You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2117 lines
56 KiB
2117 lines
56 KiB
/*
|
|
* qxcfi.cpp: A Qt 3 plug-in for reading GIMP XCF image files
|
|
* Copyright (C) 2001 lignum Computing, Inc. <allen@lignumcomputing.com>
|
|
* Copyright (C) 2004 Melchior FRANZ <mfranz@kde.org>
|
|
*
|
|
* This plug-in is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <tqimage.h>
|
|
#include <tqiodevice.h>
|
|
#include <tqvaluestack.h>
|
|
#include <tqvaluevector.h>
|
|
|
|
#include <kdebug.h>
|
|
#include "xcf.h"
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
KDE_EXPORT void kimgio_xcf_read(TQImageIO *io)
|
|
{
|
|
XCFImageFormat xcfif;
|
|
xcfif.readXCF(io);
|
|
}
|
|
|
|
|
|
KDE_EXPORT void kimgio_xcf_write(TQImageIO *io)
|
|
{
|
|
kdDebug(399) << "XCF: write support not implemented" << endl;
|
|
io->setqStatus(-1);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
int XCFImageFormat::random_table[RANDOM_TABLE_SIZE];
|
|
|
|
//int XCFImageFormat::add_lut[256][256];
|
|
|
|
|
|
const XCFImageFormat::LayerModes XCFImageFormat::layer_modes[] = {
|
|
{true}, // NORMAL_MODE
|
|
{true}, // DISSOLVE_MODE
|
|
{true}, // BEHIND_MODE
|
|
{false}, // MULTIPLY_MODE
|
|
{false}, // SCREEN_MODE
|
|
{false}, // OVERLAY_MODE
|
|
{false}, // DIFFERENCE_MODE
|
|
{false}, // ADDITION_MODE
|
|
{false}, // SUBTRACT_MODE
|
|
{false}, // DARKEN_ONLY_MODE
|
|
{false}, // LIGHTEN_ONLY_MODE
|
|
{false}, // HUE_MODE
|
|
{false}, // SATURATION_MODE
|
|
{false}, // COLOR_MODE
|
|
{false}, // VALUE_MODE
|
|
{false}, // DIVIDE_MODE
|
|
{true}, // ERASE_MODE
|
|
{true}, // REPLACE_MODE
|
|
{true}, // ANTI_ERASE_MODE
|
|
};
|
|
|
|
|
|
//! Change a QRgb value's alpha only.
|
|
inline QRgb tqRgba ( QRgb rgb, int a )
|
|
{
|
|
return ((a & 0xff) << 24 | (rgb & TQRGB_MASK));
|
|
}
|
|
|
|
|
|
/*!
|
|
* The constructor for the XCF image loader. This initializes the
|
|
* tables used in the layer merging routines.
|
|
*/
|
|
XCFImageFormat::XCFImageFormat()
|
|
{
|
|
// From GIMP "paint_funcs.c" v1.2
|
|
srand(RANDOM_SEED);
|
|
|
|
for (int i = 0; i < RANDOM_TABLE_SIZE; i++)
|
|
random_table[i] = rand();
|
|
|
|
for (int i = 0; i < RANDOM_TABLE_SIZE; i++) {
|
|
int tmp;
|
|
int swap = i + rand() % (RANDOM_TABLE_SIZE - i);
|
|
tmp = random_table[i];
|
|
random_table[i] = random_table[swap];
|
|
random_table[swap] = tmp;
|
|
}
|
|
|
|
// for (int j = 0; j < 256; j++) {
|
|
// for (int k = 0; k < 256; k++) {
|
|
// int tmp_sum = j + k;
|
|
// if (tmp_sum > 255)
|
|
// tmp_sum = 255;
|
|
// add_lut[j][k] = tmp_sum;
|
|
// }
|
|
// }
|
|
}
|
|
|
|
inline
|
|
int XCFImageFormat::add_lut( int a, int b ) {
|
|
return QMIN( a + b, 255 );
|
|
}
|
|
|
|
void XCFImageFormat::readXCF(TQImageIO *io)
|
|
{
|
|
XCFImage xcf_image;
|
|
TQDataStream xcf_io(io->ioDevice());
|
|
|
|
char tag[14];
|
|
xcf_io.readRawBytes(tag, sizeof(tag));
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on header tag" << endl;
|
|
return;
|
|
}
|
|
|
|
xcf_io >> xcf_image.width >> xcf_image.height >> xcf_image.type;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on image info" << endl;
|
|
return;
|
|
}
|
|
|
|
kdDebug() << tag << " " << xcf_image.width << " " << xcf_image.height << " " << xcf_image.type << endl;
|
|
if (!loadImageProperties(xcf_io, xcf_image))
|
|
return;
|
|
|
|
// The layers appear to be stored in top-to-bottom order. This is
|
|
// the reverse of how a merged image must be computed. So, the layer
|
|
// offsets are pushed onto a LIFO stack (thus, we don't have to load
|
|
// all the data of all layers before beginning to construct the
|
|
// merged image).
|
|
|
|
TQValueStack<TQ_INT32> layer_offsets;
|
|
|
|
while (true) {
|
|
TQ_INT32 layer_offset;
|
|
|
|
xcf_io >> layer_offset;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer offsets" << endl;
|
|
return;
|
|
}
|
|
|
|
if (layer_offset == 0)
|
|
break;
|
|
|
|
layer_offsets.push(layer_offset);
|
|
}
|
|
|
|
xcf_image.num_layers = layer_offsets.size();
|
|
|
|
if (layer_offsets.size() == 0) {
|
|
kdDebug(399) << "XCF: no layers!" << endl;
|
|
return;
|
|
}
|
|
|
|
// Load each layer and add it to the image
|
|
while (!layer_offsets.isEmpty()) {
|
|
TQ_INT32 layer_offset = layer_offsets.pop();
|
|
|
|
xcf_io.tqdevice()->at(layer_offset);
|
|
|
|
if (!loadLayer(xcf_io, xcf_image))
|
|
return;
|
|
}
|
|
|
|
if (!xcf_image.initialized) {
|
|
kdDebug(399) << "XCF: no visible layers!" << endl;
|
|
return;
|
|
}
|
|
|
|
io->setImage(xcf_image.image);
|
|
io->setqStatus(0);
|
|
}
|
|
|
|
|
|
/*!
|
|
* An XCF file can contain an arbitrary number of properties associated
|
|
* with the image (and layer and mask).
|
|
* \param xcf_io the data stream connected to the XCF image
|
|
* \param xcf_image XCF image data.
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadImageProperties(TQDataStream& xcf_io, XCFImage& xcf_image)
|
|
{
|
|
while (true) {
|
|
PropType type;
|
|
TQByteArray bytes;
|
|
|
|
if (!loadProperty(xcf_io, type, bytes)) {
|
|
kdDebug(399) << "XCF: error loading global image properties" << endl;
|
|
return false;
|
|
}
|
|
|
|
TQDataStream property(bytes, IO_ReadOnly);
|
|
|
|
switch (type) {
|
|
case PROP_END:
|
|
return true;
|
|
|
|
case PROP_COMPRESSION:
|
|
property >> xcf_image.compression;
|
|
break;
|
|
|
|
case PROP_RESOLUTION:
|
|
property >> xcf_image.x_resolution >> xcf_image.y_resolution;
|
|
break;
|
|
|
|
case PROP_TATTOO:
|
|
property >> xcf_image.tattoo;
|
|
break;
|
|
|
|
case PROP_PARASITES:
|
|
while (!property.atEnd()) {
|
|
char* tag;
|
|
TQ_UINT32 size;
|
|
|
|
property.readBytes(tag, size);
|
|
|
|
TQ_UINT32 flags;
|
|
char* data=0;
|
|
property >> flags >> data;
|
|
|
|
if (tag && strncmp(tag, "gimp-comment", strlen("gimp-comment")) == 0)
|
|
xcf_image.image.setText("Comment", 0, data);
|
|
|
|
delete[] tag;
|
|
delete[] data;
|
|
}
|
|
break;
|
|
|
|
case PROP_UNIT:
|
|
property >> xcf_image.unit;
|
|
break;
|
|
|
|
case PROP_PATHS: // This property is ignored.
|
|
break;
|
|
|
|
case PROP_USER_UNIT: // This property is ignored.
|
|
break;
|
|
|
|
case PROP_COLORMAP:
|
|
property >> xcf_image.num_colors;
|
|
if(xcf_image.num_colors < 0 || xcf_image.num_colors > 65535)
|
|
return false;
|
|
|
|
xcf_image.palette.reserve(xcf_image.num_colors);
|
|
|
|
for (int i = 0; i < xcf_image.num_colors; i++) {
|
|
uchar r, g, b;
|
|
property >> r >> g >> b;
|
|
xcf_image.palette.push_back( tqRgb(r,g,b) );
|
|
}
|
|
break;
|
|
|
|
default:
|
|
kdDebug(399) << "XCF: unimplemented image property" << type
|
|
<< ", size " << bytes.size() << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Read a single property from the image file. The property type is returned
|
|
* in type and the data is returned in bytes.
|
|
* \param xcf the image file data stream.
|
|
* \param type returns with the property type.
|
|
* \param bytes returns with the property data.
|
|
* \return true if there were no IO errors. */
|
|
bool XCFImageFormat::loadProperty(TQDataStream& xcf_io, PropType& type, TQByteArray& bytes)
|
|
{
|
|
TQ_UINT32 foo;
|
|
xcf_io >> foo;
|
|
type=PropType(foo); // TODO urks
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on property type" << type << endl;
|
|
return false;
|
|
}
|
|
|
|
char* data;
|
|
TQ_UINT32 size;
|
|
|
|
// The colormap property size is not the correct number of bytes:
|
|
// The GIMP source xcf.c has size = 4 + ncolors, but it should be
|
|
// 4 + 3 * ncolors
|
|
|
|
if (type == PROP_COLORMAP) {
|
|
xcf_io >> size;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on property " << type << " size" << endl;
|
|
return false;
|
|
}
|
|
|
|
if(size > 65535 || size < 4)
|
|
return false;
|
|
|
|
size = 3 * (size - 4) + 4;
|
|
data = new char[size];
|
|
|
|
xcf_io.readRawBytes(data, size);
|
|
} else if (type == PROP_USER_UNIT) {
|
|
// The USER UNIT property size is not correct. I'm not sure why, though.
|
|
float factor;
|
|
TQ_INT32 digits;
|
|
char* unit_strings;
|
|
|
|
xcf_io >> size >> factor >> digits;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on property " << type << endl;
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
xcf_io >> unit_strings;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on property " << type << endl;
|
|
return false;
|
|
}
|
|
|
|
delete[] unit_strings;
|
|
}
|
|
|
|
size = 0;
|
|
} else {
|
|
xcf_io >> size;
|
|
if(size >256000)
|
|
return false;
|
|
data = new char[size];
|
|
xcf_io.readRawBytes(data, size);
|
|
}
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on property " << type << " data, size " << size << endl;
|
|
return false;
|
|
}
|
|
|
|
if (size != 0 && data) {
|
|
bytes.assign(data,size);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Load a layer from the XCF file. The data stream must be positioned at
|
|
* the beginning of the layer data.
|
|
* \param xcf_io the image file data stream.
|
|
* \param xcf_image contains the layer and the color table
|
|
* (if the image is indexed).
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadLayer(TQDataStream& xcf_io, XCFImage& xcf_image)
|
|
{
|
|
Layer& layer(xcf_image.layer);
|
|
delete[] layer.name;
|
|
|
|
xcf_io >> layer.width >> layer.height >> layer.type >> layer.name;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer" << endl;
|
|
return false;
|
|
}
|
|
|
|
if (!loadLayerProperties(xcf_io, layer))
|
|
return false;
|
|
#if 0
|
|
cout << "layer: \"" << layer.name << "\", size: " << layer.width << " x "
|
|
<< layer.height << ", type: " << layer.type << ", mode: " << layer.mode
|
|
<< ", opacity: " << layer.opacity << ", visible: " << layer.visible
|
|
<< ", offset: " << layer.x_offset << ", " << layer.y_offset << endl;
|
|
#endif
|
|
// Skip reading the rest of it if it is not visible. Typically, when
|
|
// you export an image from the The GIMP it flattens (or merges) only
|
|
// the visible layers into the output image.
|
|
|
|
if (layer.visible == 0)
|
|
return true;
|
|
|
|
// If there are any more layers, merge them into the final TQImage.
|
|
|
|
xcf_io >> layer.hierarchy_offset >> layer.mask_offset;
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer image offsets" << endl;
|
|
return false;
|
|
}
|
|
|
|
// Allocate the individual tile QImages based on the size and type
|
|
// of this layer.
|
|
|
|
if( !composeTiles(xcf_image))
|
|
return false;
|
|
xcf_io.tqdevice()->at(layer.hierarchy_offset);
|
|
|
|
// As tiles are loaded, they are copied into the layers tiles by
|
|
// this routine. (loadMask(), below, uses a slightly different
|
|
// version of assignBytes().)
|
|
|
|
layer.assignBytes = assignImageBytes;
|
|
|
|
if (!loadHierarchy(xcf_io, layer))
|
|
return false;
|
|
|
|
if (layer.mask_offset != 0) {
|
|
xcf_io.tqdevice()->at(layer.mask_offset);
|
|
|
|
if (!loadMask(xcf_io, layer))
|
|
return false;
|
|
}
|
|
|
|
// Now we should have enough information to initialize the final
|
|
// TQImage. The first visible layer determines the attributes
|
|
// of the TQImage.
|
|
|
|
if (!xcf_image.initialized) {
|
|
if( !initializeImage(xcf_image))
|
|
return false;
|
|
copyLayerToImage(xcf_image);
|
|
xcf_image.initialized = true;
|
|
} else
|
|
mergeLayerIntoImage(xcf_image);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* An XCF file can contain an arbitrary number of properties associated
|
|
* with a layer.
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param layer layer to collect the properties.
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadLayerProperties(TQDataStream& xcf_io, Layer& layer)
|
|
{
|
|
while (true) {
|
|
PropType type;
|
|
TQByteArray bytes;
|
|
|
|
if (!loadProperty(xcf_io, type, bytes)) {
|
|
kdDebug(399) << "XCF: error loading layer properties" << endl;
|
|
return false;
|
|
}
|
|
|
|
TQDataStream property(bytes, IO_ReadOnly);
|
|
|
|
switch (type) {
|
|
case PROP_END:
|
|
return true;
|
|
|
|
case PROP_ACTIVE_LAYER:
|
|
layer.active = true;
|
|
break;
|
|
|
|
case PROP_OPACITY:
|
|
property >> layer.opacity;
|
|
break;
|
|
|
|
case PROP_VISIBLE:
|
|
property >> layer.visible;
|
|
break;
|
|
|
|
case PROP_LINKED:
|
|
property >> layer.linked;
|
|
break;
|
|
|
|
case PROP_PRESERVE_TRANSPARENCY:
|
|
property >> layer.preserve_transparency;
|
|
break;
|
|
|
|
case PROP_APPLY_MASK:
|
|
property >> layer.apply_mask;
|
|
break;
|
|
|
|
case PROP_EDIT_MASK:
|
|
property >> layer.edit_mask;
|
|
break;
|
|
|
|
case PROP_SHOW_MASK:
|
|
property >> layer.show_mask;
|
|
break;
|
|
|
|
case PROP_OFFSETS:
|
|
property >> layer.x_offset >> layer.y_offset;
|
|
break;
|
|
|
|
case PROP_MODE:
|
|
property >> layer.mode;
|
|
break;
|
|
|
|
case PROP_TATTOO:
|
|
property >> layer.tattoo;
|
|
break;
|
|
|
|
default:
|
|
kdDebug(399) << "XCF: unimplemented layer property " << type
|
|
<< ", size " << bytes.size() << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Compute the number of tiles in the current layer and allocate
|
|
* TQImage structures for each of them.
|
|
* \param xcf_image contains the current layer.
|
|
*/
|
|
bool XCFImageFormat::composeTiles(XCFImage& xcf_image)
|
|
{
|
|
Layer& layer(xcf_image.layer);
|
|
|
|
layer.nrows = (layer.height + TILE_HEIGHT - 1) / TILE_HEIGHT;
|
|
layer.ncols = (layer.width + TILE_WIDTH - 1) / TILE_WIDTH;
|
|
|
|
layer.image_tiles.resize(layer.nrows);
|
|
|
|
if (layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE)
|
|
layer.alpha_tiles.resize(layer.nrows);
|
|
|
|
if (layer.mask_offset != 0)
|
|
layer.mask_tiles.resize(layer.nrows);
|
|
|
|
for (uint j = 0; j < layer.nrows; j++) {
|
|
layer.image_tiles[j].resize(layer.ncols);
|
|
|
|
if (layer.type == GRAYA_GIMAGE || layer.type == INDEXEDA_GIMAGE)
|
|
layer.alpha_tiles[j].resize(layer.ncols);
|
|
|
|
if (layer.mask_offset != 0)
|
|
layer.mask_tiles[j].resize(layer.ncols);
|
|
}
|
|
|
|
for (uint j = 0; j < layer.nrows; j++) {
|
|
for (uint i = 0; i < layer.ncols; i++) {
|
|
|
|
uint tile_width = (i + 1) * TILE_WIDTH <= layer.width
|
|
? TILE_WIDTH : layer.width - i * TILE_WIDTH;
|
|
|
|
uint tile_height = (j + 1) * TILE_HEIGHT <= layer.height
|
|
? TILE_HEIGHT : layer.height - j * TILE_HEIGHT;
|
|
|
|
// Try to create the most appropriate TQImage (each GIMP layer
|
|
// type is treated slightly differently)
|
|
|
|
switch (layer.type) {
|
|
case RGB_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height, 32, 0);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
layer.image_tiles[j][i].setAlphaBuffer(false);
|
|
break;
|
|
|
|
case RGBA_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height, 32, 0);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
layer.image_tiles[j][i].setAlphaBuffer(true);
|
|
break;
|
|
|
|
case GRAY_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height, 8, 256);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
setGrayPalette(layer.image_tiles[j][i]);
|
|
break;
|
|
|
|
case GRAYA_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height, 8, 256);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
setGrayPalette(layer.image_tiles[j][i]);
|
|
|
|
layer.alpha_tiles[j][i] = TQImage( tile_width, tile_height, 8, 256);
|
|
if( layer.alpha_tiles[j][i].isNull())
|
|
return false;
|
|
setGrayPalette(layer.alpha_tiles[j][i]);
|
|
break;
|
|
|
|
case INDEXED_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height, 8,
|
|
xcf_image.num_colors);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
setPalette(xcf_image, layer.image_tiles[j][i]);
|
|
break;
|
|
|
|
case INDEXEDA_GIMAGE:
|
|
layer.image_tiles[j][i] = TQImage(tile_width, tile_height,8,
|
|
xcf_image.num_colors);
|
|
if( layer.image_tiles[j][i].isNull())
|
|
return false;
|
|
setPalette(xcf_image, layer.image_tiles[j][i]);
|
|
|
|
layer.alpha_tiles[j][i] = TQImage(tile_width, tile_height, 8, 256);
|
|
if( layer.alpha_tiles[j][i].isNull())
|
|
return false;
|
|
setGrayPalette(layer.alpha_tiles[j][i]);
|
|
}
|
|
|
|
if (layer.mask_offset != 0) {
|
|
layer.mask_tiles[j][i] = TQImage(tile_width, tile_height, 8, 256);
|
|
if( layer.mask_tiles[j][i].isNull())
|
|
return false;
|
|
setGrayPalette(layer.mask_tiles[j][i]);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Apply a grayscale palette to the TQImage. Note that Qt does not distinguish
|
|
* between grayscale and indexed images. A grayscale image is just
|
|
* an indexed image with a 256-color, grayscale palette.
|
|
* \param image image to set to a grayscale palette.
|
|
*/
|
|
void XCFImageFormat::setGrayPalette(TQImage& image)
|
|
{
|
|
for (int i = 0; i < 256; i++)
|
|
image.setColor(i, tqRgb(i, i, i));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy the indexed palette from the XCF image into the TQImage.
|
|
* \param xcf_image XCF image containing the palette read from the data stream.
|
|
* \param image image to apply the palette to.
|
|
*/
|
|
void XCFImageFormat::setPalette(XCFImage& xcf_image, TQImage& image)
|
|
{
|
|
for (int i = 0; i < xcf_image.num_colors; i++)
|
|
image.setColor(i, xcf_image.palette[i]);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy the bytes from the tile buffer into the image tile TQImage, taking into
|
|
* account all the myriad different modes.
|
|
* \param layer layer containing the tile buffer and the image tile matrix.
|
|
* \param i column index of current tile.
|
|
* \param j row index of current tile.
|
|
*/
|
|
void XCFImageFormat::assignImageBytes(Layer& layer, uint i, uint j)
|
|
{
|
|
uchar* tile = layer.tile;
|
|
|
|
switch (layer.type) {
|
|
case RGB_GIMAGE:
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
layer.image_tiles[j][i].setPixel(k, l,
|
|
tqRgb(tile[0], tile[1], tile[2]));
|
|
tile += sizeof(QRgb);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RGBA_GIMAGE:
|
|
for ( int l = 0; l < layer.image_tiles[j][i].height(); l++ ) {
|
|
for ( int k = 0; k < layer.image_tiles[j][i].width(); k++ ) {
|
|
layer.image_tiles[j][i].setPixel(k, l,
|
|
tqRgba(tile[0], tile[1], tile[2], tile[3]));
|
|
tile += sizeof(QRgb);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GRAY_GIMAGE:
|
|
case INDEXED_GIMAGE:
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
layer.image_tiles[j][i].setPixel(k, l, tile[0]);
|
|
tile += sizeof(QRgb);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GRAYA_GIMAGE:
|
|
case INDEXEDA_GIMAGE:
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
|
|
// The "if" here should not be necessary, but apparently there
|
|
// are some cases where the image can contain larger indices
|
|
// than there are colors in the palette. (A bug in The GIMP?)
|
|
|
|
if (tile[0] < layer.image_tiles[j][i].numColors())
|
|
layer.image_tiles[j][i].setPixel(k, l, tile[0]);
|
|
|
|
layer.alpha_tiles[j][i].setPixel(k, l, tile[1]);
|
|
tile += sizeof(QRgb);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* The GIMP stores images in a "mipmap"-like hierarchy. As far as the QImage
|
|
* is concerned, however, only the top level (i.e., the full resolution image)
|
|
* is used.
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param layer the layer to collect the image.
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadHierarchy(TQDataStream& xcf_io, Layer& layer)
|
|
{
|
|
TQ_INT32 width;
|
|
TQ_INT32 height;
|
|
TQ_INT32 bpp;
|
|
TQ_UINT32 offset;
|
|
|
|
xcf_io >> width >> height >> bpp >> offset;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer " << layer.name << " image header" << endl;
|
|
return false;
|
|
}
|
|
|
|
// GIMP stores images in a "mipmap"-like format (multiple levels of
|
|
// increasingly lower resolution). Only the top level is used here,
|
|
// however.
|
|
|
|
TQ_UINT32 junk;
|
|
do {
|
|
xcf_io >> junk;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer " << layer.name << " level offsets" << endl;
|
|
return false;
|
|
}
|
|
} while (junk != 0);
|
|
|
|
TQIODevice::Offset saved_pos = xcf_io.tqdevice()->at();
|
|
|
|
xcf_io.tqdevice()->at(offset);
|
|
if (!loadLevel(xcf_io, layer, bpp))
|
|
return false;
|
|
|
|
xcf_io.tqdevice()->at(saved_pos);
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Load one level of the image hierarchy (but only the top level is ever used).
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param layer the layer to collect the image.
|
|
* \param bpp the number of bytes in a pixel.
|
|
* \return true if there were no I/O errors.
|
|
* \sa loadTileRLE().
|
|
*/
|
|
bool XCFImageFormat::loadLevel(TQDataStream& xcf_io, Layer& layer, TQ_INT32 bpp)
|
|
{
|
|
TQ_INT32 width;
|
|
TQ_INT32 height;
|
|
TQ_UINT32 offset;
|
|
|
|
xcf_io >> width >> height >> offset;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer " << layer.name << " level info" << endl;
|
|
return false;
|
|
}
|
|
|
|
if (offset == 0)
|
|
return true;
|
|
|
|
for (uint j = 0; j < layer.nrows; j++) {
|
|
for (uint i = 0; i < layer.ncols; i++) {
|
|
|
|
if (offset == 0) {
|
|
kdDebug(399) << "XCF: incorrect number of tiles in layer " << layer.name << endl;
|
|
return false;
|
|
}
|
|
|
|
TQIODevice::Offset saved_pos = xcf_io.tqdevice()->at();
|
|
TQ_UINT32 offset2;
|
|
xcf_io >> offset2;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer " << layer.name << " level offset look-ahead" << endl;
|
|
return false;
|
|
}
|
|
|
|
// Evidently, RLE can occasionally expand a tile instead of compressing it!
|
|
|
|
if (offset2 == 0)
|
|
offset2 = offset + (uint)(TILE_WIDTH * TILE_HEIGHT * 4 * 1.5);
|
|
|
|
xcf_io.tqdevice()->at(offset);
|
|
int size = layer.image_tiles[j][i].width() * layer.image_tiles[j][i].height();
|
|
|
|
if (!loadTileRLE(xcf_io, layer.tile, size, offset2 - offset, bpp))
|
|
return false;
|
|
|
|
// The bytes in the layer tile are juggled differently depending on
|
|
// the target TQImage. The caller has set layer.assignBytes to the
|
|
// appropriate routine.
|
|
|
|
layer.assignBytes(layer, i, j);
|
|
|
|
xcf_io.tqdevice()->at(saved_pos);
|
|
xcf_io >> offset;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on layer " << layer.name << " level offset" << endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* A layer can have a one channel image which is used as a mask.
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param layer the layer to collect the mask image.
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadMask(TQDataStream& xcf_io, Layer& layer)
|
|
{
|
|
TQ_INT32 width;
|
|
TQ_INT32 height;
|
|
char* name;
|
|
|
|
xcf_io >> width >> height >> name;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on mask info" << endl;
|
|
return false;
|
|
}
|
|
|
|
delete name;
|
|
|
|
if (!loadChannelProperties(xcf_io, layer))
|
|
return false;
|
|
|
|
TQ_UINT32 hierarchy_offset;
|
|
xcf_io >> hierarchy_offset;
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
kdDebug(399) << "XCF: read failure on mask image offset" << endl;
|
|
return false;
|
|
}
|
|
|
|
xcf_io.tqdevice()->at(hierarchy_offset);
|
|
layer.assignBytes = assignMaskBytes;
|
|
|
|
if (!loadHierarchy(xcf_io, layer))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* This is the routine for which all the other code is simply
|
|
* infrastructure. Read the image bytes out of the file and
|
|
* store them in the tile buffer. This is passed a full 32-bit deep
|
|
* buffer, even if bpp is smaller. The caller can figure out what to
|
|
* do with the bytes.
|
|
*
|
|
* The tile is stored in "channels", i.e. the red component of all
|
|
* pixels, then the green component of all pixels, then blue then
|
|
* alpha, or, for indexed images, the color indices of all pixels then
|
|
* the alpha of all pixels.
|
|
*
|
|
* The data is compressed with "run length encoding". Some simple data
|
|
* integrity checks are made.
|
|
*
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param tile the buffer to expand the RLE into.
|
|
* \param image_size number of bytes expected to be in the image tile.
|
|
* \param data_length number of bytes expected in the RLE.
|
|
* \param bpp number of bytes per pixel.
|
|
* \return true if there were no I/O errors and no obvious corruption of
|
|
* the RLE data.
|
|
*/
|
|
bool XCFImageFormat::loadTileRLE(TQDataStream& xcf_io, uchar* tile, int image_size,
|
|
int data_length, TQ_INT32 bpp)
|
|
{
|
|
uchar* data;
|
|
|
|
uchar* xcfdata;
|
|
uchar* xcfodata;
|
|
uchar* xcfdatalimit;
|
|
|
|
xcfdata = xcfodata = new uchar[data_length];
|
|
|
|
xcf_io.readRawBytes((char*)xcfdata, data_length);
|
|
|
|
if (xcf_io.tqdevice()->status() != IO_Ok) {
|
|
delete[] xcfodata;
|
|
kdDebug(399) << "XCF: read failure on tile" << endl;
|
|
return false;
|
|
}
|
|
|
|
xcfdatalimit = &xcfodata[data_length - 1];
|
|
|
|
for (int i = 0; i < bpp; ++i) {
|
|
|
|
data = tile + i;
|
|
|
|
int count = 0;
|
|
int size = image_size;
|
|
|
|
while (size > 0) {
|
|
if (xcfdata > xcfdatalimit)
|
|
goto bogus_rle;
|
|
|
|
uchar val = *xcfdata++;
|
|
uint length = val;
|
|
|
|
if (length >= 128) {
|
|
length = 255 - (length - 1);
|
|
if (length == 128) {
|
|
if (xcfdata >= xcfdatalimit)
|
|
goto bogus_rle;
|
|
|
|
length = (*xcfdata << 8) + xcfdata[1];
|
|
|
|
xcfdata += 2;
|
|
}
|
|
|
|
count += length;
|
|
size -= length;
|
|
|
|
if (size < 0)
|
|
goto bogus_rle;
|
|
|
|
if (&xcfdata[length - 1] > xcfdatalimit)
|
|
goto bogus_rle;
|
|
|
|
while (length-- > 0) {
|
|
*data = *xcfdata++;
|
|
data += sizeof(QRgb);
|
|
}
|
|
} else {
|
|
length += 1;
|
|
if (length == 128) {
|
|
if (xcfdata >= xcfdatalimit)
|
|
goto bogus_rle;
|
|
|
|
length = (*xcfdata << 8) + xcfdata[1];
|
|
xcfdata += 2;
|
|
}
|
|
|
|
count += length;
|
|
size -= length;
|
|
|
|
if (size < 0)
|
|
goto bogus_rle;
|
|
|
|
if (xcfdata > xcfdatalimit)
|
|
goto bogus_rle;
|
|
|
|
val = *xcfdata++;
|
|
|
|
while (length-- > 0) {
|
|
*data = val;
|
|
data += sizeof(QRgb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] xcfodata;
|
|
return true;
|
|
|
|
bogus_rle:
|
|
|
|
kdDebug(399) << "The run length encoding could not be decoded properly" << endl;
|
|
delete[] xcfodata;
|
|
return false;
|
|
}
|
|
|
|
|
|
/*!
|
|
* An XCF file can contain an arbitrary number of properties associated
|
|
* with a channel. Note that this routine only reads mask channel properties.
|
|
* \param xcf_io the data stream connected to the XCF image.
|
|
* \param layer layer containing the mask channel to collect the properties.
|
|
* \return true if there were no I/O errors.
|
|
*/
|
|
bool XCFImageFormat::loadChannelProperties(TQDataStream& xcf_io, Layer& layer)
|
|
{
|
|
while (true) {
|
|
PropType type;
|
|
TQByteArray bytes;
|
|
|
|
if (!loadProperty(xcf_io, type, bytes)) {
|
|
kdDebug(399) << "XCF: error loading channel properties" << endl;
|
|
return false;
|
|
}
|
|
|
|
TQDataStream property(bytes, IO_ReadOnly);
|
|
|
|
switch (type) {
|
|
case PROP_END:
|
|
return true;
|
|
|
|
case PROP_OPACITY:
|
|
property >> layer.mask_channel.opacity;
|
|
break;
|
|
|
|
case PROP_VISIBLE:
|
|
property >> layer.mask_channel.visible;
|
|
break;
|
|
|
|
case PROP_SHOW_MASKED:
|
|
property >> layer.mask_channel.show_masked;
|
|
break;
|
|
|
|
case PROP_COLOR:
|
|
property >> layer.mask_channel.red >> layer.mask_channel.green
|
|
>> layer.mask_channel.blue;
|
|
break;
|
|
|
|
case PROP_TATTOO:
|
|
property >> layer.mask_channel.tattoo;
|
|
break;
|
|
|
|
default:
|
|
kdDebug(399) << "XCF: unimplemented channel property " << type
|
|
<< ", size " << bytes.size() << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy the bytes from the tile buffer into the mask tile TQImage.
|
|
* \param layer layer containing the tile buffer and the mask tile matrix.
|
|
* \param i column index of current tile.
|
|
* \param j row index of current tile.
|
|
*/
|
|
void XCFImageFormat::assignMaskBytes(Layer& layer, uint i, uint j)
|
|
{
|
|
uchar* tile = layer.tile;
|
|
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
layer.mask_tiles[j][i].setPixel(k, l, tile[0]);
|
|
tile += sizeof(QRgb);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Construct the TQImage which will eventually be returned to the QImage
|
|
* loader.
|
|
*
|
|
* There are a couple of situations which require that the TQImage is not
|
|
* exactly the same as The GIMP's representation. The full table is:
|
|
* \verbatim
|
|
* Grayscale opaque : 8 bpp indexed
|
|
* Grayscale translucent : 32 bpp + alpha
|
|
* Indexed opaque : 1 bpp if num_colors <= 2
|
|
* : 8 bpp indexed otherwise
|
|
* Indexed translucent : 8 bpp indexed + alpha if num_colors < 256
|
|
* : 32 bpp + alpha otherwise
|
|
* RGB opaque : 32 bpp
|
|
* RGBA translucent : 32 bpp + alpha
|
|
* \endverbatim
|
|
* Whether the image is translucent or not is determined by the bottom layer's
|
|
* alpha channel. However, even if the bottom layer lacks an alpha channel,
|
|
* it can still have an opacity < 1. In this case, the TQImage is promoted
|
|
* to 32-bit. (Note this is different from the output from the GIMP image
|
|
* exporter, which seems to ignore this attribute.)
|
|
*
|
|
* Independently, higher layers can be translucent, but the background of
|
|
* the image will not show through if the bottom layer is opaque.
|
|
*
|
|
* For indexed images, translucency is an all or nothing effect.
|
|
* \param xcf_image contains image info and bottom-most layer.
|
|
*/
|
|
bool XCFImageFormat::initializeImage(XCFImage& xcf_image)
|
|
{
|
|
// (Aliases to make the code look a little better.)
|
|
Layer& layer(xcf_image.layer);
|
|
TQImage& image(xcf_image.image);
|
|
|
|
switch (layer.type) {
|
|
case RGB_GIMAGE:
|
|
if (layer.opacity == OPAQUE_OPACITY) {
|
|
image.create( xcf_image.width, xcf_image.height, 32);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(tqRgb(255, 255, 255));
|
|
break;
|
|
} // else, fall through to 32-bit representation
|
|
|
|
case RGBA_GIMAGE:
|
|
image.create(xcf_image.width, xcf_image.height, 32);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(tqRgba(255, 255, 255, 0));
|
|
// Turning this on prevents fill() from affecting the alpha channel,
|
|
// by the way.
|
|
image.setAlphaBuffer(true);
|
|
break;
|
|
|
|
case GRAY_GIMAGE:
|
|
if (layer.opacity == OPAQUE_OPACITY) {
|
|
image.create(xcf_image.width, xcf_image.height, 8, 256);
|
|
if( image.isNull())
|
|
return false;
|
|
setGrayPalette(image);
|
|
image.fill(255);
|
|
break;
|
|
} // else, fall through to 32-bit representation
|
|
|
|
case GRAYA_GIMAGE:
|
|
image.create(xcf_image.width, xcf_image.height, 32);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(tqRgba(255, 255, 255, 0));
|
|
image.setAlphaBuffer(true);
|
|
break;
|
|
|
|
case INDEXED_GIMAGE:
|
|
// As noted in the table above, there are quite a few combinations
|
|
// which are possible with indexed images, depending on the
|
|
// presense of transparency (note: not translucency, which is not
|
|
// supported by The GIMP for indexed images) and the number of
|
|
// individual colors.
|
|
|
|
// Note: Qt treats a bitmap with a Black and White color palette
|
|
// as a mask, so only the "on" bits are drawn, regardless of the
|
|
// order color table entries. Otherwise (i.e., at least one of the
|
|
// color table entries is not black or white), it obeys the one-
|
|
// or two-color palette. Have to ask about this...
|
|
|
|
if (xcf_image.num_colors <= 2) {
|
|
image.create(xcf_image.width, xcf_image.height,
|
|
1, xcf_image.num_colors,
|
|
TQImage::LittleEndian);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(0);
|
|
setPalette(xcf_image, image);
|
|
} else if (xcf_image.num_colors <= 256) {
|
|
image.create(xcf_image.width, xcf_image.height,
|
|
8, xcf_image.num_colors,
|
|
TQImage::LittleEndian);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(0);
|
|
setPalette(xcf_image, image);
|
|
}
|
|
break;
|
|
|
|
case INDEXEDA_GIMAGE:
|
|
if (xcf_image.num_colors == 1) {
|
|
// Plenty(!) of room to add a transparent color
|
|
xcf_image.num_colors++;
|
|
xcf_image.palette.resize(xcf_image.num_colors);
|
|
xcf_image.palette[1] = xcf_image.palette[0];
|
|
xcf_image.palette[0] = tqRgba(255, 255, 255, 0);
|
|
|
|
image.create(xcf_image.width, xcf_image.height,
|
|
1, xcf_image.num_colors,
|
|
TQImage::LittleEndian);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(0);
|
|
setPalette(xcf_image, image);
|
|
image.setAlphaBuffer(true);
|
|
} else if (xcf_image.num_colors < 256) {
|
|
// Plenty of room to add a transparent color
|
|
xcf_image.num_colors++;
|
|
xcf_image.palette.resize(xcf_image.num_colors);
|
|
for (int c = xcf_image.num_colors - 1; c >= 1; c--)
|
|
xcf_image.palette[c] = xcf_image.palette[c - 1];
|
|
|
|
xcf_image.palette[0] = tqRgba(255, 255, 255, 0);
|
|
image.create( xcf_image.width, xcf_image.height,
|
|
8, xcf_image.num_colors);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(0);
|
|
setPalette(xcf_image, image);
|
|
image.setAlphaBuffer(true);
|
|
} else {
|
|
// No room for a transparent color, so this has to be promoted to
|
|
// true color. (There is no equivalent PNG representation output
|
|
// from The GIMP as of v1.2.)
|
|
image.create(xcf_image.width, xcf_image.height, 32);
|
|
if( image.isNull())
|
|
return false;
|
|
image.fill(tqRgba(255, 255, 255, 0));
|
|
image.setAlphaBuffer(true);
|
|
}
|
|
break;
|
|
}
|
|
|
|
image.setDotsPerMeterX((int)(xcf_image.x_resolution * INCHESPERMETER));
|
|
image.setDotsPerMeterY((int)(xcf_image.y_resolution * INCHESPERMETER));
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy a layer into an image, taking account of the manifold modes. The
|
|
* contents of the image are replaced.
|
|
* \param xcf_image contains the layer and image to be replaced.
|
|
*/
|
|
void XCFImageFormat::copyLayerToImage(XCFImage& xcf_image)
|
|
{
|
|
Layer& layer(xcf_image.layer);
|
|
TQImage& image(xcf_image.image);
|
|
PixelCopyOperation copy = 0;
|
|
|
|
switch (layer.type) {
|
|
case RGB_GIMAGE:
|
|
case RGBA_GIMAGE:
|
|
copy = copyRGBToRGB;
|
|
break;
|
|
case GRAY_GIMAGE:
|
|
if (layer.opacity == OPAQUE_OPACITY)
|
|
copy = copyGrayToGray;
|
|
else
|
|
copy = copyGrayToRGB;
|
|
break;
|
|
case GRAYA_GIMAGE:
|
|
copy = copyGrayAToRGB;
|
|
break;
|
|
case INDEXED_GIMAGE:
|
|
copy = copyIndexedToIndexed;
|
|
break;
|
|
case INDEXEDA_GIMAGE:
|
|
if (xcf_image.image.depth() <= 8)
|
|
copy = copyIndexedAToIndexed;
|
|
else
|
|
copy = copyIndexedAToRGB;
|
|
}
|
|
|
|
// For each tile...
|
|
|
|
for (uint j = 0; j < layer.nrows; j++) {
|
|
uint y = j * TILE_HEIGHT;
|
|
|
|
for (uint i = 0; i < layer.ncols; i++) {
|
|
uint x = i * TILE_WIDTH;
|
|
|
|
// This seems the best place to apply the dissolve because it
|
|
// depends on the global position of each tile's
|
|
// pixels. Apparently it's the only mode which can apply to a
|
|
// single layer.
|
|
|
|
if (layer.mode == DISSOLVE_MODE) {
|
|
if (layer.type == RGBA_GIMAGE)
|
|
dissolveRGBPixels(layer.image_tiles[j][i], x, y);
|
|
|
|
else if (layer.type == GRAYA_GIMAGE)
|
|
dissolveAlphaPixels(layer.alpha_tiles[j][i], x, y);
|
|
}
|
|
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
|
|
int m = x + k + layer.x_offset;
|
|
int n = y + l + layer.y_offset;
|
|
|
|
if (m < 0 || m >= image.width() || n < 0 || n >= image.height())
|
|
continue;
|
|
|
|
(*copy)(layer, i, j, k, l, image, m, n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy an RGB pixel from the layer to the RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyRGBToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.opacity;
|
|
|
|
if (layer.type == RGBA_GIMAGE)
|
|
src_a = INT_MULT(src_a, tqAlpha(src));
|
|
|
|
// Apply the mask (if any)
|
|
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy a Gray pixel from the layer to the Gray image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyGrayToGray(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
image.setPixel(m, n, src);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy a Gray pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyGrayToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.opacity;
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy a GrayA pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyGrayAToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy an Indexed pixel from the layer to the Indexed image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyIndexedToIndexed(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
image.setPixel(m, n, src);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy an IndexedA pixel from the layer to the Indexed image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyIndexedAToIndexed(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
uchar src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
if (layer.apply_mask == 1 &&
|
|
layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
if (src_a > 127)
|
|
src++;
|
|
else
|
|
src = 0;
|
|
|
|
image.setPixel(m, n, src);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Copy an IndexedA pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::copyIndexedAToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
// This is what appears in the GIMP window
|
|
if (src_a <= 127)
|
|
src_a = 0;
|
|
else
|
|
src_a = OPAQUE_OPACITY;
|
|
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge a layer into an image, taking account of the manifold modes.
|
|
* \param xcf_image contains the layer and image to merge.
|
|
*/
|
|
void XCFImageFormat::mergeLayerIntoImage(XCFImage& xcf_image)
|
|
{
|
|
Layer& layer(xcf_image.layer);
|
|
TQImage& image(xcf_image.image);
|
|
|
|
PixelMergeOperation merge = 0;
|
|
|
|
switch (layer.type) {
|
|
case RGB_GIMAGE:
|
|
case RGBA_GIMAGE:
|
|
merge = mergeRGBToRGB;
|
|
break;
|
|
case GRAY_GIMAGE:
|
|
if (layer.opacity == OPAQUE_OPACITY)
|
|
merge = mergeGrayToGray;
|
|
else
|
|
merge = mergeGrayToRGB;
|
|
break;
|
|
case GRAYA_GIMAGE:
|
|
if (xcf_image.image.depth() <= 8)
|
|
merge = mergeGrayAToGray;
|
|
else
|
|
merge = mergeGrayAToRGB;
|
|
break;
|
|
case INDEXED_GIMAGE:
|
|
merge = mergeIndexedToIndexed;
|
|
break;
|
|
case INDEXEDA_GIMAGE:
|
|
if (xcf_image.image.depth() <= 8)
|
|
merge = mergeIndexedAToIndexed;
|
|
else
|
|
merge = mergeIndexedAToRGB;
|
|
}
|
|
|
|
for (uint j = 0; j < layer.nrows; j++) {
|
|
uint y = j * TILE_HEIGHT;
|
|
|
|
for (uint i = 0; i < layer.ncols; i++) {
|
|
uint x = i * TILE_WIDTH;
|
|
|
|
// This seems the best place to apply the dissolve because it
|
|
// depends on the global position of each tile's
|
|
// pixels. Apparently it's the only mode which can apply to a
|
|
// single layer.
|
|
|
|
if (layer.mode == DISSOLVE_MODE) {
|
|
if (layer.type == RGBA_GIMAGE)
|
|
dissolveRGBPixels(layer.image_tiles[j][i], x, y);
|
|
|
|
else if (layer.type == GRAYA_GIMAGE)
|
|
dissolveAlphaPixels(layer.alpha_tiles[j][i], x, y);
|
|
}
|
|
|
|
for (int l = 0; l < layer.image_tiles[j][i].height(); l++) {
|
|
for (int k = 0; k < layer.image_tiles[j][i].width(); k++) {
|
|
|
|
int m = x + k + layer.x_offset;
|
|
int n = y + l + layer.y_offset;
|
|
|
|
if (m < 0 || m >= image.width() || n < 0 || n >= image.height())
|
|
continue;
|
|
|
|
(*merge)(layer, i, j, k, l, image, m, n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge an RGB pixel from the layer to the RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeRGBToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
QRgb dst = image.pixel(m, n);
|
|
|
|
uchar src_r = tqRed(src);
|
|
uchar src_g = tqGreen(src);
|
|
uchar src_b = tqBlue(src);
|
|
uchar src_a = tqAlpha(src);
|
|
|
|
uchar dst_r = tqRed(dst);
|
|
uchar dst_g = tqGreen(dst);
|
|
uchar dst_b = tqBlue(dst);
|
|
uchar dst_a = tqAlpha(dst);
|
|
|
|
switch (layer.mode) {
|
|
case MULTIPLY_MODE: {
|
|
src_r = INT_MULT(src_r, dst_r);
|
|
src_g = INT_MULT(src_g, dst_g);
|
|
src_b = INT_MULT(src_b, dst_b);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DIVIDE_MODE: {
|
|
src_r = KMIN((dst_r * 256) / (1 + src_r), 255);
|
|
src_g = KMIN((dst_g * 256) / (1 + src_g), 255);
|
|
src_b = KMIN((dst_b * 256) / (1 + src_b), 255);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case SCREEN_MODE: {
|
|
src_r = 255 - INT_MULT(255 - dst_r, 255 - src_r);
|
|
src_g = 255 - INT_MULT(255 - dst_g, 255 - src_g);
|
|
src_b = 255 - INT_MULT(255 - dst_b, 255 - src_b);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case OVERLAY_MODE: {
|
|
src_r = INT_MULT(dst_r, dst_r + INT_MULT(2 * src_r, 255 - dst_r));
|
|
src_g = INT_MULT(dst_g, dst_g + INT_MULT(2 * src_g, 255 - dst_g));
|
|
src_b = INT_MULT(dst_b, dst_b + INT_MULT(2 * src_b, 255 - dst_b));
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DIFFERENCE_MODE: {
|
|
src_r = dst_r > src_r ? dst_r - src_r : src_r - dst_r;
|
|
src_g = dst_g > src_g ? dst_g - src_g : src_g - dst_g;
|
|
src_b = dst_b > src_b ? dst_b - src_b : src_b - dst_b;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case ADDITION_MODE: {
|
|
src_r = add_lut(dst_r,src_r);
|
|
src_g = add_lut(dst_g,src_g);
|
|
src_b = add_lut(dst_b,src_b);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case SUBTRACT_MODE: {
|
|
src_r = dst_r > src_r ? dst_r - src_r : 0;
|
|
src_g = dst_g > src_g ? dst_g - src_g : 0;
|
|
src_b = dst_b > src_b ? dst_b - src_b : 0;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DARKEN_ONLY_MODE: {
|
|
src_r = dst_r < src_r ? dst_r : src_r;
|
|
src_g = dst_g < src_g ? dst_g : src_g;
|
|
src_b = dst_b < src_b ? dst_b : src_b;
|
|
src_a = KMIN( src_a, dst_a );
|
|
}
|
|
break;
|
|
case LIGHTEN_ONLY_MODE: {
|
|
src_r = dst_r < src_r ? src_r : dst_r;
|
|
src_g = dst_g < src_g ? src_g : dst_g;
|
|
src_b = dst_b < src_b ? src_b : dst_b;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case HUE_MODE: {
|
|
uchar new_r = dst_r;
|
|
uchar new_g = dst_g;
|
|
uchar new_b = dst_b;
|
|
|
|
RGBTOHSV(src_r, src_g, src_b);
|
|
RGBTOHSV(new_r, new_g, new_b);
|
|
|
|
new_r = src_r;
|
|
|
|
HSVTORGB(new_r, new_g, new_b);
|
|
|
|
src_r = new_r;
|
|
src_g = new_g;
|
|
src_b = new_b;
|
|
src_a = KMIN( src_a, dst_a );
|
|
}
|
|
break;
|
|
case SATURATION_MODE: {
|
|
uchar new_r = dst_r;
|
|
uchar new_g = dst_g;
|
|
uchar new_b = dst_b;
|
|
|
|
RGBTOHSV(src_r, src_g, src_b);
|
|
RGBTOHSV(new_r, new_g, new_b);
|
|
|
|
new_g = src_g;
|
|
|
|
HSVTORGB(new_r, new_g, new_b);
|
|
|
|
src_r = new_r;
|
|
src_g = new_g;
|
|
src_b = new_b;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case VALUE_MODE: {
|
|
uchar new_r = dst_r;
|
|
uchar new_g = dst_g;
|
|
uchar new_b = dst_b;
|
|
|
|
RGBTOHSV(src_r, src_g, src_b);
|
|
RGBTOHSV(new_r, new_g, new_b);
|
|
|
|
new_b = src_b;
|
|
|
|
HSVTORGB(new_r, new_g, new_b);
|
|
|
|
src_r = new_r;
|
|
src_g = new_g;
|
|
src_b = new_b;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case COLOR_MODE: {
|
|
uchar new_r = dst_r;
|
|
uchar new_g = dst_g;
|
|
uchar new_b = dst_b;
|
|
|
|
RGBTOHLS(src_r, src_g, src_b);
|
|
RGBTOHLS(new_r, new_g, new_b);
|
|
|
|
new_r = src_r;
|
|
new_b = src_b;
|
|
|
|
HLSTORGB(new_r, new_g, new_b);
|
|
|
|
src_r = new_r;
|
|
src_g = new_g;
|
|
src_b = new_b;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
}
|
|
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
uchar new_r, new_g, new_b, new_a;
|
|
new_a = dst_a + INT_MULT(OPAQUE_OPACITY - dst_a, src_a);
|
|
|
|
float src_ratio = (float)src_a / new_a;
|
|
float dst_ratio = 1.0 - src_ratio;
|
|
|
|
new_r = (uchar)(src_ratio * src_r + dst_ratio * dst_r + EPSILON);
|
|
new_g = (uchar)(src_ratio * src_g + dst_ratio * dst_g + EPSILON);
|
|
new_b = (uchar)(src_ratio * src_b + dst_ratio * dst_b + EPSILON);
|
|
|
|
if (!layer_modes[layer.mode].affect_alpha)
|
|
new_a = dst_a;
|
|
|
|
image.setPixel(m, n, tqRgba(new_r, new_g, new_b, new_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge a Gray pixel from the layer to the Gray image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeGrayToGray(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
image.setPixel(m, n, src);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge a GrayA pixel from the layer to the Gray image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeGrayAToGray(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = tqGray(layer.image_tiles[j][i].pixel(k, l));
|
|
int dst = image.pixelIndex(m, n);
|
|
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
|
|
switch (layer.mode) {
|
|
case MULTIPLY_MODE: {
|
|
src = INT_MULT( src, dst );
|
|
}
|
|
break;
|
|
case DIVIDE_MODE: {
|
|
src = KMIN((dst * 256) / (1 + src), 255);
|
|
}
|
|
break;
|
|
case SCREEN_MODE: {
|
|
src = 255 - INT_MULT(255 - dst, 255 - src);
|
|
}
|
|
break;
|
|
case OVERLAY_MODE: {
|
|
src = INT_MULT(dst, dst + INT_MULT(2 * src, 255 - dst));
|
|
}
|
|
break;
|
|
case DIFFERENCE_MODE: {
|
|
src = dst > src ? dst - src : src - dst;
|
|
}
|
|
break;
|
|
case ADDITION_MODE: {
|
|
src = add_lut(dst,src);
|
|
}
|
|
break;
|
|
case SUBTRACT_MODE: {
|
|
src = dst > src ? dst - src : 0;
|
|
}
|
|
break;
|
|
case DARKEN_ONLY_MODE: {
|
|
src = dst < src ? dst : src;
|
|
}
|
|
break;
|
|
case LIGHTEN_ONLY_MODE: {
|
|
src = dst < src ? src : dst;
|
|
}
|
|
break;
|
|
}
|
|
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
uchar new_a = OPAQUE_OPACITY;
|
|
|
|
float src_ratio = (float)src_a / new_a;
|
|
float dst_ratio = 1.0 - src_ratio;
|
|
|
|
uchar new_g = (uchar)(src_ratio * src + dst_ratio * dst + EPSILON);
|
|
|
|
image.setPixel(m, n, new_g);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge a Gray pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeGrayToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.opacity;
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge a GrayA pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeGrayAToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = tqGray(layer.image_tiles[j][i].pixel(k, l));
|
|
int dst = tqGray(image.pixel(m, n));
|
|
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
uchar dst_a = tqAlpha(image.pixel(m, n));
|
|
|
|
switch (layer.mode) {
|
|
case MULTIPLY_MODE: {
|
|
src = INT_MULT(src, dst);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DIVIDE_MODE: {
|
|
src = KMIN((dst * 256) / (1 + src), 255);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case SCREEN_MODE: {
|
|
src = 255 - INT_MULT(255 - dst, 255 - src);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case OVERLAY_MODE: {
|
|
src = INT_MULT( dst, dst + INT_MULT(2 * src, 255 - dst));
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DIFFERENCE_MODE: {
|
|
src = dst > src ? dst - src : src - dst;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case ADDITION_MODE: {
|
|
src = add_lut(dst,src);
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case SUBTRACT_MODE: {
|
|
src = dst > src ? dst - src : 0;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case DARKEN_ONLY_MODE: {
|
|
src = dst < src ? dst : src;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
case LIGHTEN_ONLY_MODE: {
|
|
src = dst < src ? src : dst;
|
|
src_a = KMIN(src_a, dst_a);
|
|
}
|
|
break;
|
|
}
|
|
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
uchar new_a = dst_a + INT_MULT(OPAQUE_OPACITY - dst_a, src_a);
|
|
|
|
float src_ratio = (float)src_a / new_a;
|
|
float dst_ratio = 1.0 - src_ratio;
|
|
|
|
uchar new_g = (uchar)(src_ratio * src + dst_ratio * dst + EPSILON);
|
|
|
|
if (!layer_modes[layer.mode].affect_alpha)
|
|
new_a = dst_a;
|
|
|
|
image.setPixel(m, n, tqRgba(new_g, new_g, new_g, new_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge an Indexed pixel from the layer to the Indexed image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeIndexedToIndexed(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
int src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
image.setPixel(m, n, src);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge an IndexedA pixel from the layer to the Indexed image. Straight-forward.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeIndexedAToIndexed(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
uchar src = layer.image_tiles[j][i].pixelIndex(k, l);
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
src_a = INT_MULT( src_a, layer.opacity );
|
|
|
|
if ( layer.apply_mask == 1 &&
|
|
layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
if (src_a > 127) {
|
|
src++;
|
|
image.setPixel(m, n, src);
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Merge an IndexedA pixel from the layer to an RGB image. Straight-forward.
|
|
* The only thing this has to take account of is the opacity of the
|
|
* layer. Evidently, the GIMP exporter itself does not actually do this.
|
|
* \param layer source layer.
|
|
* \param i x tile index.
|
|
* \param j y tile index.
|
|
* \param k x pixel index of tile i,j.
|
|
* \param l y pixel index of tile i,j.
|
|
* \param image destination image.
|
|
* \param m x pixel of destination image.
|
|
* \param n y pixel of destination image.
|
|
*/
|
|
void XCFImageFormat::mergeIndexedAToRGB(Layer& layer, uint i, uint j, int k, int l,
|
|
TQImage& image, int m, int n)
|
|
{
|
|
QRgb src = layer.image_tiles[j][i].pixel(k, l);
|
|
uchar src_a = layer.alpha_tiles[j][i].pixelIndex(k, l);
|
|
src_a = INT_MULT(src_a, layer.opacity);
|
|
|
|
// Apply the mask (if any)
|
|
if (layer.apply_mask == 1 && layer.mask_tiles.size() > j &&
|
|
layer.mask_tiles[j].size() > i)
|
|
src_a = INT_MULT(src_a, layer.mask_tiles[j][i].pixelIndex(k, l));
|
|
|
|
// This is what appears in the GIMP window
|
|
if (src_a <= 127)
|
|
src_a = 0;
|
|
else
|
|
src_a = OPAQUE_OPACITY;
|
|
|
|
image.setPixel(m, n, tqRgba(src, src_a));
|
|
}
|
|
|
|
|
|
/*!
|
|
* Dissolving pixels: pick a random number between 0 and 255. If the pixel's
|
|
* alpha is less than that, make it transparent.
|
|
* \param image the image tile to dissolve.
|
|
* \param x the global x position of the tile.
|
|
* \param y the global y position of the tile.
|
|
*/
|
|
void XCFImageFormat::dissolveRGBPixels ( TQImage& image, int x, int y )
|
|
{
|
|
// The apparently spurious rand() calls are to wind the random
|
|
// numbers up to the same point for each tile.
|
|
|
|
for (int l = 0; l < image.height(); l++) {
|
|
srand(random_table[( l + y ) % RANDOM_TABLE_SIZE]);
|
|
|
|
for (int k = 0; k < x; k++)
|
|
rand();
|
|
|
|
for (int k = 0; k < image.width(); k++) {
|
|
int rand_val = rand() & 0xff;
|
|
QRgb pixel = image.pixel(k, l);
|
|
|
|
if (rand_val > tqAlpha(pixel)) {
|
|
image.setPixel(k, l, tqRgba(pixel, 0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* Dissolving pixels: pick a random number between 0 and 255. If the pixel's
|
|
* alpha is less than that, make it transparent. This routine works for
|
|
* the GRAYA and INDEXEDA image types where the pixel alpha's are stored
|
|
* separately from the pixel themselves.
|
|
* \param image the alpha tile to dissolve.
|
|
* \param x the global x position of the tile.
|
|
* \param y the global y position of the tile.
|
|
*/
|
|
void XCFImageFormat::dissolveAlphaPixels ( TQImage& image, int x, int y )
|
|
{
|
|
// The apparently spurious rand() calls are to wind the random
|
|
// numbers up to the same point for each tile.
|
|
|
|
for (int l = 0; l < image.height(); l++) {
|
|
srand( random_table[(l + y) % RANDOM_TABLE_SIZE]);
|
|
|
|
for (int k = 0; k < x; k++)
|
|
rand();
|
|
|
|
for (int k = 0; k < image.width(); k++) {
|
|
int rand_val = rand() & 0xff;
|
|
uchar alpha = image.pixelIndex(k, l);
|
|
|
|
if (rand_val > alpha) {
|
|
image.setPixel(k, l, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|