You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdelibs/khtml/rendering/render_box.cpp

2326 lines
87 KiB

/**
* This file is part of the DOM implementation for KDE.
*
* Copyright (C) 1999-2003 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2002-2003 Apple Computer, Inc.
* (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com)
* (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
// -------------------------------------------------------------------------
//#define DEBUG_LAYOUT
//#define CLIP_DEBUG
#include <tqpainter.h>
#include "misc/loader.h"
#include "rendering/render_replaced.h"
#include "rendering/render_canvas.h"
#include "rendering/render_table.h"
#include "rendering/render_inline.h"
#include "rendering/render_block.h"
#include "rendering/render_line.h"
#include "rendering/render_layer.h"
#include "misc/htmlhashes.h"
#include "xml/dom_nodeimpl.h"
#include "xml/dom_docimpl.h"
#include "html/html_elementimpl.h"
#include <khtmlview.h>
#include <kdebug.h>
#include <kglobal.h>
#include <assert.h>
using namespace DOM;
using namespace khtml;
#define TABLECELLMARGIN -0x4000
RenderBox::RenderBox(DOM::NodeImpl* node)
: RenderContainer(node)
{
m_minWidth = -1;
m_maxWidth = -1;
m_width = m_height = 0;
m_x = 0;
m_y = 0;
m_marginTop = 0;
m_marginBottom = 0;
m_marginLeft = 0;
m_marginRight = 0;
m_staticX = 0;
m_staticY = 0;
m_placeHolderBox = 0;
m_layer = 0;
}
RenderBlock* RenderBox::createAnonymousBlock()
{
RenderStyle *newStyle = new RenderStyle();
newStyle->inheritFrom(style());
newStyle->setDisplay(BLOCK);
RenderBlock *newBox = new (renderArena()) RenderBlock(document() /* anonymous*/);
newBox->setStyle(newStyle);
return newBox;
}
void RenderBox::restructureParentFlow() {
if (!parent() || parent()->childrenInline() == isInline())
return;
// We have gone from not affecting the inline status of the parent flow to suddenly
// having an impact. See if there is a mismatch between the parent flow's
// childrenInline() state and our state.
if (!isInline()) {
if (parent()->isRenderInline()) {
// We have to split the parent flow.
RenderInline* parentInline = static_cast<RenderInline*>(parent());
RenderBlock* newBox = parentInline->createAnonymousBlock();
RenderFlow* oldContinuation = parent()->continuation();
parentInline->setContinuation(newBox);
RenderObject* beforeChild = nextSibling();
parent()->removeChildNode(this);
parentInline->splitFlow(beforeChild, newBox, this, oldContinuation);
}
else if (parent()->isRenderBlock())
static_cast<RenderBlock*>(parent())->makeChildrenNonInline();
}
else {
// An anonymous block must be made to wrap this inline.
RenderBlock* box = createAnonymousBlock();
parent()->insertChildNode(box, this);
box->appendChildNode(parent()->removeChildNode(this));
}
}
static inline bool overflowAppliesTo(RenderObject* o)
{
// css 2.1-11.1.1
// 1) overflow only applies to non-replaced block-level elements, table cells, and inline-block elements
if (o->isRenderBlock() || o->isTableRow() || o->isTableSection())
// 2) overflow on root applies to the viewport (cf. KHTMLView::layout)
if (!o->isRoot())
// 3) overflow on body may apply to the viewport...
if (!o->isBody()
// ...but only for HTML documents...
|| !o->document()->isHTMLDocument()
// ...and only when the root has a visible overflow
|| !o->document()->documentElement()->renderer()
|| !o->document()->documentElement()->renderer()->style()
|| o->document()->documentElement()->renderer()->style()->hidesOverflow())
return true;
return false;
}
void RenderBox::setStyle(RenderStyle *_style)
{
bool affectsParent = style() && isFloatingOrPositioned() &&
(!_style->isFloating() && _style->position() != ABSOLUTE && _style->position() != FIXED) &&
parent() && (parent()->isBlockFlow() || parent()->isInlineFlow());
RenderContainer::setStyle(_style);
// The root always paints its background/border.
if (isRoot())
setShouldPaintBackgroundOrBorder(true);
switch(_style->display())
{
case INLINE:
case INLINE_BLOCK:
case INLINE_TABLE:
setInline(true);
break;
case RUN_IN:
if (isInline() && parent() && parent()->childrenInline())
break;
default:
setInline(false);
}
switch(_style->position())
{
case ABSOLUTE:
case FIXED:
setPositioned(true);
break;
default:
setPositioned(false);
if( !isTableCell() && _style->isFloating() )
setFloating(true);
if( _style->position() == RELATIVE )
setRelPositioned(true);
}
if (overflowAppliesTo(this) && _style->hidesOverflow())
setHasOverflowClip();
if (requiresLayer()) {
if (!m_layer) {
m_layer = new (renderArena()) RenderLayer(this);
m_layer->insertOnlyThisLayer();
if (parent() && containingBlock())
m_layer->updateLayerPosition();
}
}
else if (m_layer && !isCanvas()) {
m_layer->removeOnlyThisLayer();
m_layer = 0;
}
if (m_layer)
m_layer->styleChanged();
if (style()->outlineWidth() > 0 && style()->outlineSize() > maximalOutlineSize(PaintActionOutline))
static_cast<RenderCanvas*>(document()->renderer())->setMaximalOutlineSize(style()->outlineSize());
if (affectsParent)
restructureParentFlow();
}
RenderBox::~RenderBox()
{
//kdDebug( 6040 ) << "Element destructor: this=" << nodeName().string() << endl;
}
void RenderBox::detach()
{
RenderLayer* layer = m_layer;
RenderArena* arena = renderArena();
RenderContainer::detach();
if (layer)
layer->detach(arena);
}
InlineBox* RenderBox::createInlineBox(bool /*makePlaceHolderBox*/, bool /*isRootLineBox*/)
{
if (m_placeHolderBox)
m_placeHolderBox->detach(renderArena());
return (m_placeHolderBox = new (renderArena()) InlineBox(this));
}
void RenderBox::deleteInlineBoxes(RenderArena* arena)
{
if (m_placeHolderBox) {
m_placeHolderBox->detach( arena ? arena : renderArena() );
m_placeHolderBox = 0;
}
}
short RenderBox::contentWidth() const
{
short w = m_width - style()->borderLeftWidth() - style()->borderRightWidth();
w -= paddingLeft() + paddingRight();
if (m_layer && scrollsOverflowY())
w -= m_layer->verticalScrollbarWidth();
//kdDebug( 6040 ) << "RenderBox::contentWidth(2) = " << w << endl;
return w;
}
int RenderBox::contentHeight() const
{
int h = m_height - style()->borderTopWidth() - style()->borderBottomWidth();
h -= paddingTop() + paddingBottom();
if (m_layer && scrollsOverflowX())
h -= m_layer->horizontalScrollbarHeight();
return h;
}
void RenderBox::setPos( int xPos, int yPos )
{
m_x = xPos; m_y = yPos;
}
short RenderBox::width() const
{
return m_width;
}
int RenderBox::height() const
{
return m_height;
}
void RenderBox::setWidth( int width )
{
m_width = width;
}
void RenderBox::setHeight( int height )
{
m_height = height;
}
int RenderBox::calcBoxHeight(int h) const
{
if (style()->boxSizing() == CONTENT_BOX)
h += borderTop() + borderBottom() + paddingTop() + paddingBottom();
return h;
}
int RenderBox::calcBoxWidth(int w) const
{
if (style()->boxSizing() == CONTENT_BOX)
w += borderLeft() + borderRight() + paddingLeft() + paddingRight();
return w;
}
int RenderBox::calcContentHeight(int h) const
{
if (style()->boxSizing() == BORDER_BOX)
h -= borderTop() + borderBottom() + paddingTop() + paddingBottom();
return kMax(0, h);
}
int RenderBox::calcContentWidth(int w) const
{
if (style()->boxSizing() == BORDER_BOX)
w -= borderLeft() + borderRight() + paddingLeft() + paddingRight();
return kMax(0, w);
}
// --------------------- painting stuff -------------------------------
void RenderBox::paint(PaintInfo& i, int _tx, int _ty)
{
_tx += m_x;
_ty += m_y;
if (hasOverflowClip() && m_layer)
m_layer->subtractScrollOffset(_tx, _ty);
// default implementation. Just pass things through to the children
for(RenderObject* child = firstChild(); child; child = child->nextSibling())
child->paint(i, _tx, _ty);
}
void RenderBox::paintRootBoxDecorations(PaintInfo& paintInfo, int _tx, int _ty)
{
//kdDebug( 6040 ) << renderName() << "::paintRootBoxDecorations()" << _tx << "/" << _ty << endl;
const BackgroundLayer* bgLayer = style()->backgroundLayers();
TQColor bgColor = style()->backgroundColor();
if (document()->isHTMLDocument() && !style()->hasBackground()) {
// Locate the <body> element using the DOM. This is easier than trying
// to crawl around a render tree with potential :before/:after content and
// anonymous blocks created by inline <body> tags etc. We can locate the <body>
// render object very easily via the DOM.
HTMLElementImpl* body = document()->body();
RenderObject* bodyObject = (body && body->id() == ID_BODY) ? body->renderer() : 0;
if (bodyObject) {
bgLayer = bodyObject->style()->backgroundLayers();
bgColor = bodyObject->style()->backgroundColor();
}
}
if( !bgColor.isValid() && canvas()->view())
bgColor = canvas()->view()->palette().active().color(TQColorGroup::Base);
int w = width();
int h = height();
// kdDebug(0) << "width = " << w <<endl;
int rw, rh;
if (canvas()->view()) {
rw = canvas()->view()->contentsWidth();
rh = canvas()->view()->contentsHeight();
} else {
rw = canvas()->docWidth();
rh = canvas()->docHeight();
}
// kdDebug(0) << "rw = " << rw <<endl;
int bx = _tx - marginLeft();
int by = _ty - marginTop();
int bw = QMAX(w + marginLeft() + marginRight() + borderLeft() + borderRight(), rw);
int bh = QMAX(h + marginTop() + marginBottom() + borderTop() + borderBottom(), rh);
// CSS2 14.2:
// " The background of the box generated by the root element covers the entire canvas."
// hence, paint the background even in the margin areas (unlike for every other element!)
// I just love these little inconsistencies .. :-( (Dirk)
int my = kMax(by, paintInfo.r.y());
paintBackgrounds(paintInfo.p, bgColor, bgLayer, my, paintInfo.r.height(), bx, by, bw, bh);
if(style()->hasBorder())
paintBorder( paintInfo.p, _tx, _ty, w, h, style() );
}
void RenderBox::paintBoxDecorations(PaintInfo& paintInfo, int _tx, int _ty)
{
//kdDebug( 6040 ) << renderName() << "::paintDecorations()" << endl;
if(isRoot())
return paintRootBoxDecorations(paintInfo, _tx, _ty);
int w = width();
int h = height() + borderTopExtra() + borderBottomExtra();
_ty -= borderTopExtra();
int my = kMax(_ty,paintInfo.r.y());
int end = kMin( paintInfo.r.y() + paintInfo.r.height(), _ty + h );
int mh = end - my;
// The <body> only paints its background if the root element has defined a background
// independent of the body. Go through the DOM to get to the root element's render object,
// since the root could be inline and wrapped in an anonymous block.
if (!isBody() || !document()->isHTMLDocument() || document()->documentElement()->renderer()->style()->hasBackground())
paintBackgrounds(paintInfo.p, style()->backgroundColor(), style()->backgroundLayers(), my, mh, _tx, _ty, w, h);
if(style()->hasBorder()) {
paintBorder(paintInfo.p, _tx, _ty, w, h, style());
}
}
void RenderBox::paintBackgrounds(TQPainter *p, const TQColor& c, const BackgroundLayer* bgLayer, int clipy, int cliph, int _tx, int _ty, int w, int height)
{
if (!bgLayer) return;
paintBackgrounds(p, c, bgLayer->next(), clipy, cliph, _tx, _ty, w, height);
paintBackground(p, c, bgLayer, clipy, cliph, _tx, _ty, w, height);
}
void RenderBox::paintBackground(TQPainter *p, const TQColor& c, const BackgroundLayer* bgLayer, int clipy, int cliph, int _tx, int _ty, int w, int height)
{
paintBackgroundExtended(p, c, bgLayer, clipy, cliph, _tx, _ty, w, height,
borderLeft(), borderRight(), paddingLeft(), paddingRight());
}
static void calculateBackgroundSize(const BackgroundLayer* bgLayer, int& scaledWidth, int& scaledHeight)
{
CachedImage* bg = bgLayer->backgroundImage();
if (bgLayer->isBackgroundSizeSet()) {
Length bgWidth = bgLayer->backgroundSize().width;
Length bgHeight = bgLayer->backgroundSize().height;
if (bgWidth.isPercent())
scaledWidth = scaledWidth * bgWidth.value() / 100;
else if (bgWidth.isFixed())
scaledWidth = bgWidth.value();
else if (bgWidth.isVariable()) {
// If the width is auto and the height is not, we have to use the appropriate
// scale to maintain our aspect ratio.
if (bgHeight.isPercent()) {
int scaledH = scaledHeight * bgHeight.value() / 100;
scaledWidth = bg->pixmap_size().width() * scaledH / bg->pixmap_size().height();
} else if (bgHeight.isFixed())
scaledWidth = bg->pixmap_size().width() * bgHeight.value() / bg->pixmap_size().height();
}
if (bgHeight.isPercent())
scaledHeight = scaledHeight * bgHeight.value() / 100;
else if (bgHeight.isFixed())
scaledHeight = bgHeight.value();
else if (bgHeight.isVariable()) {
// If the height is auto and the width is not, we have to use the appropriate
// scale to maintain our aspect ratio.
if (bgWidth.isPercent())
scaledHeight = bg->pixmap_size().height() * scaledWidth / bg->pixmap_size().width();
else if (bgWidth.isFixed())
scaledHeight = bg->pixmap_size().height() * bgWidth.value() / bg->pixmap_size().width();
else if (bgWidth.isVariable()) {
// If both width and height are auto, we just want to use the image's
// intrinsic size.
scaledWidth = bg->pixmap_size().width();
scaledHeight = bg->pixmap_size().height();
}
}
} else {
scaledWidth = bg->pixmap_size().width();
scaledHeight = bg->pixmap_size().height();
}
}
void RenderBox::paintBackgroundExtended(TQPainter *p, const TQColor &c, const BackgroundLayer* bgLayer, int clipy, int cliph,
int _tx, int _ty, int w, int h,
int bleft, int bright, int pleft, int pright)
{
if ( cliph < 0 )
return;
if (bgLayer->backgroundClip() != BGBORDER) {
// Clip to the padding or content boxes as necessary.
bool includePadding = bgLayer->backgroundClip() == BGCONTENT;
int x = _tx + bleft + (includePadding ? pleft : 0);
int y = _ty + borderTop() + (includePadding ? paddingTop() : 0);
int width = w - bleft - bright - (includePadding ? pleft + pright : 0);
int height = h - borderTop() - borderBottom() - (includePadding ? paddingTop() + paddingBottom() : 0);
p->save();
p->setClipRect(TQRect(x, y, width, height), TQPainter::CoordPainter);
}
CachedImage* bg = bgLayer->backgroundImage();
bool shouldPaintBackgroundImage = bg && bg->pixmap_size() == bg->valid_rect().size() && !bg->isTransparent() && !bg->isErrorImage();
TQColor bgColor = c;
// Paint the color first underneath all images.
if (!bgLayer->next() && bgColor.isValid() && tqAlpha(bgColor.rgb()) > 0)
p->fillRect(_tx, clipy, w, cliph, bgColor);
// no progressive loading of the background image
if (shouldPaintBackgroundImage) {
int sx = 0;
int sy = 0;
int cw,ch;
int cx,cy;
int scaledImageWidth, scaledImageHeight;
// CSS2 chapter 14.2.1
if (bgLayer->backgroundAttachment()) {
//scroll
int hpab = 0, vpab = 0, left = 0, top = 0; // Init to 0 for background-origin of 'border'
if (bgLayer->backgroundOrigin() != BGBORDER) {
hpab += bleft + bright;
vpab += borderTop() + borderBottom();
left += bleft;
top += borderTop();
if (bgLayer->backgroundOrigin() == BGCONTENT) {
hpab += pleft + pright;
vpab += paddingTop() + paddingBottom();
left += pleft;
top += paddingTop();
}
}
int pw = w - hpab;
int ph = h - vpab;
scaledImageWidth = pw;
scaledImageHeight = ph;
calculateBackgroundSize(bgLayer, scaledImageWidth, scaledImageHeight);
EBackgroundRepeat bgr = bgLayer->backgroundRepeat();
if (bgr == NO_REPEAT || bgr == REPEAT_Y) {
cw = scaledImageWidth;
int xPosition = bgLayer->backgroundXPosition().minWidth(pw-scaledImageWidth);
if ( xPosition >= 0 ) {
cx = _tx + xPosition;
cw = kMin(scaledImageWidth, pw - xPosition);
}
else {
cx = _tx;
if (scaledImageWidth > 0) {
sx = -xPosition;
cw = kMin(scaledImageWidth+xPosition, pw);
}
}
cx += left;
} else {
// repeat over x
cw = w;
cx = _tx;
if (scaledImageWidth > 0) {
int xPosition = bgLayer->backgroundXPosition().minWidth(pw-scaledImageWidth);
sx = scaledImageWidth - (xPosition % scaledImageWidth);
sx -= left % scaledImageWidth;
}
}
if (bgr == NO_REPEAT || bgr == REPEAT_X) {
ch = scaledImageHeight;
int yPosition = bgLayer->backgroundYPosition().minWidth(ph - scaledImageHeight);
if ( yPosition >= 0 ) {
cy = _ty + yPosition;
ch = kMin(ch, ph - yPosition);
}
else {
cy = _ty;
if (scaledImageHeight > 0) {
sy = -yPosition;
ch = kMin(scaledImageHeight+yPosition, ph);
}
}
cy += top;
} else {
// repeat over y
ch = h;
cy = _ty;
if (scaledImageHeight > 0) {
int yPosition = bgLayer->backgroundYPosition().minWidth(ph - scaledImageHeight);
sy = scaledImageHeight - (yPosition % scaledImageHeight);
sy -= top % scaledImageHeight;
}
}
if (layer())
layer()->scrollOffset(sx, sy);
}
else
{
//fixed
TQRect vr = viewRect();
int pw = vr.width();
int ph = vr.height();
scaledImageWidth = pw;
scaledImageHeight = ph;
calculateBackgroundSize(bgLayer, scaledImageWidth, scaledImageHeight);
EBackgroundRepeat bgr = bgLayer->backgroundRepeat();
int xPosition = bgLayer->backgroundXPosition().minWidth(pw-scaledImageWidth);
if (bgr == NO_REPEAT || bgr == REPEAT_Y) {
cw = kMin(scaledImageWidth, pw - xPosition);
cx = vr.x() + xPosition;
} else {
cw = pw;
cx = vr.x();
if (scaledImageWidth > 0)
sx = scaledImageWidth - xPosition % scaledImageWidth;
}
int yPosition = bgLayer->backgroundYPosition().minWidth(ph-scaledImageHeight);
if (bgr == NO_REPEAT || bgr == REPEAT_X) {
ch = kMin(scaledImageHeight, ph - yPosition);
cy = vr.y() + yPosition;
} else {
ch = ph;
cy = vr.y();
if (scaledImageHeight > 0)
sy = scaledImageHeight - yPosition % scaledImageHeight;
}
TQRect fix(cx, cy, cw, ch);
TQRect ele(_tx, _ty, w, h);
TQRect b = fix.intersect(ele);
//kdDebug() <<" ele is " << ele << " b is " << b << " fix is " << fix << endl;
sx+=b.x()-cx;
sy+=b.y()-cy;
cx=b.x();cy=b.y();cw=b.width();ch=b.height();
}
// restrict painting to repaint-clip
if (cy < clipy) {
ch -= (clipy - cy);
sy += (clipy - cy);
cy = clipy;
}
ch = kMin(ch, cliph);
// kdDebug() << " clipy, cliph: " << clipy << ", " << cliph << endl;
// kdDebug() << " drawTiledPixmap(" << cx << ", " << cy << ", " << cw << ", " << ch << ", " << sx << ", " << sy << ")" << endl;
if (cw>0 && ch>0)
p->drawTiledPixmap(cx, cy, cw, ch, bg->tiled_pixmap(c, scaledImageWidth, scaledImageHeight), sx, sy);
}
if (bgLayer->backgroundClip() != BGBORDER)
p->restore(); // Undo the background clip
}
void RenderBox::outlineBox(TQPainter *p, int _tx, int _ty, const char *color)
{
p->setPen(TQPen(TQColor(color), 1, Qt::DotLine));
p->setBrush( Qt::NoBrush );
p->drawRect(_tx, _ty, m_width, m_height);
}
TQRect RenderBox::getOverflowClipRect(int tx, int ty)
{
// XXX When overflow-clip (CSS3) is implemented, we'll obtain the property
// here.
int bl=borderLeft(),bt=borderTop(),bb=borderBottom(),br=borderRight();
int clipx = tx+bl;
int clipy = ty+bt;
int clipw = m_width-bl-br;
int cliph = m_height-bt-bb+borderTopExtra()+borderBottomExtra();
// Substract out scrollbars if we have them.
if (m_layer) {
clipw -= m_layer->verticalScrollbarWidth();
cliph -= m_layer->horizontalScrollbarHeight();
}
return TQRect(clipx,clipy,clipw,cliph);
}
TQRect RenderBox::getClipRect(int tx, int ty)
{
int bl=borderLeft(),bt=borderTop(),bb=borderBottom(),br=borderRight();
// ### what about paddings?
int clipw = m_width-bl-br;
int cliph = m_height-bt-bb;
bool rtl = (style()->direction() == RTL);
int clipleft = 0;
int clipright = clipw;
int cliptop = 0;
int clipbottom = cliph;
if ( style()->hasClip() && style()->position() == ABSOLUTE ) {
// the only case we use the clip property according to CSS 2.1
if (!style()->clipLeft().isVariable()) {
int c = style()->clipLeft().width(clipw);
if ( rtl )
clipleft = clipw - c;
else
clipleft = c;
}
if (!style()->clipRight().isVariable()) {
int w = style()->clipRight().width(clipw);
if ( rtl ) {
clipright = clipw - w;
} else {
clipright = w;
}
}
if (!style()->clipTop().isVariable())
cliptop = style()->clipTop().width(cliph);
if (!style()->clipBottom().isVariable())
clipbottom = style()->clipBottom().width(cliph);
}
int clipx = tx + clipleft;
int clipy = ty + cliptop;
clipw = clipright-clipleft;
cliph = clipbottom-cliptop;
//kdDebug( 6040 ) << "setting clip("<<clipx<<","<<clipy<<","<<clipw<<","<<cliph<<")"<<endl;
return TQRect(clipx,clipy,clipw,cliph);
}
void RenderBox::close()
{
setNeedsLayoutAndMinMaxRecalc();
}
short RenderBox::containingBlockWidth() const
{
if (isCanvas() && canvas()->view())
{
if (canvas()->pagedMode())
return canvas()->width();
else
return canvas()->view()->visibleWidth();
}
RenderBlock* cb = containingBlock();
if (isRenderBlock() && cb->isTable() && static_cast<RenderTable*>(cb)->caption() == this) {
//captions are not affected by table border or padding
return cb->width();
}
if (usesLineWidth())
return cb->lineWidth(m_y);
else
return cb->contentWidth();
}
bool RenderBox::absolutePosition(int &_xPos, int &_yPos, bool f) const
{
if ( style()->position() == FIXED )
f = true;
RenderObject *o = container();
if( o && o->absolutePosition(_xPos, _yPos, f))
{
if ( o->layer() ) {
if (o->hasOverflowClip())
o->layer()->subtractScrollOffset( _xPos, _yPos );
if (isPositioned())
o->layer()->checkInlineRelOffset(this, _xPos, _yPos);
}
if(!isInline() || isReplaced()) {
_xPos += xPos(),
_yPos += yPos();
}
if(isRelPositioned())
relativePositionOffset(_xPos, _yPos);
return true;
}
else
{
_xPos = 0;
_yPos = 0;
return false;
}
}
void RenderBox::position(InlineBox* box, int /*from*/, int /*len*/, bool /*reverse*/)
{
if (isPositioned()) {
// Cache the x position only if we were an INLINE type originally.
bool wasInline = style()->isOriginalDisplayInlineType();
if (wasInline && hasStaticX()) {
// The value is cached in the xPos of the box. We only need this value if
// our object was inline originally, since otherwise it would have ended up underneath
// the inlines.
m_staticX = box->xPos();
}
else if (!wasInline && hasStaticY()) {
// Our object was a block originally, so we make our normal flow position be
// just below the line box (as though all the inlines that came before us got
// wrapped in an anonymous block, which is what would have happened had we been
// in flow). This value was cached in the yPos() of the box.
m_staticY = box->yPos();
}
}
else if (isReplaced())
setPos( box->xPos(), box->yPos() );
}
void RenderBox::repaint(Priority prior)
{
int ow = style() ? style()->outlineSize() : 0;
if( isInline() && !isReplaced() )
{
RenderObject* p = parent();
Q_ASSERT(p);
while( p->isInline() && !p->isReplaced() )
p = p->parent();
int xoff = p->hasOverflowClip() ? 0 : p->overflowLeft();
int yoff = p->hasOverflowClip() ? 0 : p->overflowTop();
p->repaintRectangle( -ow + xoff, -ow + yoff, p->effectiveWidth()+ow*2, p->effectiveHeight()+ow*2, prior);
}
else
{
int xoff = hasOverflowClip() ? 0 : overflowLeft();
int yoff = hasOverflowClip() ? 0 : overflowTop();
repaintRectangle( -ow + xoff, -ow + yoff, effectiveWidth()+ow*2, effectiveHeight()+ow*2, prior);
}
}
void RenderBox::repaintRectangle(int x, int y, int w, int h, Priority p, bool f)
{
x += m_x;
y += m_y;
// Apply the relative position offset when invalidating a rectangle. The layer
// is translated, but the render box isn't, so we need to do this to get the
// right dirty rect. Since this is called from RenderObject::setStyle, the relative position
// flag on the RenderObject has been cleared, so use the one on the style().
if (style()->position() == RELATIVE && m_layer)
relativePositionOffset(x,y);
if (style()->position() == FIXED) f=true;
// kdDebug( 6040 ) << "RenderBox(" <<this << ", " << renderName() << ")::repaintRectangle (" << x << "/" << y << ") (" << w << "/" << h << ")" << endl;
RenderObject *o = container();
if( o ) {
if (o->layer()) {
if (o->style()->hidesOverflow() && o->layer() && !o->isInlineFlow())
o->layer()->subtractScrollOffset(x,y); // For overflow:auto/scroll/hidden.
if (style()->position() == ABSOLUTE)
o->layer()->checkInlineRelOffset(this,x,y);
}
o->repaintRectangle(x, y, w, h, p, f);
}
}
void RenderBox::relativePositionOffset(int &tx, int &ty) const
{
if(!style()->left().isVariable())
tx += style()->left().width(containingBlockWidth());
else if(!style()->right().isVariable())
tx -= style()->right().width(containingBlockWidth());
if(!style()->top().isVariable())
{
if (!style()->top().isPercent()
|| containingBlock()->style()->height().isFixed())
ty += style()->top().width(containingBlockHeight());
}
else if(!style()->bottom().isVariable())
{
if (!style()->bottom().isPercent()
|| containingBlock()->style()->height().isFixed())
ty -= style()->bottom().width(containingBlockHeight());
}
}
void RenderBox::calcWidth()
{
#ifdef DEBUG_LAYOUT
kdDebug( 6040 ) << "RenderBox("<<renderName()<<")::calcWidth()" << endl;
#endif
if (isPositioned())
{
calcAbsoluteHorizontal();
}
else
{
bool treatAsReplaced = isReplaced() && !isInlineBlockOrInlineTable();
Length w;
if (treatAsReplaced)
w = Length( calcReplacedWidth(), Fixed );
else
w = style()->width();
Length ml = style()->marginLeft();
Length mr = style()->marginRight();
int cw = containingBlockWidth();
if (cw<0) cw = 0;
m_marginLeft = 0;
m_marginRight = 0;
if (isInline() && !isInlineBlockOrInlineTable())
{
// just calculate margins
m_marginLeft = ml.minWidth(cw);
m_marginRight = mr.minWidth(cw);
if (treatAsReplaced)
{
m_width = calcBoxWidth(w.width(cw));
m_width = KMAX(m_width, m_minWidth);
}
return;
}
else
{
LengthType widthType, minWidthType, maxWidthType;
if (treatAsReplaced) {
m_width = calcBoxWidth(w.width(cw));
widthType = w.type();
} else {
m_width = calcWidthUsing(Width, cw, widthType);
int minW = calcWidthUsing(MinWidth, cw, minWidthType);
int maxW = style()->maxWidth().value() == UNDEFINED ?
m_width : calcWidthUsing(MaxWidth, cw, maxWidthType);
if (m_width > maxW) {
m_width = maxW;
widthType = maxWidthType;
}
if (m_width < minW) {
m_width = minW;
widthType = minWidthType;
}
}
if (widthType == Variable) {
// kdDebug( 6040 ) << "variable" << endl;
m_marginLeft = ml.minWidth(cw);
m_marginRight = mr.minWidth(cw);
}
else
{
// kdDebug( 6040 ) << "non-variable " << w.type << ","<< w.value << endl;
calcHorizontalMargins(ml,mr,cw);
}
}
if (cw && cw != m_width + m_marginLeft + m_marginRight && !isFloating() && !isInline())
{
if (containingBlock()->style()->direction()==LTR)
m_marginRight = cw - m_width - m_marginLeft;
else
m_marginLeft = cw - m_width - m_marginRight;
}
}
#ifdef DEBUG_LAYOUT
kdDebug( 6040 ) << "RenderBox::calcWidth(): m_width=" << m_width << " containingBlockWidth()=" << containingBlockWidth() << endl;
kdDebug( 6040 ) << "m_marginLeft=" << m_marginLeft << " m_marginRight=" << m_marginRight << endl;
#endif
}
int RenderBox::calcWidthUsing(WidthType widthType, int cw, LengthType& lengthType)
{
int width = m_width;
Length w;
if (widthType == Width)
w = style()->width();
else if (widthType == MinWidth)
w = style()->minWidth();
else
w = style()->maxWidth();
lengthType = w.type();
if (lengthType == Variable) {
int marginLeft = style()->marginLeft().minWidth(cw);
int marginRight = style()->marginRight().minWidth(cw);
if (cw) width = cw - marginLeft - marginRight;
// size to max width?
if (sizesToMaxWidth()) {
width = KMAX(width, (int)m_minWidth);
width = KMIN(width, (int)m_maxWidth);
}
}
else
{
width = calcBoxWidth(w.width(cw));
}
return width;
}
void RenderBox::calcHorizontalMargins(const Length& ml, const Length& mr, int cw)
{
if (isFloating() || isInline()) // Inline blocks/tables and floats don't have their margins increased.
{
m_marginLeft = ml.minWidth(cw);
m_marginRight = mr.minWidth(cw);
}
else
{
if ( (ml.isVariable() && mr.isVariable() && m_width<cw) ||
(!ml.isVariable() && !mr.isVariable() &&
containingBlock()->style()->textAlign() == KHTML_CENTER) )
{
m_marginLeft = (cw - m_width)/2;
if (m_marginLeft<0) m_marginLeft=0;
m_marginRight = cw - m_width - m_marginLeft;
}
else if ( (mr.isVariable() && m_width<cw) ||
(!ml.isVariable() && containingBlock()->style()->direction() == RTL &&
containingBlock()->style()->textAlign() == KHTML_LEFT))
{
m_marginLeft = ml.width(cw);
m_marginRight = cw - m_width - m_marginLeft;
}
else if ( (ml.isVariable() && m_width<cw) ||
(!mr.isVariable() && containingBlock()->style()->direction() == LTR &&
containingBlock()->style()->textAlign() == KHTML_RIGHT))
{
m_marginRight = mr.width(cw);
m_marginLeft = cw - m_width - m_marginRight;
}
else
{
// this makes auto margins 0 if we failed a m_width<cw test above (css2.1, 10.3.3)
m_marginLeft = ml.minWidth(cw);
m_marginRight = mr.minWidth(cw);
}
}
}
void RenderBox::calcHeight()
{
#ifdef DEBUG_LAYOUT
kdDebug( 6040 ) << "RenderBox::calcHeight()" << endl;
#endif
//cell height is managed by table, inline elements do not have a height property.
if ( isTableCell() || (isInline() && !isReplaced()) )
return;
if (isPositioned())
calcAbsoluteVertical();
else
{
calcVerticalMargins();
// For tables, calculate margins only
if (isTable())
return;
Length h;
bool treatAsReplaced = isReplaced() && !isInlineBlockOrInlineTable();
bool checkMinMaxHeight = false;
if ( treatAsReplaced )
h = Length( calcReplacedHeight(), Fixed );
else {
h = style()->height();
checkMinMaxHeight = true;
}
int height;
if (checkMinMaxHeight) {
height = calcHeightUsing(style()->height());
if (height == -1)
height = m_height;
int minH = calcHeightUsing(style()->minHeight()); // Leave as -1 if unset.
int maxH = style()->maxHeight().value() == UNDEFINED ? height : calcHeightUsing(style()->maxHeight());
if (maxH == -1)
maxH = height;
height = kMin(maxH, height);
height = kMax(minH, height);
}
else {
// The only times we don't check min/max height are when a fixed length has
// been given as an override. Just use that.
height = calcBoxHeight(h.value());
}
if (height<m_height && !overhangingContents() && !hasOverflowClip())
setOverhangingContents();
m_height = height;
}
// Unfurling marquees override with the furled height.
if (style()->overflowX() == OMARQUEE && m_layer && m_layer->marquee() &&
m_layer->marquee()->isUnfurlMarquee() && !m_layer->marquee()->isHorizontal()) {
m_layer->marquee()->setEnd(m_height);
m_height = kMin(m_height, m_layer->marquee()->unfurlPos());
}
}
int RenderBox::calcHeightUsing(const Length& h)
{
int height = -1;
if (!h.isVariable()) {
if (h.isFixed())
height = h.value();
else if (h.isPercent())
height = calcPercentageHeight(h);
if (height != -1) {
height = calcBoxHeight(height);
return height;
}
}
return height;
}
int RenderBox::calcImplicitHeight() const {
assert(hasImplicitHeight());
RenderBlock* cb = containingBlock();
// padding-box height
int ch = cb->height() - cb->borderTop() + cb->borderBottom();
int top = style()->top().width(ch);
int bottom = style()->bottom().width(ch);
return ch - top - bottom;
}
int RenderBox::calcPercentageHeight(const Length& height, bool treatAsReplaced) const
{
int result = -1;
RenderBlock* cb = containingBlock();
// In quirk mode, table cells violate what the CSS spec says to do with heights.
if (cb->isTableCell() && style()->htmlHacks()) {
result = static_cast<RenderTableCell*>(cb)->cellPercentageHeight();
}
// Otherwise we only use our percentage height if our containing block had a specified
// height.
else if (cb->style()->height().isFixed())
result = cb->calcContentHeight(cb->style()->height().value());
else if (cb->style()->height().isPercent()) {
// We need to recur and compute the percentage height for our containing block.
result = cb->calcPercentageHeight(cb->style()->height(), treatAsReplaced);
if (result != -1)
result = cb->calcContentHeight(result);
}
else if (cb->isCanvas()) {
if (!canvas()->pagedMode())
result = static_cast<RenderCanvas*>(cb)->viewportHeight();
else
result = static_cast<RenderCanvas*>(cb)->height();
result -= cb->style()->borderTopWidth() - cb->style()->borderBottomWidth();
result -= cb->paddingTop() + cb->paddingBottom();
}
else if (cb->isBody() && style()->htmlHacks() &&
cb->style()->height().isVariable() && !cb->isFloatingOrPositioned()) {
int margins = cb->collapsedMarginTop() + cb->collapsedMarginBottom();
int visHeight = canvas()->viewportHeight();
RenderObject* p = cb->parent();
result = visHeight - (margins + p->marginTop() + p->marginBottom() +
p->borderTop() + p->borderBottom() +
p->paddingTop() + p->paddingBottom());
}
else if (cb->isRoot() && style()->htmlHacks() && cb->style()->height().isVariable()) {
int visHeight = canvas()->viewportHeight();
result = visHeight - (marginTop() + marginBottom() +
borderTop() + borderBottom() +
paddingTop() + paddingBottom());
}
else if (cb->isAnonymousBlock() || treatAsReplaced && style()->htmlHacks()) {
// IE quirk.
result = cb->calcPercentageHeight(cb->style()->height(), treatAsReplaced);
}
else if (cb->hasImplicitHeight()) {
result = cb->calcImplicitHeight();
}
if (result != -1) {
result = height.width(result);
if (cb->isTableCell() && style()->boxSizing() != BORDER_BOX) {
result -= (borderTop() + paddingTop() + borderBottom() + paddingBottom());
result = kMax(0, result);
}
}
return result;
}
short RenderBox::calcReplacedWidth() const
{
int width = calcReplacedWidthUsing(Width);
int minW = calcReplacedWidthUsing(MinWidth);
int maxW = style()->maxWidth().value() == UNDEFINED ? width : calcReplacedWidthUsing(MaxWidth);
if (width > maxW)
width = maxW;
if (width < minW)
width = minW;
return width;
}
int RenderBox::calcReplacedWidthUsing(WidthType widthType) const
{
Length w;
if (widthType == Width)
w = style()->width();
else if (widthType == MinWidth)
w = style()->minWidth();
else
w = style()->maxWidth();
switch (w.type()) {
case Fixed:
return w.value();
case Percent:
{
const int cw = containingBlockWidth();
if (cw > 0) {
int result = w.minWidth(cw);
return result;
}
}
// fall through
default:
return intrinsicWidth();
}
}
int RenderBox::calcReplacedHeight() const
{
int height = calcReplacedHeightUsing(Height);
int minH = calcReplacedHeightUsing(MinHeight);
int maxH = style()->maxHeight().value() == UNDEFINED ? height : calcReplacedHeightUsing(MaxHeight);
if (height > maxH)
height = maxH;
if (height < minH)
height = minH;
return height;
}
int RenderBox::calcReplacedHeightUsing(HeightType heightType) const
{
Length h;
if (heightType == Height)
h = style()->height();
else if (heightType == MinHeight)
h = style()->minHeight();
else
h = style()->maxHeight();
switch( h.type() ) {
case Fixed:
return h.value();
case Percent:
{
int th = calcPercentageHeight(h, true);
if (th != -1)
return th;
// fall through
}
default:
return intrinsicHeight();
};
}
int RenderBox::availableHeight() const
{
return availableHeightUsing(style()->height());
}
int RenderBox::availableHeightUsing(const Length& h) const
{
if (h.isFixed())
return calcContentHeight(h.value());
if (isCanvas())
if (static_cast<const RenderCanvas*>(this)->pagedMode())
return static_cast<const RenderCanvas*>(this)->pageHeight();
else
return static_cast<const RenderCanvas*>(this)->viewportHeight();
// We need to stop here, since we don't want to increase the height of the table
// artificially. We're going to rely on this cell getting expanded to some new
// height, and then when we lay out again we'll use the calculation below.
if (isTableCell() && (h.isVariable() || h.isPercent())) {
const RenderTableCell* tableCell = static_cast<const RenderTableCell*>(this);
return tableCell->cellPercentageHeight() -
(borderTop()+borderBottom()+paddingTop()+paddingBottom());
}
if (h.isPercent())
return calcContentHeight(h.width(containingBlock()->availableHeight()));
// Check for implicit height
if (hasImplicitHeight())
return calcImplicitHeight();
return containingBlock()->availableHeight();
}
int RenderBox::availableWidth() const
{
return availableWidthUsing(style()->width());
}
int RenderBox::availableWidthUsing(const Length& w) const
{
if (w.isFixed())
return calcContentWidth(w.value());
if (isCanvas())
return static_cast<const RenderCanvas*>(this)->viewportWidth();
if (w.isPercent())
return calcContentWidth(w.width(containingBlock()->availableWidth()));
return containingBlock()->availableWidth();
}
void RenderBox::calcVerticalMargins()
{
if( isTableCell() ) {
// table margins are basically infinite
m_marginTop = TABLECELLMARGIN;
m_marginBottom = TABLECELLMARGIN;
return;
}
Length tm = style()->marginTop();
Length bm = style()->marginBottom();
// margins are calculated with respect to the _width_ of
// the containing block (8.3)
int cw = containingBlock()->contentWidth();
m_marginTop = tm.minWidth(cw);
m_marginBottom = bm.minWidth(cw);
}
void RenderBox::setStaticX(short staticX)
{
m_staticX = staticX;
}
void RenderBox::setStaticY(int staticY)
{
m_staticY = staticY;
}
void RenderBox::calcAbsoluteHorizontal()
{
if (isReplaced()) {
calcAbsoluteHorizontalReplaced();
return;
}
// QUESTIONS
// FIXME 1: Which RenderObject's 'direction' property should used: the
// containing block (cb) as the spec seems to imply, the parent (parent()) as
// was previously done in calculating the static distances, or ourself, which
// was also previously done for deciding what to override when you had
// over-constrained margins? Also note that the container block is used
// in similar situations in other parts of the RenderBox class (see calcWidth()
// and calcHorizontalMargins()). For now we are using the parent for quirks
// mode and the containing block for strict mode.
// FIXME 2: Can perhaps optimize out cases when max-width/min-width are greater
// than or less than the computed m_width. Be careful of box-sizing and
// percentage issues.
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.3.7 "Absolutely positioned, non-replaced elements"
// <http://www.w3.org/TR/CSS21/visudet.html#abs-non-replaced-width>
// (block-style-comments in this function and in calcAbsoluteHorizontalValues()
// correspond to text from the spec)
// We don't use containingBlock(), since we may be positioned by an enclosing
// relative positioned inline.
const RenderObject* containerBlock = container();
// FIXME: This is incorrect for cases where the container block is a relatively
// positioned inline.
const int containerWidth = containingBlockWidth() + containerBlock->paddingLeft() + containerBlock->paddingRight();
// To match WinIE, in quirks mode use the parent's 'direction' property
// instead of the the container block's.
EDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction();
const int bordersPlusPadding = borderLeft() + borderRight() + paddingLeft() + paddingRight();
const Length marginLeft = style()->marginLeft();
const Length marginRight = style()->marginRight();
Length left = style()->left();
Length right = style()->right();
/*---------------------------------------------------------------------------*\
* For the purposes of this section and the next, the term "static position"
* (of an element) refers, roughly, to the position an element would have had
* in the normal flow. More precisely:
*
* * The static position for 'left' is the distance from the left edge of the
* containing block to the left margin edge of a hypothetical box that would
* have been the first box of the element if its 'position' property had
* been 'static' and 'float' had been 'none'. The value is negative if the
* hypothetical box is to the left of the containing block.
* * The static position for 'right' is the distance from the right edge of the
* containing block to the right margin edge of the same hypothetical box as
* above. The value is positive if the hypothetical box is to the left of the
* containing block's edge.
*
* But rather than actually calculating the dimensions of that hypothetical box,
* user agents are free to make a guess at its probable position.
*
* For the purposes of calculating the static position, the containing block of
* fixed positioned elements is the initial containing block instead of the
* viewport, and all scrollable boxes should be assumed to be scrolled to their
* origin.
\*---------------------------------------------------------------------------*/
// Calculate the static distance if needed.
if (left.isVariable() && right.isVariable()) {
if (containerDirection == LTR) {
// 'm_staticX' should already have been set through layout of the parent.
int staticPosition = m_staticX - containerBlock->borderLeft();
for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent())
staticPosition += po->xPos();
left = Length(staticPosition, Fixed);
} else {
RenderObject* po = parent();
// 'm_staticX' should already have been set through layout of the parent.
int staticPosition = m_staticX + containerWidth + containerBlock->borderRight() - po->width();
for (; po && po != containerBlock; po = po->parent())
staticPosition -= po->xPos();
right = Length(staticPosition, Fixed);
}
}
// Calculate constraint equation values for 'width' case.
calcAbsoluteHorizontalValues(style()->width(), containerBlock, containerDirection,
containerWidth, bordersPlusPadding,
left, right, marginLeft, marginRight,
m_width, m_marginLeft, m_marginRight, m_x);
// Calculate constraint equation values for 'max-width' case.calcContentWidth(width.width(containerWidth));
if (style()->maxWidth().value() != UNDEFINED) {
short maxWidth;
short maxMarginLeft;
short maxMarginRight;
short maxXPos;
calcAbsoluteHorizontalValues(style()->maxWidth(), containerBlock, containerDirection,
containerWidth, bordersPlusPadding,
left, right, marginLeft, marginRight,
maxWidth, maxMarginLeft, maxMarginRight, maxXPos);
if (m_width > maxWidth) {
m_width = maxWidth;
m_marginLeft = maxMarginLeft;
m_marginRight = maxMarginRight;
m_x = maxXPos;
}
}
// Calculate constraint equation values for 'min-width' case.
if (style()->minWidth().value()) {
short minWidth;
short minMarginLeft;
short minMarginRight;
short minXPos;
calcAbsoluteHorizontalValues(style()->minWidth(), containerBlock, containerDirection,
containerWidth, bordersPlusPadding,
left, right, marginLeft, marginRight,
minWidth, minMarginLeft, minMarginRight, minXPos);
if (m_width < minWidth) {
m_width = minWidth;
m_marginLeft = minMarginLeft;
m_marginRight = minMarginRight;
m_x = minXPos;
}
}
// Put m_width into correct form.
m_width += bordersPlusPadding;
}
void RenderBox::calcAbsoluteHorizontalValues(Length width, const RenderObject* containerBlock, EDirection containerDirection,
const int containerWidth, const int bordersPlusPadding,
const Length left, const Length right, const Length marginLeft, const Length marginRight,
short& widthValue, short& marginLeftValue, short& marginRightValue, short& xPos)
{
// 'left' and 'right' cannot both be 'auto' because one would of been
// converted to the static postion already
assert(!(left.isVariable() && right.isVariable()));
int leftValue = 0;
bool widthIsAuto = width.isVariable();
bool leftIsAuto = left.isVariable();
bool rightIsAuto = right.isVariable();
if (!leftIsAuto && !widthIsAuto && !rightIsAuto) {
/*-----------------------------------------------------------------------*\
* If none of the three is 'auto': If both 'margin-left' and 'margin-
* right' are 'auto', solve the equation under the extra constraint that
* the two margins get equal values, unless this would make them negative,
* in which case when direction of the containing block is 'ltr' ('rtl'),
* set 'margin-left' ('margin-right') to zero and solve for 'margin-right'
* ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto',
* solve the equation for that value. If the values are over-constrained,
* ignore the value for 'left' (in case the 'direction' property of the
* containing block is 'rtl') or 'right' (in case 'direction' is 'ltr')
* and solve for that value.
\*-----------------------------------------------------------------------*/
// NOTE: It is not necessary to solve for 'right' in the over constrained
// case because the value is not used for any further calculations.
leftValue = left.width(containerWidth);
widthValue = calcContentWidth(width.width(containerWidth));
const int availableSpace = containerWidth - (leftValue + widthValue + right.width(containerWidth) + bordersPlusPadding);
// Margins are now the only unknown
if (marginLeft.isVariable() && marginRight.isVariable()) {
// Both margins auto, solve for equality
if (availableSpace >= 0) {
marginLeftValue = availableSpace / 2; // split the diference
marginRightValue = availableSpace - marginLeftValue; // account for odd valued differences
} else {
// see FIXME 1
if (containerDirection == LTR) {
marginLeftValue = 0;
marginRightValue = availableSpace; // will be negative
} else {
marginLeftValue = availableSpace; // will be negative
marginRightValue = 0;
}
}
} else if (marginLeft.isVariable()) {
// Solve for left margin
marginRightValue = marginRight.width(containerWidth);
marginLeftValue = availableSpace - marginRightValue;
} else if (marginRight.isVariable()) {
// Solve for right margin
marginLeftValue = marginLeft.width(containerWidth);
marginRightValue = availableSpace - marginLeftValue;
} else {
// Over-constrained, solve for left if direction is RTL
marginLeftValue = marginLeft.width(containerWidth);
marginRightValue = marginRight.width(containerWidth);
// see FIXME 1 -- used to be "this->style()->direction()"
if (containerDirection == RTL)
leftValue = (availableSpace + leftValue) - marginLeftValue - marginRightValue;
}
} else {
/*--------------------------------------------------------------------*\
* Otherwise, set 'auto' values for 'margin-left' and 'margin-right'
* to 0, and pick the one of the following six rules that applies.
*
* 1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the
* width is shrink-to-fit. Then solve for 'left'
*
* OMIT RULE 2 AS IT SHOULD NEVER BE HIT
* ------------------------------------------------------------------
* 2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if
* the 'direction' property of the containing block is 'ltr' set
* 'left' to the static position, otherwise set 'right' to the
* static position. Then solve for 'left' (if 'direction is 'rtl')
* or 'right' (if 'direction' is 'ltr').
* ------------------------------------------------------------------
*
* 3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the
* width is shrink-to-fit . Then solve for 'right'
* 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve
* for 'left'
* 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve
* for 'width'
* 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve
* for 'right'
*
* Calculation of the shrink-to-fit width is similar to calculating the
* width of a table cell using the automatic table layout algorithm.
* Roughly: calculate the preferred width by formatting the content
* without breaking lines other than where explicit line breaks occur,
* and also calculate the preferred minimum width, e.g., by trying all
* possible line breaks. CSS 2.1 does not define the exact algorithm.
* Thirdly, calculate the available width: this is found by solving
* for 'width' after setting 'left' (in case 1) or 'right' (in case 3)
* to 0.
*
* Then the shrink-to-fit width is:
* kMin(kMax(preferred minimum width, available width), preferred width).
\*--------------------------------------------------------------------*/
// NOTE: For rules 3 and 6 it is not necessary to solve for 'right'
// because the value is not used for any further calculations.
// Calculate margins, 'auto' margins are ignored.
marginLeftValue = marginLeft.minWidth(containerWidth);
marginRightValue = marginRight.minWidth(containerWidth);
const int availableSpace = containerWidth - (marginLeftValue + marginRightValue + bordersPlusPadding);
// FIXME: Is there a faster way to find the correct case?
// Use rule/case that applies.
if (leftIsAuto && widthIsAuto && !rightIsAuto) {
// RULE 1: (use shrink-to-fit for width, and solve of left)
int rightValue = right.width(containerWidth);
// FIXME: would it be better to have shrink-to-fit in one step?
int preferredWidth = m_maxWidth - bordersPlusPadding;
int preferredMinWidth = m_minWidth - bordersPlusPadding;
int availableWidth = availableSpace - rightValue;
widthValue = kMin(kMax(preferredMinWidth, availableWidth), preferredWidth);
leftValue = availableSpace - (widthValue + rightValue);
} else if (!leftIsAuto && widthIsAuto && rightIsAuto) {
// RULE 3: (use shrink-to-fit for width, and no need solve of right)
leftValue = left.width(containerWidth);
// FIXME: would it be better to have shrink-to-fit in one step?
int preferredWidth = m_maxWidth - bordersPlusPadding;
int preferredMinWidth = m_minWidth - bordersPlusPadding;
int availableWidth = availableSpace - leftValue;
widthValue = kMin(kMax(preferredMinWidth, availableWidth), preferredWidth);
} else if (leftIsAuto && !width.isVariable() && !rightIsAuto) {
// RULE 4: (solve for left)
widthValue = calcContentWidth(width.width(containerWidth));
leftValue = availableSpace - (widthValue + right.width(containerWidth));
} else if (!leftIsAuto && widthIsAuto && !rightIsAuto) {
// RULE 5: (solve for width)
leftValue = left.width(containerWidth);
widthValue = availableSpace - (leftValue + right.width(containerWidth));
} else if (!leftIsAuto&& !widthIsAuto && rightIsAuto) {
// RULE 6: (no need solve for right)
leftValue = left.width(containerWidth);
widthValue = calcContentWidth(width.width(containerWidth));
}
}
// Use computed values to calculate the horizontal position.
xPos = leftValue + marginLeftValue + containerBlock->borderLeft();
}
void RenderBox::calcAbsoluteVertical()
{
if (isReplaced()) {
calcAbsoluteVerticalReplaced();
return;
}
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.6.4 "Absolutely positioned, non-replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-non-replaced-height>
// (block-style-comments in this function and in calcAbsoluteVerticalValues()
// correspond to text from the spec)
// We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline.
const RenderObject* containerBlock = container();
const int containerHeight = containerBlock->height() - containerBlock->borderTop() - containerBlock->borderBottom();
const int bordersPlusPadding = borderTop() + borderBottom() + paddingTop() + paddingBottom();
const Length marginTop = style()->marginTop();
const Length marginBottom = style()->marginBottom();
Length top = style()->top();
Length bottom = style()->bottom();
/*---------------------------------------------------------------------------*\
* For the purposes of this section and the next, the term "static position"
* (of an element) refers, roughly, to the position an element would have had
* in the normal flow. More precisely, the static position for 'top' is the
* distance from the top edge of the containing block to the top margin edge
* of a hypothetical box that would have been the first box of the element if
* its 'position' property had been 'static' and 'float' had been 'none'. The
* value is negative if the hypothetical box is above the containing block.
*
* But rather than actually calculating the dimensions of that hypothetical
* box, user agents are free to make a guess at its probable position.
*
* For the purposes of calculating the static position, the containing block
* of fixed positioned elements is the initial containing block instead of
* the viewport.
\*---------------------------------------------------------------------------*/
// Calculate the static distance if needed.
if (top.isVariable() && bottom.isVariable()) {
// m_staticY should already have been set through layout of the parent()
int staticTop = m_staticY - containerBlock->borderTop();
for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) {
staticTop += po->yPos();
}
top.setValue(Fixed, staticTop);
}
int height; // Needed to compute overflow.
// Calculate constraint equation values for 'height' case.
calcAbsoluteVerticalValues(style()->height(), containerBlock, containerHeight, bordersPlusPadding,
top, bottom, marginTop, marginBottom,
height, m_marginTop, m_marginBottom, m_y);
// Avoid doing any work in the common case (where the values of min-height and max-height are their defaults).
// see FIXME 2
// Calculate constraint equation values for 'max-height' case.
if (style()->maxHeight().value() != UNDEFINED) {
int maxHeight;
short maxMarginTop;
short maxMarginBottom;
int maxYPos;
calcAbsoluteVerticalValues(style()->maxHeight(), containerBlock, containerHeight, bordersPlusPadding,
top, bottom, marginTop, marginBottom,
maxHeight, maxMarginTop, maxMarginBottom, maxYPos);
if (height > maxHeight) {
height = maxHeight;
m_marginTop = maxMarginTop;
m_marginBottom = maxMarginBottom;
m_y = maxYPos;
}
}
// Calculate constraint equation values for 'min-height' case.
if (style()->minHeight().value()) {
int minHeight;
short minMarginTop;
short minMarginBottom;
int minYPos;
calcAbsoluteVerticalValues(style()->minHeight(), containerBlock, containerHeight, bordersPlusPadding,
top, bottom, marginTop, marginBottom,
minHeight, minMarginTop, minMarginBottom, minYPos);
if (height < minHeight) {
height = minHeight;
m_marginTop = minMarginTop;
m_marginBottom = minMarginBottom;
m_y = minYPos;
}
}
height += bordersPlusPadding;
// Set final height value.
m_height = height;
}
void RenderBox::calcAbsoluteVerticalValues(Length height, const RenderObject* containerBlock,
const int containerHeight, const int bordersPlusPadding,
const Length top, const Length bottom, const Length marginTop, const Length marginBottom,
int& heightValue, short& marginTopValue, short& marginBottomValue, int& yPos)
{
// 'top' and 'bottom' cannot both be 'auto' because 'top would of been
// converted to the static position in calcAbsoluteVertical()
assert(!(top.isVariable() && bottom.isVariable()));
int contentHeight = m_height - bordersPlusPadding;
int topValue = 0;
bool heightIsAuto = height.isVariable();
bool topIsAuto = top.isVariable();
bool bottomIsAuto = bottom.isVariable();
if (isTable() && heightIsAuto) {
// Height is never unsolved for tables. "auto" means shrink to fit.
// Use our height instead.
heightValue = contentHeight;
heightIsAuto = false;
} else if (!heightIsAuto) {
heightValue = calcContentHeight(height.width(containerHeight));
if (contentHeight > heightValue) {
if (!isTable())
contentHeight = heightValue;
else
heightValue = contentHeight;
}
}
if (!topIsAuto && !heightIsAuto && !bottomIsAuto) {
/*-----------------------------------------------------------------------*\
* If none of the three are 'auto': If both 'margin-top' and 'margin-
* bottom' are 'auto', solve the equation under the extra constraint that
* the two margins get equal values. If one of 'margin-top' or 'margin-
* bottom' is 'auto', solve the equation for that value. If the values
* are over-constrained, ignore the value for 'bottom' and solve for that
* value.
\*-----------------------------------------------------------------------*/
// NOTE: It is not necessary to solve for 'bottom' in the over constrained
// case because the value is not used for any further calculations.
topValue = top.width(containerHeight);
const int availableSpace = containerHeight - (topValue + heightValue + bottom.width(containerHeight) + bordersPlusPadding);
// Margins are now the only unknown
if (marginTop.isVariable() && marginBottom.isVariable()) {
// Both margins auto, solve for equality
// NOTE: This may result in negative values.
marginTopValue = availableSpace / 2; // split the diference
marginBottomValue = availableSpace - marginTopValue; // account for odd valued differences
} else if (marginTop.isVariable()) {
// Solve for top margin
marginBottomValue = marginBottom.width(containerHeight);
marginTopValue = availableSpace - marginBottomValue;
} else if (marginBottom.isVariable()) {
// Solve for bottom margin
marginTopValue = marginTop.width(containerHeight);
marginBottomValue = availableSpace - marginTopValue;
} else {
// Over-constrained, (no need solve for bottom)
marginTopValue = marginTop.width(containerHeight);
marginBottomValue = marginBottom.width(containerHeight);
}
} else {
/*--------------------------------------------------------------------*\
* Otherwise, set 'auto' values for 'margin-top' and 'margin-bottom'
* to 0, and pick the one of the following six rules that applies.
*
* 1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then
* the height is based on the content, and solve for 'top'.
*
* OMIT RULE 2 AS IT SHOULD NEVER BE HIT
* ------------------------------------------------------------------
* 2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then
* set 'top' to the static position, and solve for 'bottom'.
* ------------------------------------------------------------------
*
* 3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then
* the height is based on the content, and solve for 'bottom'.
* 4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', and
* solve for 'top'.
* 5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', and
* solve for 'height'.
* 6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', and
* solve for 'bottom'.
\*--------------------------------------------------------------------*/
// NOTE: For rules 3 and 6 it is not necessary to solve for 'bottom'
// because the value is not used for any further calculations.
// Calculate margins, 'auto' margins are ignored.
marginTopValue = marginTop.minWidth(containerHeight);
marginBottomValue = marginBottom.minWidth(containerHeight);
const int availableSpace = containerHeight - (marginTopValue + marginBottomValue + bordersPlusPadding);
// Use rule/case that applies.
if (topIsAuto && heightIsAuto && !bottomIsAuto) {
// RULE 1: (height is content based, solve of top)
heightValue = contentHeight;
topValue = availableSpace - (heightValue + bottom.width(containerHeight));
}
else if (topIsAuto && !heightIsAuto && bottomIsAuto) {
// RULE 2: (shouldn't happen)
}
else if (!topIsAuto && heightIsAuto && bottomIsAuto) {
// RULE 3: (height is content based, no need solve of bottom)
heightValue = contentHeight;
topValue = top.width(containerHeight);
} else if (topIsAuto && !heightIsAuto && !bottomIsAuto) {
// RULE 4: (solve of top)
topValue = availableSpace - (heightValue + bottom.width(containerHeight));
} else if (!topIsAuto && heightIsAuto && !bottomIsAuto) {
// RULE 5: (solve of height)
topValue = top.width(containerHeight);
heightValue = kMax(0, availableSpace - (topValue + bottom.width(containerHeight)));
} else if (!topIsAuto && !heightIsAuto && bottomIsAuto) {
// RULE 6: (no need solve of bottom)
topValue = top.width(containerHeight);
}
}
// Use computed values to calculate the vertical position.
yPos = topValue + marginTopValue + containerBlock->borderTop();
}
void RenderBox::calcAbsoluteHorizontalReplaced()
{
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.3.8 "Absolutly positioned, replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-replaced-width>
// (block-style-comments in this function correspond to text from the spec and
// the numbers correspond to numbers in spec)
// We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline.
const RenderObject* containerBlock = container();
// FIXME: This is incorrect for cases where the container block is a relatively
// positioned inline.
const int containerWidth = containingBlockWidth() + containerBlock->paddingLeft() + containerBlock->paddingRight();
// To match WinIE, in quirks mode use the parent's 'direction' property
// instead of the the container block's.
EDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction();
// Variables to solve.
Length left = style()->left();
Length right = style()->right();
Length marginLeft = style()->marginLeft();
Length marginRight = style()->marginRight();
/*-----------------------------------------------------------------------*\
* 1. The used value of 'width' is determined as for inline replaced
* elements.
\*-----------------------------------------------------------------------*/
// NOTE: This value of width is FINAL in that the min/max width calculations
// are dealt with in calcReplacedWidth(). This means that the steps to produce
// correct max/min in the non-replaced version, are not necessary.
m_width = calcReplacedWidth() + borderLeft() + borderRight() + paddingLeft() + paddingRight();
const int availableSpace = containerWidth - m_width;
/*-----------------------------------------------------------------------*\
* 2. If both 'left' and 'right' have the value 'auto', then if 'direction'
* of the containing block is 'ltr', set 'left' to the static position;
* else if 'direction' is 'rtl', set 'right' to the static position.
\*-----------------------------------------------------------------------*/
if (left.isVariable() && right.isVariable()) {
// see FIXME 1
if (containerDirection == LTR) {
// 'm_staticX' should already have been set through layout of the parent.
int staticPosition = m_staticX - containerBlock->borderLeft();
for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent())
staticPosition += po->xPos();
left.setValue(Fixed, staticPosition);
} else {
RenderObject* po = parent();
// 'm_staticX' should already have been set through layout of the parent.
int staticPosition = m_staticX + containerWidth + containerBlock->borderRight() - po->width();
for (; po && po != containerBlock; po = po->parent())
staticPosition -= po->xPos();
right.setValue(Fixed, staticPosition);
}
}
/*-----------------------------------------------------------------------*\
* 3. If 'left' or 'right' are 'auto', replace any 'auto' on 'margin-left'
* or 'margin-right' with '0'.
\*-----------------------------------------------------------------------*/
if (left.isVariable() || right.isVariable()) {
if (marginLeft.isVariable())
marginLeft.setValue(Fixed, 0);
if (marginRight.isVariable())
marginRight.setValue(Fixed, 0);
}
/*-----------------------------------------------------------------------*\
* 4. If at this point both 'margin-left' and 'margin-right' are still
* 'auto', solve the equation under the extra constraint that the two
* margins must get equal values, unless this would make them negative,
* in which case when the direction of the containing block is 'ltr'
* ('rtl'), set 'margin-left' ('margin-right') to zero and solve for
* 'margin-right' ('margin-left').
\*-----------------------------------------------------------------------*/
int leftValue = 0;
int rightValue = 0;
if (marginLeft.isVariable() && marginRight.isVariable()) {
// 'left' and 'right' cannot be 'auto' due to step 3
assert(!(left.isVariable() && right.isVariable()));
leftValue = left.width(containerWidth);
rightValue = right.width(containerWidth);
int difference = availableSpace - (leftValue + rightValue);
if (difference > 0) {
m_marginLeft = difference / 2; // split the diference
m_marginRight = difference - m_marginLeft; // account for odd valued differences
} else {
// see FIXME 1
if (containerDirection == LTR) {
m_marginLeft = 0;
m_marginRight = difference; // will be negative
} else {
m_marginLeft = difference; // will be negative
m_marginRight = 0;
}
}
/*-----------------------------------------------------------------------*\
* 5. If at this point there is an 'auto' left, solve the equation for
* that value.
\*-----------------------------------------------------------------------*/
} else if (left.isVariable()) {
m_marginLeft = marginLeft.width(containerWidth);
m_marginRight = marginRight.width(containerWidth);
rightValue = right.width(containerWidth);
// Solve for 'left'
leftValue = availableSpace - (rightValue + m_marginLeft + m_marginRight);
} else if (right.isVariable()) {
m_marginLeft = marginLeft.width(containerWidth);
m_marginRight = marginRight.width(containerWidth);
leftValue = left.width(containerWidth);
// Solve for 'right'
rightValue = availableSpace - (leftValue + m_marginLeft + m_marginRight);
} else if (marginLeft.isVariable()) {
m_marginRight = marginRight.width(containerWidth);
leftValue = left.width(containerWidth);
rightValue = right.width(containerWidth);
// Solve for 'margin-left'
m_marginLeft = availableSpace - (leftValue + rightValue + m_marginRight);
} else if (marginRight.isVariable()) {
m_marginLeft = marginLeft.width(containerWidth);
leftValue = left.width(containerWidth);
rightValue = right.width(containerWidth);
// Solve for 'margin-right'
m_marginRight = availableSpace - (leftValue + rightValue + m_marginLeft);
}
/*-----------------------------------------------------------------------*\
* 6. If at this point the values are over-constrained, ignore the value
* for either 'left' (in case the 'direction' property of the
* containing block is 'rtl') or 'right' (in case 'direction' is
* 'ltr') and solve for that value.
\*-----------------------------------------------------------------------*/
else {
m_marginLeft = marginLeft.width(containerWidth);
m_marginRight = marginRight.width(containerWidth);
if (containerDirection == LTR) {
leftValue = left.width(containerWidth);
rightValue = availableSpace - (leftValue + m_marginLeft + m_marginRight);
}
else {
rightValue = right.width(containerWidth);
leftValue = availableSpace - (rightValue + m_marginLeft + m_marginRight);
}
}
int totalWidth = m_width + leftValue + rightValue + m_marginLeft + m_marginRight;
if (totalWidth > containerWidth && (containerDirection == RTL))
leftValue = containerWidth - (totalWidth - leftValue);
// Use computed values to calculate the horizontal position.
m_x = leftValue + m_marginLeft + containerBlock->borderLeft();
}
void RenderBox::calcAbsoluteVerticalReplaced()
{
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.6.5 "Absolutly positioned, replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-replaced-height>
// (block-style-comments in this function correspond to text from the spec and
// the numbers correspond to numbers in spec)
// We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline.
const RenderObject* containerBlock = container();
const int containerHeight = containerBlock->height() - containerBlock->borderTop() - containerBlock->borderBottom();
// Variables to solve.
Length top = style()->top();
Length bottom = style()->bottom();
Length marginTop = style()->marginTop();
Length marginBottom = style()->marginBottom();
/*-----------------------------------------------------------------------*\
* 1. The used value of 'height' is determined as for inline replaced
* elements.
\*-----------------------------------------------------------------------*/
// NOTE: This value of height is FINAL in that the min/max height calculations
// are dealt with in calcReplacedHeight(). This means that the steps to produce
// correct max/min in the non-replaced version, are not necessary.
m_height = calcReplacedHeight() + borderTop() + borderBottom() + paddingTop() + paddingBottom();
const int availableSpace = containerHeight - m_height;
/*-----------------------------------------------------------------------*\
* 2. If both 'top' and 'bottom' have the value 'auto', replace 'top'
* with the element's static position.
\*-----------------------------------------------------------------------*/
if (top.isVariable() && bottom.isVariable()) {
// m_staticY should already have been set through layout of the parent().
int staticTop = m_staticY - containerBlock->borderTop();
for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) {
staticTop += po->yPos();
}
top.setValue(Fixed, staticTop);
}
/*-----------------------------------------------------------------------*\
* 3. If 'bottom' is 'auto', replace any 'auto' on 'margin-top' or
* 'margin-bottom' with '0'.
\*-----------------------------------------------------------------------*/
// FIXME: The spec. says that this step should only be taken when bottom is
// auto, but if only top is auto, this makes step 4 impossible.
if (top.isVariable() || bottom.isVariable()) {
if (marginTop.isVariable())
marginTop.setValue(Fixed, 0);
if (marginBottom.isVariable())
marginBottom.setValue(Fixed, 0);
}
/*-----------------------------------------------------------------------*\
* 4. If at this point both 'margin-top' and 'margin-bottom' are still
* 'auto', solve the equation under the extra constraint that the two
* margins must get equal values.
\*-----------------------------------------------------------------------*/
int topValue = 0;
int bottomValue = 0;
if (marginTop.isVariable() && marginBottom.isVariable()) {
// 'top' and 'bottom' cannot be 'auto' due to step 2 and 3 combinded.
assert(!(top.isVariable() || bottom.isVariable()));
topValue = top.width(containerHeight);
bottomValue = bottom.width(containerHeight);
int difference = availableSpace - (topValue + bottomValue);
// NOTE: This may result in negative values.
m_marginTop = difference / 2; // split the difference
m_marginBottom = difference - m_marginTop; // account for odd valued differences
/*-----------------------------------------------------------------------*\
* 5. If at this point there is only one 'auto' left, solve the equation
* for that value.
\*-----------------------------------------------------------------------*/
} else if (top.isVariable()) {
m_marginTop = marginTop.width(containerHeight);
m_marginBottom = marginBottom.width(containerHeight);
bottomValue = bottom.width(containerHeight);
// Solve for 'top'
topValue = availableSpace - (bottomValue + m_marginTop + m_marginBottom);
} else if (bottom.isVariable()) {
m_marginTop = marginTop.width(containerHeight);
m_marginBottom = marginBottom.width(containerHeight);
topValue = top.width(containerHeight);
// Solve for 'bottom'
// NOTE: It is not necessary to solve for 'bottom' because we don't ever
// use the value.
} else if (marginTop.isVariable()) {
m_marginBottom = marginBottom.width(containerHeight);
topValue = top.width(containerHeight);
bottomValue = bottom.width(containerHeight);
// Solve for 'margin-top'
m_marginTop = availableSpace - (topValue + bottomValue + m_marginBottom);
} else if (marginBottom.isVariable()) {
m_marginTop = marginTop.width(containerHeight);
topValue = top.width(containerHeight);
bottomValue = bottom.width(containerHeight);
// Solve for 'margin-bottom'
m_marginBottom = availableSpace - (topValue + bottomValue + m_marginTop);
}
/*-----------------------------------------------------------------------*\
* 6. If at this point the values are over-constrained, ignore the value
* for 'bottom' and solve for that value.
\*-----------------------------------------------------------------------*/
else {
m_marginTop = marginTop.width(containerHeight);
m_marginBottom = marginBottom.width(containerHeight);
topValue = top.width(containerHeight);
// Solve for 'bottom'
// NOTE: It is not necessary to solve for 'bottom' because we don't ever
// use the value.
}
// Use computed values to calculate the vertical position.
m_y = topValue + m_marginTop + containerBlock->borderTop();
}
int RenderBox::highestPosition(bool /*includeOverflowInterior*/, bool includeSelf) const
{
return includeSelf ? 0 : m_height;
}
int RenderBox::lowestPosition(bool /*includeOverflowInterior*/, bool includeSelf) const
{
return includeSelf ? m_height : 0;
}
int RenderBox::rightmostPosition(bool /*includeOverflowInterior*/, bool includeSelf) const
{
return includeSelf ? m_width : 0;
}
int RenderBox::leftmostPosition(bool /*includeOverflowInterior*/, bool includeSelf) const
{
return includeSelf ? 0 : m_width;
}
int RenderBox::pageTopAfter(int y) const
{
RenderObject* cb = container();
if (cb)
return cb->pageTopAfter(y+yPos()) - yPos();
else
return 0;
}
int RenderBox::crossesPageBreak(int t, int b) const
{
RenderObject* cb = container();
if (cb)
return cb->crossesPageBreak(yPos()+t, yPos()+b);
else
return false;
}
void RenderBox::caretPos(int /*offset*/, int flags, int &_x, int &_y, int &width, int &height)
{
#if 0
_x = -1;
// propagate it downwards to its children, someone will feel responsible
RenderObject *child = firstChild();
// if (child) kdDebug(6040) << "delegating caretPos to " << child->renderName() << endl;
if (child) child->caretPos(offset, override, _x, _y, width, height);
// if not, use the extents of this box. offset 0 means left, offset 1 means
// right
if (_x == -1) {
//kdDebug(6040) << "no delegation" << endl;
_x = xPos() + (offset == 0 ? 0 : m_width);
_y = yPos();
height = m_height;
width = override && offset == 0 ? m_width : 1;
// If height of box is smaller than font height, use the latter one,
// otherwise the caret might become invisible.
// FIXME: ignoring :first-line, missing good reason to take care of
int fontHeight = style()->fontMetrics().height();
if (fontHeight > height)
height = fontHeight;
int absx, absy;
RenderObject *cb = containingBlock();
if (cb && cb != this && cb->absolutePosition(absx,absy)) {
//kdDebug(6040) << "absx=" << absx << " absy=" << absy << endl;
_x += absx;
_y += absy;
} else {
// we don't know our absolute position, and there is no point returning
// just a relative one
_x = _y = -1;
}
}
#endif
_x = xPos();
_y = yPos();
// kdDebug(6040) << "_x " << _x << " _y " << _y << endl;
width = 1; // no override is indicated in boxes
RenderBlock *cb = containingBlock();
// Place caret outside the border
if (flags & CFOutside) {
RenderStyle *s = element() && element()->parent()
&& element()->parent()->renderer()
? element()->parent()->renderer()->style()
: cb->style();
const TQFontMetrics &fm = s->fontMetrics();
height = fm.height();
bool rtl = s->direction() == RTL;
bool outsideEnd = flags & CFOutsideEnd;
if (outsideEnd) {
_x += this->width();
} else {
_x--;
}
int hl = fm.leading() / 2;
if (!isReplaced() || style()->display() == BLOCK) {
if (!outsideEnd ^ rtl)
_y -= hl;
else
_y += kMax(this->height() - fm.ascent() - hl, 0);
} else {
_y += baselinePosition(false) - fm.ascent() - hl;
}
// Place caret inside the element
} else {
const TQFontMetrics &fm = style()->fontMetrics();
height = fm.height();
RenderStyle *s = style();
_x += borderLeft() + paddingLeft();
_y += borderTop() + paddingTop();
// ### regard direction
switch (s->textAlign()) {
case LEFT:
case KHTML_LEFT:
case TAAUTO: // ### find out what this does
case JUSTIFY:
break;
case CENTER:
case KHTML_CENTER:
_x += contentWidth() / 2;
break;
case KHTML_RIGHT:
case RIGHT:
_x += contentWidth();
break;
}
}
int absx, absy;
if (cb && cb != this && cb->absolutePosition(absx,absy)) {
// kdDebug(6040) << "absx=" << absx << " absy=" << absy << endl;
_x += absx;
_y += absy;
} else {
// we don't know our absolute position, and there is no point returning
// just a relative one
_x = _y = -1;
}
}
#undef DEBUG_LAYOUT