|
|
|
/***************************************************************************
|
|
|
|
sun.cpp - Sun Rise and Set Calculations
|
|
|
|
-------------------
|
|
|
|
begin : Friday July 11 2003
|
|
|
|
copyright : (C) 2003 by John Ratke
|
|
|
|
email : jratke@comcast.net
|
|
|
|
|
|
|
|
history:
|
|
|
|
Written as DAYLEN.C, 1989-08-16
|
|
|
|
Modified to SUNRISET.C, 1992-12-01
|
|
|
|
(c) Paul Schlyter, 1989, 1992
|
|
|
|
Released to the public domain by Paul Schlyter, December 1992
|
|
|
|
Portions Modified to SUNDOWN.NLM by Cliff Haas 98-05-22
|
|
|
|
Converted to C++ and modified by John Ratke
|
|
|
|
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
#include <kdebug.h>
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include "sun.h"
|
|
|
|
|
|
|
|
/* A function to compute the number of days elapsed since 2000 Jan 0.0 */
|
|
|
|
/* (which is equal to 1999 Dec 31, 0h UT) */
|
|
|
|
|
|
|
|
static inline double days_since_2000_Jan_0(int y, int m, int d)
|
|
|
|
{
|
|
|
|
return (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Some conversion factors between radians and degrees */
|
|
|
|
|
|
|
|
static const double PI = 3.14159265358979323846;
|
|
|
|
|
|
|
|
static const double RADEG = ( 180.0 / PI );
|
|
|
|
static const double DEGRAD = ( PI / 180.0 );
|
|
|
|
|
|
|
|
/* The trigonometric functions in degrees */
|
|
|
|
static inline double sind(double x) { return sin( x * DEGRAD ); }
|
|
|
|
static inline double cosd(double x) { return cos( x * DEGRAD ); }
|
|
|
|
static inline double tand(double x) { return tan( x * DEGRAD ); }
|
|
|
|
static inline double atand(double x) { return RADEG * atan(x); }
|
|
|
|
static inline double asind(double x) { return RADEG * asin(x); }
|
|
|
|
static inline double acosd(double x) { return RADEG * acos(x); }
|
|
|
|
static inline double atan2d(double y, double x) { return RADEG * atan2(y, x); }
|
|
|
|
|
|
|
|
/* Other local functions */
|
|
|
|
static double latitudeToDouble( const TQString &latitude );
|
|
|
|
static double longitudeToDouble( const TQString &longitude );
|
|
|
|
static int __sunriset__( int year, int month, int day, double lon, double lat,
|
|
|
|
double altit, int upper_limb, double &trise, double &tset );
|
|
|
|
static void sunpos( double d, double &lon, double &r );
|
|
|
|
static void sun_RA_dec( double d, double &RA, double &dec, double &r );
|
|
|
|
static inline double revolution( const double x );
|
|
|
|
static inline double rev180( const double x );
|
|
|
|
static inline double GMST0( const double d );
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function computes times for sunrise/sunset.
|
|
|
|
* Sunrise/set is considered to occur when the Sun's upper limb is
|
|
|
|
* 35 arc minutes below the horizon (this accounts for the refraction
|
|
|
|
* of the Earth's atmosphere).
|
|
|
|
*/
|
|
|
|
static inline int sun_rise_set(int year, int month, int day, double lon, double lat, double &rise, double &set)
|
|
|
|
{
|
|
|
|
return __sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function computes the start and end times of civil twilight.
|
|
|
|
* Civil twilight starts/ends when the Sun's center is 6 degrees below
|
|
|
|
* the horizon.
|
|
|
|
*/
|
|
|
|
static inline int civil_twilight(int year, int month, int day, double lon, double lat, double &start, double &end)
|
|
|
|
{
|
|
|
|
return __sunriset__( year, month, day, lon, lat, -6.0, 0, start, end );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Sun::Sun(const TQString &latitude, const TQString &longitude, TQDate date, const int localUTCOffset) :
|
|
|
|
m_date(date),
|
|
|
|
m_lat(latitudeToDouble(latitude)), m_lon(longitudeToDouble(longitude)),
|
|
|
|
m_localUTCOffset(localUTCOffset)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TQTime Sun::computeRiseTime()
|
|
|
|
{
|
|
|
|
double riseTime;
|
|
|
|
double setTime;
|
|
|
|
|
|
|
|
sun_rise_set( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, riseTime, setTime );
|
|
|
|
|
|
|
|
TQTime result = convertDoubleToLocalTime( riseTime );
|
|
|
|
|
|
|
|
if ( ! result.isValid() )
|
|
|
|
result.setHMS( 6, 0, 0 );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TQTime Sun::computeSetTime()
|
|
|
|
{
|
|
|
|
double riseTime;
|
|
|
|
double setTime;
|
|
|
|
|
|
|
|
sun_rise_set( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, riseTime, setTime );
|
|
|
|
|
|
|
|
TQTime result = convertDoubleToLocalTime( setTime );
|
|
|
|
|
|
|
|
if ( ! result.isValid() )
|
|
|
|
result.setHMS( 19, 0, 0 );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TQTime Sun::computeCivilTwilightStart()
|
|
|
|
{
|
|
|
|
double start;
|
|
|
|
double end;
|
|
|
|
|
|
|
|
civil_twilight( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, start, end );
|
|
|
|
|
|
|
|
TQTime result = convertDoubleToLocalTime( start );
|
|
|
|
|
|
|
|
if ( ! result.isValid() )
|
|
|
|
result.setHMS( 6, 0, 0 );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TQTime Sun::computeCivilTwilightEnd()
|
|
|
|
{
|
|
|
|
double start;
|
|
|
|
double end;
|
|
|
|
|
|
|
|
civil_twilight( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, start, end );
|
|
|
|
|
|
|
|
TQTime result = convertDoubleToLocalTime( end );
|
|
|
|
|
|
|
|
if ( ! result.isValid() )
|
|
|
|
result.setHMS( 19, 0, 0 );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Converts latitude in format DD-MMH, where DD is degrees, MM is minutes,
|
|
|
|
* and H is Hemisphere (N for North, or S for South) to a floating point number.
|
|
|
|
*
|
|
|
|
* For example: 27-00S to -27.0
|
|
|
|
*
|
|
|
|
* Does not currently handle seconds.
|
|
|
|
*/
|
|
|
|
static double latitudeToDouble( const TQString &latitude )
|
|
|
|
{
|
|
|
|
double result;
|
|
|
|
|
|
|
|
double dd = latitude.left(2).toDouble();
|
|
|
|
double mm = latitude.mid(3, 2).toDouble();
|
|
|
|
|
|
|
|
result = dd + (mm / 60);
|
|
|
|
|
|
|
|
if (latitude.tqcontains("S"))
|
|
|
|
result *= -1;
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static double longitudeToDouble( const TQString &longitude )
|
|
|
|
{
|
|
|
|
double result;
|
|
|
|
|
|
|
|
double ddd = longitude.left(3).toDouble();
|
|
|
|
double mm = longitude.mid(4, 2).toDouble();
|
|
|
|
|
|
|
|
result = ddd + (mm / 60);
|
|
|
|
|
|
|
|
if (longitude.tqcontains("W"))
|
|
|
|
result *= -1;
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TQTime Sun::convertDoubleToLocalTime( const double time )
|
|
|
|
{
|
|
|
|
TQTime result;
|
|
|
|
|
|
|
|
// Example: say time is 17.7543 Then hours = 17 and minutes = 0.7543 * 60 = 45.258
|
|
|
|
// We need to convert the time to CORRECT local hours
|
|
|
|
int hours = (int)floor(time);
|
|
|
|
int localhours = hours + (m_localUTCOffset / 60);
|
|
|
|
|
|
|
|
// We need to convert the time to CORRECT local minutes
|
|
|
|
int minutes = (int)floor((time - hours) * 60);
|
|
|
|
int localminutes = minutes + (m_localUTCOffset % 60);
|
|
|
|
|
|
|
|
// We now have to adjust the time to be within the 60m boundary
|
|
|
|
if (localminutes < 0)
|
|
|
|
{
|
|
|
|
//As minutes is less than 0, we need to
|
|
|
|
//reduce a hour and add 60m to minutes.
|
|
|
|
localminutes += 60;
|
|
|
|
localhours--;
|
|
|
|
}
|
|
|
|
if (localminutes >= 60)
|
|
|
|
{
|
|
|
|
//As minutes are more than 60, we need to
|
|
|
|
//add one more hour and reduce the minutes to
|
|
|
|
//a value between 0 and 59.
|
|
|
|
localminutes -= 60;
|
|
|
|
localhours++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Round up or down to nearest second.
|
|
|
|
// Use rint instead of nearbyint because rint is in FreeBSD
|
|
|
|
int seconds = (int)rint( fabs( minutes - ((time - hours) * 60) ) * 60 );
|
|
|
|
|
|
|
|
// We now have to adjust the time to be within the 24h boundary
|
|
|
|
if (localhours < 0) { localhours += 24; }
|
|
|
|
if (localhours >= 24) { localhours -= 24; }
|
|
|
|
|
|
|
|
// Try to set the hours, minutes and seconds for the local time.
|
|
|
|
// If this doesn't work, then we will return the invalid time.
|
|
|
|
result.setHMS( localhours, localminutes, seconds );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: year,month,date = calendar date, 1801-2099 only.
|
|
|
|
* Eastern longitude positive, Western longitude negative
|
|
|
|
* Northern latitude positive, Southern latitude negative
|
|
|
|
* The longitude value IS critical in this function!
|
|
|
|
* altit = the altitude which the Sun should cross
|
|
|
|
* Set to -35/60 degrees for rise/set, -6 degrees
|
|
|
|
* for civil, -12 degrees for nautical and -18
|
|
|
|
* degrees for astronomical twilight.
|
|
|
|
* upper_limb: non-zero -> upper limb, zero -> center
|
|
|
|
* Set to non-zero (e.g. 1) when computing rise/set
|
|
|
|
* times, and to zero when computing start/end of
|
|
|
|
* twilight.
|
|
|
|
* trise = the rise time gets stored here
|
|
|
|
* tset = the set time gets stored here
|
|
|
|
* Both times are relative to the specified altitude,
|
|
|
|
* and thus this function can be used to comupte
|
|
|
|
* various twilight times, as well as rise/set times
|
|
|
|
*
|
|
|
|
* Return value: 0 = sun rises/sets this day, times stored in
|
|
|
|
* trise and tset.
|
|
|
|
* +1 = sun above the specified "horizon" 24 hours.
|
|
|
|
* trise set to time when the sun is at south,
|
|
|
|
* minus 12 hours while tset is set to the south
|
|
|
|
* time plus 12 hours. "Day" length = 24 hours
|
|
|
|
* -1 = sun is below the specified "horizon" 24 hours
|
|
|
|
* "Day" length = 0 hours, trise and tset are
|
|
|
|
* both set to the time when the sun is at south.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int __sunriset__( int year, int month, int day, double lon, double lat,
|
|
|
|
double altit, int upper_limb, double &trise, double &tset )
|
|
|
|
{
|
|
|
|
double d; /* Days since 2000 Jan 0.0 (negative before) */
|
|
|
|
double sr; /* Solar distance, astronomical units */
|
|
|
|
double sRA; /* Sun's Right Ascension */
|
|
|
|
double sdec; /* Sun's declination */
|
|
|
|
double sradius; /* Sun's aptqparent radius */
|
|
|
|
double t; /* Diurnal arc */
|
|
|
|
double tsouth; /* Time when Sun is at south */
|
|
|
|
double sidtime; /* Local sidereal time */
|
|
|
|
|
|
|
|
int rc = 0; /* Return code from function - usually 0 */
|
|
|
|
|
|
|
|
/* Compute d of 12h local mean solar time */
|
|
|
|
d = days_since_2000_Jan_0(year, month, day);
|
|
|
|
|
|
|
|
d = days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0;
|
|
|
|
|
|
|
|
/* Compute local sideral time of this moment */
|
|
|
|
sidtime = revolution( GMST0(d) + 180.0 + lon );
|
|
|
|
|
|
|
|
/* Compute Sun's RA + Decl at this moment */
|
|
|
|
sun_RA_dec( d, sRA, sdec, sr );
|
|
|
|
|
|
|
|
/* Compute time when Sun is at south - in hours UT */
|
|
|
|
tsouth = 12.0 - rev180(sidtime - sRA) / 15.0;
|
|
|
|
|
|
|
|
/* Compute the Sun's aptqparent radius, degrees */
|
|
|
|
sradius = 0.2666 / sr;
|
|
|
|
|
|
|
|
/* Do correction to upper limb, if necessary */
|
|
|
|
if ( upper_limb )
|
|
|
|
altit -= sradius;
|
|
|
|
|
|
|
|
/* Compute the diurnal arc that the Sun traverses to reach */
|
|
|
|
/* the specified altitide altit: */
|
|
|
|
double cost;
|
|
|
|
cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
|
|
|
|
( cosd(lat) * cosd(sdec) );
|
|
|
|
if ( cost >= 1.0 )
|
|
|
|
{
|
|
|
|
rc = -1;
|
|
|
|
t = 0.0; /* Sun always below altit */
|
|
|
|
}
|
|
|
|
else if ( cost <= -1.0 )
|
|
|
|
{
|
|
|
|
rc = +1;
|
|
|
|
t = 12.0; /* Sun always above altit */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
t = acosd(cost) / 15.0; /* The diurnal arc, hours */
|
|
|
|
|
|
|
|
/* Store rise and set times - in hours UT */
|
|
|
|
trise = tsouth - t;
|
|
|
|
tset = tsouth + t;
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function computes the Sun's position at any instant
|
|
|
|
*
|
|
|
|
* Computes the Sun's ecliptic longitude and distance
|
|
|
|
* at an instant given in d, number of days since
|
|
|
|
* 2000 Jan 0.0. The Sun's ecliptic latitude is not
|
|
|
|
* computed, since it's always very near 0.
|
|
|
|
*/
|
|
|
|
static void sunpos( double d, double &lon, double &r )
|
|
|
|
{
|
|
|
|
double M; /* Mean anomaly of the Sun */
|
|
|
|
double w; /* Mean longitude of perihelion */
|
|
|
|
/* Note: Sun's mean longitude = M + w */
|
|
|
|
double e; /* Eccentricity of Earth's orbit */
|
|
|
|
double E; /* Eccentric anomaly */
|
|
|
|
double x;
|
|
|
|
double y; /* x, y coordinates in orbit */
|
|
|
|
double v; /* True anomaly */
|
|
|
|
|
|
|
|
/* Compute mean elements */
|
|
|
|
M = revolution( 356.0470 + 0.9856002585 * d );
|
|
|
|
w = 282.9404 + 4.70935E-5 * d;
|
|
|
|
e = 0.016709 - 1.151E-9 * d;
|
|
|
|
|
|
|
|
/* Compute true longitude and radius vector */
|
|
|
|
E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
|
|
|
|
x = cosd(E) - e;
|
|
|
|
y = sqrt( 1.0 - e*e ) * sind(E);
|
|
|
|
r = sqrt( x*x + y*y ); /* Solar distance */
|
|
|
|
v = atan2d( y, x ); /* True anomaly */
|
|
|
|
lon = v + w; /* True solar longitude */
|
|
|
|
|
|
|
|
if ( lon >= 360.0 )
|
|
|
|
lon -= 360.0; /* Make it 0..360 degrees */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void sun_RA_dec( double d, double &RA, double &dec, double &r )
|
|
|
|
{
|
|
|
|
double lon;
|
|
|
|
double obl_ecl;
|
|
|
|
double x;
|
|
|
|
double y;
|
|
|
|
double z;
|
|
|
|
|
|
|
|
/* Compute Sun's ecliptical coordinates */
|
|
|
|
sunpos( d, lon, r );
|
|
|
|
|
|
|
|
/* Compute ecliptic rectangular coordinates (z=0) */
|
|
|
|
x = r * cosd(lon);
|
|
|
|
y = r * sind(lon);
|
|
|
|
|
|
|
|
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
|
|
|
|
obl_ecl = 23.4393 - 3.563E-7 * d;
|
|
|
|
|
|
|
|
/* Convert to equatorial rectangular coordinates - x is unchanged */
|
|
|
|
z = y * sind(obl_ecl);
|
|
|
|
y = y * cosd(obl_ecl);
|
|
|
|
|
|
|
|
/* Convert to spherical coordinates */
|
|
|
|
RA = atan2d( y, x );
|
|
|
|
dec = atan2d( z, sqrt(x*x + y*y) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const double INV360 = 1.0 / 360.0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function reduces any angle to within the first revolution
|
|
|
|
* by subtracting or adding even multiples of 360.0 until the
|
|
|
|
* result is >= 0.0 and < 360.0
|
|
|
|
*/
|
|
|
|
static inline double revolution( const double x )
|
|
|
|
{
|
|
|
|
return ( x - 360.0 * floor( x * INV360 ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reduce angle to within +180..+180 degrees
|
|
|
|
*/
|
|
|
|
static inline double rev180( const double x )
|
|
|
|
{
|
|
|
|
return ( x - 360.0 * floor( x * INV360 + 0.5 ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function computes GMST0, the Greenwhich Mean Sidereal Time
|
|
|
|
* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at
|
|
|
|
* 0h UT). GMST is then the sidereal time at Greenwich at any
|
|
|
|
* time of the day. I've generelized GMST0 as well, and define it
|
|
|
|
* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at
|
|
|
|
* other times than 0h UT as well. While this sounds somewhat
|
|
|
|
* contradictory, it is very practical: instead of computing
|
|
|
|
* GMST like:
|
|
|
|
*
|
|
|
|
* GMST = (GMST0) + UT * (366.2422/365.2422)
|
|
|
|
*
|
|
|
|
* where (GMST0) is the GMST last time UT was 0 hours, one simply
|
|
|
|
* computes:
|
|
|
|
*
|
|
|
|
* GMST = GMST0 + UT
|
|
|
|
*
|
|
|
|
* where GMST0 is the GMST "at 0h UT" but at the current moment!
|
|
|
|
* Defined in this way, GMST0 will increase with about 4 min a
|
|
|
|
* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr)
|
|
|
|
* is equal to the Sun's mean longitude plus/minus 180 degrees!
|
|
|
|
* (if we neglect aberration, which amounts to 20 seconds of arc
|
|
|
|
* or 1.33 seconds of time)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static inline double GMST0( const double d )
|
|
|
|
{
|
|
|
|
double sidtim0;
|
|
|
|
|
|
|
|
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
|
|
|
|
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
|
|
|
|
/* add these numbers, I'll let the C compiler do it for me. */
|
|
|
|
/* Any decent C compiler will add the constants at compile */
|
|
|
|
/* time, imposing no runtime or code overhead. */
|
|
|
|
sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
|
|
|
|
( 0.9856002585 + 4.70935E-5 ) * d );
|
|
|
|
return sidtim0;
|
|
|
|
}
|
|
|
|
|