ( (DES_KEY*) ks, (char*) &key, sizeof (key));
memset (&key, 0, sizeof (key));
}
TQByteArray KNTLM::QString2UnicodeLE( const TQString &target )
{
TQByteArray unicode( target.length() * 2 );
for ( uint i = 0; i < target.length(); i++ ) {
((TQ_UINT16*)unicode.data())[ i ] = KFromToLittleEndian( target[i].unicode() );
}
return unicode;
}
TQString KNTLM::UnicodeLE2TQString( const TQChar* data, uint len )
{
TQString ret;
for ( uint i = 0; i < len; i++ ) {
ret += KFromToLittleEndian( data[ i ].unicode() );
}
return ret;
}